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Abstract: N-Alkyl pyrazoles are important heterocycles in organic and medicinal chemistry, demon-
strating a wide range of biological activity. A new method for the N-alkylation of pyrazoles has been
developed using trichloroacetimidate electrophiles and a Brønsted acid catalyst. These reactions
provide ready access to N-alkyl pyrazoles which are present in a variety of medicinally relevant
lead structures. Benzylic, phenethyl and benzhydryl trichloroacetimidates provide good yields of
the N-alkyl pyrazole products. Unsymmetrical pyrazoles provide a mixture of the two possible
regioisomers, with the major product being controlled by sterics. This methodology provides an
alternative to other alkylation methods that require strong base or high temperature.
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1. Introduction

Pyrazoles are aromatic 5-membered carbocyclic rings with two adjacent nitrogen
atoms. These heterocycles play an important role in organic and medicinal chemistry.
For example, pyrazoles have been utilized as directing groups for C-H bond function-
alization [1–3]. Recently it was shown that pyrazoles may be converted to amides via
ozonolysis [1], further expanding the utility of the heterocycle. Pyrazoles are often incor-
porated into biologically active systems as a bioisostere for amides [4–6], phenols [7] or
other aromatic rings [8]. Derivatives of pyrazole also show significant biological activity,
with the heterocycle being the basis of molecules that have anti-infective, anti-oxidant and
anti-dementia properties [9–12]. Pyrazoles are especially common in anti-tumor agents,
such as the ones shown in Figure 1 [13]. Substituted pyrazoles also have found applica-
tions in many other fields including new energetic materials [14,15], sensors [16,17] and
batteries [18].
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Given the common nature of pyrazole-based structures researchers have been active
in defining new methods for the synthesis and modification of this heterocycle. Typically,
in the case of N-alkyl pyrazoles, the substituent at the nitrogen is installed under basic
conditions which deprotonate the nitrogen followed by the addition of an electrophile such
as an alkyl halide [19–21]. Alternative methods based on the Mitsunobu reaction [22,23],
transition metal catalysis [24–28] and enzymes [29] have also been advanced. Trichloroace-
timidates have recently been recognized as excellent participants in a number of amination
reactions [30–34]. Our recent studies on the substitution reactions of anilines [35], sulfon-
amides [36] and isatins [37] with trichloroacetimidate electrophiles led us to speculate that
imidates may be efficient electrophiles for use in pyrazole alkylation.

2. Results and Discussion

Initially, we explored the alkylation of pyrazoles under promoter free conditions.
Heating 4-choropyrazole 6 and phenethyl trichloroacetimidate 7 in refluxing 1,2-DCE for
24 h showed only a trace of alkylation product, so the use of acid catalysts was investigated
(Table 1). Of the Lewis and Brønsted acids evaluated, camphorsulfonic acid (CSA) gave the
best yield of N-alkylated product (77%). Other solvents were then evaluated, but did not
show improved yields. The reaction time could be shortened to 4 h with little loss in yield,
so these conditions were adopted for further studies on the reaction scope.

Table 1. Optimization of pyrazole N-alkylation conditions.
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1 CSA = camphorsulfonic acid.

A number of different trichloroacetimidate electrophiles were then evaluated in the
pyrazole N-alkylation using 4-chloropyrazole as the nucleophile (Table 2). Replacement of
the benzene ring of the phenethyl group with a 4-methoxyphenyl or a 2-naphthyl group
gave good yields of the substitution products 12 and 14. (entries 2 and 3). Diphenylmethyl
imidates such as 15 were of special interest, as these systems have shown activity as opioid
receptor ligands which can be used to treat addiction and other disorders [38]. Benzhydryl
imidates provided the respective N-alkyl pyrazoles in good yields (entries 4–10) except
for the nitro-substituted benzhydryl imidate 23 (entry 8). The poor reactivity of imidate
23 in the reaction appears to implicate a carbocation intermediate in the mechanism, as
incorporation of a powerful electron withdrawing group such as the nitro group makes
formation of a carbocation more difficult, and therefore this reaction did not provide any
product. This trend was also apparent when benzyl imidates were investigated (entries
11–13), as the best yield was obtained with the 4-methoxybenzyl imidate 31 (92%), while the
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4-chlorobenzyl imidate 33 only gave 37% of the pyrazole product 34. The methyl, allyl and
tert-butyl imidates failed to provide any of the N-alkyl pyrazole products, only returning
the starting materials under these reaction conditions. The methyl imidate cannot form
a requisite carbocation, so its lack of reactivity is not unexpected. Allyl imidate 37 can
rapidly rearrange to the acetamide via a [3,3]-sigmatropic process, which may compete
with alkylation [39]. The tert-butyl imidate has been shown to undergo rapid elimination
in the presence of acids, and special conditions are often needed for N-alkylation of this
substrate [40].

Table 2. N-Alkylation of 4-chloropyrazole 6 with trichloroacetimidates.
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incorporation of a powerful electron withdrawing group such as the nitro group makes 
formation of a carbocation more difficult, and therefore this reaction did not provide any 
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the 4-chlorobenzyl imidate 33 only gave 37% of the pyrazole product 34. The methyl, allyl 
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incorporation of a powerful electron withdrawing group such as the nitro group makes 
formation of a carbocation more difficult, and therefore this reaction did not provide any 
product. This trend was also apparent when benzyl imidates were investigated (entries 
11–13), as the best yield was obtained with the 4-methoxybenzyl imidate 31 (92%), while 
the 4-chlorobenzyl imidate 33 only gave 37% of the pyrazole product 34. The methyl, allyl 
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pete with alkylation [39]. The tert-butyl imidate has been shown to undergo rapid elimi-
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incorporation of a powerful electron withdrawing group such as the nitro group makes 
formation of a carbocation more difficult, and therefore this reaction did not provide any 
product. This trend was also apparent when benzyl imidates were investigated (entries 
11–13), as the best yield was obtained with the 4-methoxybenzyl imidate 31 (92%), while 
the 4-chlorobenzyl imidate 33 only gave 37% of the pyrazole product 34. The methyl, allyl 
and tert-butyl imidates failed to provide any of the N-alkyl pyrazole products, only re-
turning the starting materials under these reaction conditions. The methyl imidate cannot 
form a requisite carbocation, so its lack of reactivity is not unexpected. Allyl imidate 37 
can rapidly rearrange to the acetamide via a [3,3]-sigmatropic process, which may com-
pete with alkylation [39]. The tert-butyl imidate has been shown to undergo rapid elimi-
nation in the presence of acids, and special conditions are often needed for N-alkylation 
of this substrate [40]. 
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incorporation of a powerful electron withdrawing group such as the nitro group makes 
formation of a carbocation more difficult, and therefore this reaction did not provide any 
product. This trend was also apparent when benzyl imidates were investigated (entries 
11–13), as the best yield was obtained with the 4-methoxybenzyl imidate 31 (92%), while 
the 4-chlorobenzyl imidate 33 only gave 37% of the pyrazole product 34. The methyl, allyl 
and tert-butyl imidates failed to provide any of the N-alkyl pyrazole products, only re-
turning the starting materials under these reaction conditions. The methyl imidate cannot 
form a requisite carbocation, so its lack of reactivity is not unexpected. Allyl imidate 37 
can rapidly rearrange to the acetamide via a [3,3]-sigmatropic process, which may com-
pete with alkylation [39]. The tert-butyl imidate has been shown to undergo rapid elimi-
nation in the presence of acids, and special conditions are often needed for N-alkylation 
of this substrate [40]. 
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incorporation of a powerful electron withdrawing group such as the nitro group makes 
formation of a carbocation more difficult, and therefore this reaction did not provide any 
product. This trend was also apparent when benzyl imidates were investigated (entries 
11–13), as the best yield was obtained with the 4-methoxybenzyl imidate 31 (92%), while 
the 4-chlorobenzyl imidate 33 only gave 37% of the pyrazole product 34. The methyl, allyl 
and tert-butyl imidates failed to provide any of the N-alkyl pyrazole products, only re-
turning the starting materials under these reaction conditions. The methyl imidate cannot 
form a requisite carbocation, so its lack of reactivity is not unexpected. Allyl imidate 37 
can rapidly rearrange to the acetamide via a [3,3]-sigmatropic process, which may com-
pete with alkylation [39]. The tert-butyl imidate has been shown to undergo rapid elimi-
nation in the presence of acids, and special conditions are often needed for N-alkylation 
of this substrate [40]. 
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incorporation of a powerful electron withdrawing group such as the nitro group makes 
formation of a carbocation more difficult, and therefore this reaction did not provide any 
product. This trend was also apparent when benzyl imidates were investigated (entries 
11–13), as the best yield was obtained with the 4-methoxybenzyl imidate 31 (92%), while 
the 4-chlorobenzyl imidate 33 only gave 37% of the pyrazole product 34. The methyl, allyl 
and tert-butyl imidates failed to provide any of the N-alkyl pyrazole products, only re-
turning the starting materials under these reaction conditions. The methyl imidate cannot 
form a requisite carbocation, so its lack of reactivity is not unexpected. Allyl imidate 37 
can rapidly rearrange to the acetamide via a [3,3]-sigmatropic process, which may com-
pete with alkylation [39]. The tert-butyl imidate has been shown to undergo rapid elimi-
nation in the presence of acids, and special conditions are often needed for N-alkylation 
of this substrate [40]. 
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incorporation of a powerful electron withdrawing group such as the nitro group makes 
formation of a carbocation more difficult, and therefore this reaction did not provide any 
product. This trend was also apparent when benzyl imidates were investigated (entries 
11–13), as the best yield was obtained with the 4-methoxybenzyl imidate 31 (92%), while 
the 4-chlorobenzyl imidate 33 only gave 37% of the pyrazole product 34. The methyl, allyl 
and tert-butyl imidates failed to provide any of the N-alkyl pyrazole products, only re-
turning the starting materials under these reaction conditions. The methyl imidate cannot 
form a requisite carbocation, so its lack of reactivity is not unexpected. Allyl imidate 37 
can rapidly rearrange to the acetamide via a [3,3]-sigmatropic process, which may com-
pete with alkylation [39]. The tert-butyl imidate has been shown to undergo rapid elimi-
nation in the presence of acids, and special conditions are often needed for N-alkylation 
of this substrate [40]. 
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incorporation of a powerful electron withdrawing group such as the nitro group makes 
formation of a carbocation more difficult, and therefore this reaction did not provide any 
product. This trend was also apparent when benzyl imidates were investigated (entries 
11–13), as the best yield was obtained with the 4-methoxybenzyl imidate 31 (92%), while 
the 4-chlorobenzyl imidate 33 only gave 37% of the pyrazole product 34. The methyl, allyl 
and tert-butyl imidates failed to provide any of the N-alkyl pyrazole products, only re-
turning the starting materials under these reaction conditions. The methyl imidate cannot 
form a requisite carbocation, so its lack of reactivity is not unexpected. Allyl imidate 37 
can rapidly rearrange to the acetamide via a [3,3]-sigmatropic process, which may com-
pete with alkylation [39]. The tert-butyl imidate has been shown to undergo rapid elimi-
nation in the presence of acids, and special conditions are often needed for N-alkylation 
of this substrate [40]. 
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incorporation of a powerful electron withdrawing group such as the nitro group makes 
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incorporation of a powerful electron withdrawing group such as the nitro group makes 
formation of a carbocation more difficult, and therefore this reaction did not provide any 
product. This trend was also apparent when benzyl imidates were investigated (entries 
11–13), as the best yield was obtained with the 4-methoxybenzyl imidate 31 (92%), while 
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incorporation of a powerful electron withdrawing group such as the nitro group makes 
formation of a carbocation more difficult, and therefore this reaction did not provide any 
product. This trend was also apparent when benzyl imidates were investigated (entries 
11–13), as the best yield was obtained with the 4-methoxybenzyl imidate 31 (92%), while 
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incorporation of a powerful electron withdrawing group such as the nitro group makes 
formation of a carbocation more difficult, and therefore this reaction did not provide any 
product. This trend was also apparent when benzyl imidates were investigated (entries 
11–13), as the best yield was obtained with the 4-methoxybenzyl imidate 31 (92%), while 
the 4-chlorobenzyl imidate 33 only gave 37% of the pyrazole product 34. The methyl, allyl 
and tert-butyl imidates failed to provide any of the N-alkyl pyrazole products, only re-
turning the starting materials under these reaction conditions. The methyl imidate cannot 
form a requisite carbocation, so its lack of reactivity is not unexpected. Allyl imidate 37 
can rapidly rearrange to the acetamide via a [3,3]-sigmatropic process, which may com-
pete with alkylation [39]. The tert-butyl imidate has been shown to undergo rapid elimi-
nation in the presence of acids, and special conditions are often needed for N-alkylation 
of this substrate [40]. 
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incorporation of a powerful electron withdrawing group such as the nitro group makes 
formation of a carbocation more difficult, and therefore this reaction did not provide any 
product. This trend was also apparent when benzyl imidates were investigated (entries 
11–13), as the best yield was obtained with the 4-methoxybenzyl imidate 31 (92%), while 
the 4-chlorobenzyl imidate 33 only gave 37% of the pyrazole product 34. The methyl, allyl 
and tert-butyl imidates failed to provide any of the N-alkyl pyrazole products, only re-
turning the starting materials under these reaction conditions. The methyl imidate cannot 
form a requisite carbocation, so its lack of reactivity is not unexpected. Allyl imidate 37 
can rapidly rearrange to the acetamide via a [3,3]-sigmatropic process, which may com-
pete with alkylation [39]. The tert-butyl imidate has been shown to undergo rapid elimi-
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incorporation of a powerful electron withdrawing group such as the nitro group makes 
formation of a carbocation more difficult, and therefore this reaction did not provide any 
product. This trend was also apparent when benzyl imidates were investigated (entries 
11–13), as the best yield was obtained with the 4-methoxybenzyl imidate 31 (92%), while 
the 4-chlorobenzyl imidate 33 only gave 37% of the pyrazole product 34. The methyl, allyl 
and tert-butyl imidates failed to provide any of the N-alkyl pyrazole products, only re-
turning the starting materials under these reaction conditions. The methyl imidate cannot 
form a requisite carbocation, so its lack of reactivity is not unexpected. Allyl imidate 37 
can rapidly rearrange to the acetamide via a [3,3]-sigmatropic process, which may com-
pete with alkylation [39]. The tert-butyl imidate has been shown to undergo rapid elimi-
nation in the presence of acids, and special conditions are often needed for N-alkylation 
of this substrate [40]. 
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incorporation of a powerful electron withdrawing group such as the nitro group makes 
formation of a carbocation more difficult, and therefore this reaction did not provide any 
product. This trend was also apparent when benzyl imidates were investigated (entries 
11–13), as the best yield was obtained with the 4-methoxybenzyl imidate 31 (92%), while 
the 4-chlorobenzyl imidate 33 only gave 37% of the pyrazole product 34. The methyl, allyl 
and tert-butyl imidates failed to provide any of the N-alkyl pyrazole products, only re-
turning the starting materials under these reaction conditions. The methyl imidate cannot 
form a requisite carbocation, so its lack of reactivity is not unexpected. Allyl imidate 37 
can rapidly rearrange to the acetamide via a [3,3]-sigmatropic process, which may com-
pete with alkylation [39]. The tert-butyl imidate has been shown to undergo rapid elimi-
nation in the presence of acids, and special conditions are often needed for N-alkylation 
of this substrate [40]. 
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incorporation of a powerful electron withdrawing group such as the nitro group makes 
formation of a carbocation more difficult, and therefore this reaction did not provide any 
product. This trend was also apparent when benzyl imidates were investigated (entries 
11–13), as the best yield was obtained with the 4-methoxybenzyl imidate 31 (92%), while 
the 4-chlorobenzyl imidate 33 only gave 37% of the pyrazole product 34. The methyl, allyl 
and tert-butyl imidates failed to provide any of the N-alkyl pyrazole products, only re-
turning the starting materials under these reaction conditions. The methyl imidate cannot 
form a requisite carbocation, so its lack of reactivity is not unexpected. Allyl imidate 37 
can rapidly rearrange to the acetamide via a [3,3]-sigmatropic process, which may com-
pete with alkylation [39]. The tert-butyl imidate has been shown to undergo rapid elimi-
nation in the presence of acids, and special conditions are often needed for N-alkylation 
of this substrate [40]. 
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incorporation of a powerful electron withdrawing group such as the nitro group makes 
formation of a carbocation more difficult, and therefore this reaction did not provide any 
product. This trend was also apparent when benzyl imidates were investigated (entries 
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incorporation of a powerful electron withdrawing group such as the nitro group makes 
formation of a carbocation more difficult, and therefore this reaction did not provide any 
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incorporation of a powerful electron withdrawing group such as the nitro group makes 
formation of a carbocation more difficult, and therefore this reaction did not provide any 
product. This trend was also apparent when benzyl imidates were investigated (entries 
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incorporation of a powerful electron withdrawing group such as the nitro group makes 
formation of a carbocation more difficult, and therefore this reaction did not provide any 
product. This trend was also apparent when benzyl imidates were investigated (entries 
11–13), as the best yield was obtained with the 4-methoxybenzyl imidate 31 (92%), while 
the 4-chlorobenzyl imidate 33 only gave 37% of the pyrazole product 34. The methyl, allyl 
and tert-butyl imidates failed to provide any of the N-alkyl pyrazole products, only re-
turning the starting materials under these reaction conditions. The methyl imidate cannot 
form a requisite carbocation, so its lack of reactivity is not unexpected. Allyl imidate 37 
can rapidly rearrange to the acetamide via a [3,3]-sigmatropic process, which may com-
pete with alkylation [39]. The tert-butyl imidate has been shown to undergo rapid elimi-
nation in the presence of acids, and special conditions are often needed for N-alkylation 
of this substrate [40]. 
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incorporation of a powerful electron withdrawing group such as the nitro group makes 
formation of a carbocation more difficult, and therefore this reaction did not provide any 
product. This trend was also apparent when benzyl imidates were investigated (entries 
11–13), as the best yield was obtained with the 4-methoxybenzyl imidate 31 (92%), while 
the 4-chlorobenzyl imidate 33 only gave 37% of the pyrazole product 34. The methyl, allyl 
and tert-butyl imidates failed to provide any of the N-alkyl pyrazole products, only re-
turning the starting materials under these reaction conditions. The methyl imidate cannot 
form a requisite carbocation, so its lack of reactivity is not unexpected. Allyl imidate 37 
can rapidly rearrange to the acetamide via a [3,3]-sigmatropic process, which may com-
pete with alkylation [39]. The tert-butyl imidate has been shown to undergo rapid elimi-
nation in the presence of acids, and special conditions are often needed for N-alkylation 
of this substrate [40]. 
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incorporation of a powerful electron withdrawing group such as the nitro group makes 
formation of a carbocation more difficult, and therefore this reaction did not provide any 
product. This trend was also apparent when benzyl imidates were investigated (entries 
11–13), as the best yield was obtained with the 4-methoxybenzyl imidate 31 (92%), while 
the 4-chlorobenzyl imidate 33 only gave 37% of the pyrazole product 34. The methyl, allyl 
and tert-butyl imidates failed to provide any of the N-alkyl pyrazole products, only re-
turning the starting materials under these reaction conditions. The methyl imidate cannot 
form a requisite carbocation, so its lack of reactivity is not unexpected. Allyl imidate 37 
can rapidly rearrange to the acetamide via a [3,3]-sigmatropic process, which may com-
pete with alkylation [39]. The tert-butyl imidate has been shown to undergo rapid elimi-
nation in the presence of acids, and special conditions are often needed for N-alkylation 
of this substrate [40]. 
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incorporation of a powerful electron withdrawing group such as the nitro group makes 
formation of a carbocation more difficult, and therefore this reaction did not provide any 
product. This trend was also apparent when benzyl imidates were investigated (entries 
11–13), as the best yield was obtained with the 4-methoxybenzyl imidate 31 (92%), while 
the 4-chlorobenzyl imidate 33 only gave 37% of the pyrazole product 34. The methyl, allyl 
and tert-butyl imidates failed to provide any of the N-alkyl pyrazole products, only re-
turning the starting materials under these reaction conditions. The methyl imidate cannot 
form a requisite carbocation, so its lack of reactivity is not unexpected. Allyl imidate 37 
can rapidly rearrange to the acetamide via a [3,3]-sigmatropic process, which may com-
pete with alkylation [39]. The tert-butyl imidate has been shown to undergo rapid elimi-
nation in the presence of acids, and special conditions are often needed for N-alkylation 
of this substrate [40]. 
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incorporation of a powerful electron withdrawing group such as the nitro group makes 
formation of a carbocation more difficult, and therefore this reaction did not provide any 
product. This trend was also apparent when benzyl imidates were investigated (entries 
11–13), as the best yield was obtained with the 4-methoxybenzyl imidate 31 (92%), while 
the 4-chlorobenzyl imidate 33 only gave 37% of the pyrazole product 34. The methyl, allyl 
and tert-butyl imidates failed to provide any of the N-alkyl pyrazole products, only re-
turning the starting materials under these reaction conditions. The methyl imidate cannot 
form a requisite carbocation, so its lack of reactivity is not unexpected. Allyl imidate 37 
can rapidly rearrange to the acetamide via a [3,3]-sigmatropic process, which may com-
pete with alkylation [39]. The tert-butyl imidate has been shown to undergo rapid elimi-
nation in the presence of acids, and special conditions are often needed for N-alkylation 
of this substrate [40]. 
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incorporation of a powerful electron withdrawing group such as the nitro group makes 
formation of a carbocation more difficult, and therefore this reaction did not provide any 
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The new alkylation conditions were also evaluated with regard to the pyrazole nucle-
ophile (Table 3). A number of pyrazoles substituted at the 4-position with halogens, alkyl
groups, aryl groups, and esters could be employed with good to moderate results (entries
1–5). The 3,5-disubstituted pyrazoles 53 and 55 were also successfully employed, although
the yields for these reactions were generally lower than for 3-substituted pyrazoles. This
may be due to steric effects with the groups next to the nitrogen slowing the alkylation. Un-
substituted pyrazole 57 was also utilized in the alkylation, providing a 45% yield. Indazole
59 also participated in the alkylation, providing the N1-alkyl product in 41% yield. None
of the regioisomeric N2-alkyl indazole was detected.

Table 3. Pyrazole alkylations with phenethyl imidate 7.
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phenethyl trichloroacetimidate (Scheme 1). This provided the two regioisomers, pyrazoles 
62 and 63, in 40% and 16% yield, respectively (a 2.5:1 ratio). The position of alkylation was 
verified by NOESY experiments on the two compounds, with compound 62 showing an 
interaction between the pyrazole methyl group and the phenethyl group, while isomer 63 
lacked this signal. The position of alkylation appears to be the result of steric effects, which 
favor alkylation at the less hindered nitrogen of the pyrazole ring. We also attempted to 
determine the selectivity of the alkylation with regard to an alcohol functional group, as 
alcohols are common and imidates are known to react with them under similar conditions 
[41–44]. Using the commercially available 1H-pyrazole-4-methanol 64 as a substrate, treat-
ment of this bifunctional compound with one equivalent of imidate 23 under the alkyla-
tion conditions gave the dialkylated product 65 as the only product in 30% yield, with 
none of the monoalkylation products being detected. While puzzling at first, this result 
can be rationalized by the poor solubility of 64 in DCE, and the increase in solubility that 
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The new alkylation conditions were also evaluated with regard to the pyrazole nu-
cleophile (Table 3). A number of pyrazoles substituted at the 4-position with halogens, 
alkyl groups, aryl groups, and esters could be employed with good to moderate results 
(entries 1–5). The 3,5-disubstituted pyrazoles 53 and 55 were also successfully employed, 
although the yields for these reactions were generally lower than for 3-substituted pyra-
zoles. This may be due to steric effects with the groups next to the nitrogen slowing the 
alkylation. Unsubstituted pyrazole 57 was also utilized in the alkylation, providing a 45% 
yield. Indazole 59 also participated in the alkylation, providing the N1-alkyl product in 
41% yield. None of the regioisomeric N2-alkyl indazole was detected. 
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Unsymmetrical pyrazoles can provide two different regioisomers depending on 
which nitrogen reacts with the imidate. To evaluate the selectivity of the imidate alkyla-
tion, 3-methyl-5-phenyl-1H-pyrazole 61 was subjected to the transformation with 
phenethyl trichloroacetimidate (Scheme 1). This provided the two regioisomers, pyrazoles 
62 and 63, in 40% and 16% yield, respectively (a 2.5:1 ratio). The position of alkylation was 
verified by NOESY experiments on the two compounds, with compound 62 showing an 
interaction between the pyrazole methyl group and the phenethyl group, while isomer 63 
lacked this signal. The position of alkylation appears to be the result of steric effects, which 
favor alkylation at the less hindered nitrogen of the pyrazole ring. We also attempted to 
determine the selectivity of the alkylation with regard to an alcohol functional group, as 
alcohols are common and imidates are known to react with them under similar conditions 
[41–44]. Using the commercially available 1H-pyrazole-4-methanol 64 as a substrate, treat-
ment of this bifunctional compound with one equivalent of imidate 23 under the alkyla-
tion conditions gave the dialkylated product 65 as the only product in 30% yield, with 
none of the monoalkylation products being detected. While puzzling at first, this result 
can be rationalized by the poor solubility of 64 in DCE, and the increase in solubility that 

N
NHCl

6

Me

Ph
N
NCl 8

N
NHBr 43

Me

Ph
N
NBr

44

N
NHI 45

Me

Ph
N
NI

46

N
NHMe 47

Me

Ph
N
NMe

48

N
NHEtO2C 49

Me

Ph
N
NEtO2C

50
O2N

N
NH

51

O2N Me

PhN
N 52

Me

Me
N
NH

53

Me

Me

Me

Ph
N
N

54

MeO O

MeO
O

N
NH

55 N
N

MeO

MeO

O

O

Ph

Me

56

N
NH

57 Ph

Me

N
N 58

N
H

N
59

N
N

Me
Ph
60

70

3

Organics 2022, 3, FOR PEER REVIEW 4 
 

 

The new alkylation conditions were also evaluated with regard to the pyrazole nu-
cleophile (Table 3). A number of pyrazoles substituted at the 4-position with halogens, 
alkyl groups, aryl groups, and esters could be employed with good to moderate results 
(entries 1–5). The 3,5-disubstituted pyrazoles 53 and 55 were also successfully employed, 
although the yields for these reactions were generally lower than for 3-substituted pyra-
zoles. This may be due to steric effects with the groups next to the nitrogen slowing the 
alkylation. Unsubstituted pyrazole 57 was also utilized in the alkylation, providing a 45% 
yield. Indazole 59 also participated in the alkylation, providing the N1-alkyl product in 
41% yield. None of the regioisomeric N2-alkyl indazole was detected. 

Table 3. Pyrazole alkylations with phenethyl imidate 7. 

 

Entry Pyrazole Product Yield (%) 

1   
71 

2   
70 

3   
59 

4   
62 

5  50 

6 
  

43 

7 
  

50 

8 
  

44 

9   
45 

10 
  

41 

Unsymmetrical pyrazoles can provide two different regioisomers depending on 
which nitrogen reacts with the imidate. To evaluate the selectivity of the imidate alkyla-
tion, 3-methyl-5-phenyl-1H-pyrazole 61 was subjected to the transformation with 
phenethyl trichloroacetimidate (Scheme 1). This provided the two regioisomers, pyrazoles 
62 and 63, in 40% and 16% yield, respectively (a 2.5:1 ratio). The position of alkylation was 
verified by NOESY experiments on the two compounds, with compound 62 showing an 
interaction between the pyrazole methyl group and the phenethyl group, while isomer 63 
lacked this signal. The position of alkylation appears to be the result of steric effects, which 
favor alkylation at the less hindered nitrogen of the pyrazole ring. We also attempted to 
determine the selectivity of the alkylation with regard to an alcohol functional group, as 
alcohols are common and imidates are known to react with them under similar conditions 
[41–44]. Using the commercially available 1H-pyrazole-4-methanol 64 as a substrate, treat-
ment of this bifunctional compound with one equivalent of imidate 23 under the alkyla-
tion conditions gave the dialkylated product 65 as the only product in 30% yield, with 
none of the monoalkylation products being detected. While puzzling at first, this result 
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The new alkylation conditions were also evaluated with regard to the pyrazole nu-
cleophile (Table 3). A number of pyrazoles substituted at the 4-position with halogens, 
alkyl groups, aryl groups, and esters could be employed with good to moderate results 
(entries 1–5). The 3,5-disubstituted pyrazoles 53 and 55 were also successfully employed, 
although the yields for these reactions were generally lower than for 3-substituted pyra-
zoles. This may be due to steric effects with the groups next to the nitrogen slowing the 
alkylation. Unsubstituted pyrazole 57 was also utilized in the alkylation, providing a 45% 
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Unsymmetrical pyrazoles can provide two different regioisomers depending on 
which nitrogen reacts with the imidate. To evaluate the selectivity of the imidate alkyla-
tion, 3-methyl-5-phenyl-1H-pyrazole 61 was subjected to the transformation with 
phenethyl trichloroacetimidate (Scheme 1). This provided the two regioisomers, pyrazoles 
62 and 63, in 40% and 16% yield, respectively (a 2.5:1 ratio). The position of alkylation was 
verified by NOESY experiments on the two compounds, with compound 62 showing an 
interaction between the pyrazole methyl group and the phenethyl group, while isomer 63 
lacked this signal. The position of alkylation appears to be the result of steric effects, which 
favor alkylation at the less hindered nitrogen of the pyrazole ring. We also attempted to 
determine the selectivity of the alkylation with regard to an alcohol functional group, as 
alcohols are common and imidates are known to react with them under similar conditions 
[41–44]. Using the commercially available 1H-pyrazole-4-methanol 64 as a substrate, treat-
ment of this bifunctional compound with one equivalent of imidate 23 under the alkyla-
tion conditions gave the dialkylated product 65 as the only product in 30% yield, with 
none of the monoalkylation products being detected. While puzzling at first, this result 
can be rationalized by the poor solubility of 64 in DCE, and the increase in solubility that 
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Unsymmetrical pyrazoles can provide two different regioisomers depending on 
which nitrogen reacts with the imidate. To evaluate the selectivity of the imidate alkyla-
tion, 3-methyl-5-phenyl-1H-pyrazole 61 was subjected to the transformation with 
phenethyl trichloroacetimidate (Scheme 1). This provided the two regioisomers, pyrazoles 
62 and 63, in 40% and 16% yield, respectively (a 2.5:1 ratio). The position of alkylation was 
verified by NOESY experiments on the two compounds, with compound 62 showing an 
interaction between the pyrazole methyl group and the phenethyl group, while isomer 63 
lacked this signal. The position of alkylation appears to be the result of steric effects, which 
favor alkylation at the less hindered nitrogen of the pyrazole ring. We also attempted to 
determine the selectivity of the alkylation with regard to an alcohol functional group, as 
alcohols are common and imidates are known to react with them under similar conditions 
[41–44]. Using the commercially available 1H-pyrazole-4-methanol 64 as a substrate, treat-
ment of this bifunctional compound with one equivalent of imidate 23 under the alkyla-
tion conditions gave the dialkylated product 65 as the only product in 30% yield, with 
none of the monoalkylation products being detected. While puzzling at first, this result 
can be rationalized by the poor solubility of 64 in DCE, and the increase in solubility that 
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The new alkylation conditions were also evaluated with regard to the pyrazole nu-
cleophile (Table 3). A number of pyrazoles substituted at the 4-position with halogens, 
alkyl groups, aryl groups, and esters could be employed with good to moderate results 
(entries 1–5). The 3,5-disubstituted pyrazoles 53 and 55 were also successfully employed, 
although the yields for these reactions were generally lower than for 3-substituted pyra-
zoles. This may be due to steric effects with the groups next to the nitrogen slowing the 
alkylation. Unsubstituted pyrazole 57 was also utilized in the alkylation, providing a 45% 
yield. Indazole 59 also participated in the alkylation, providing the N1-alkyl product in 
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Unsymmetrical pyrazoles can provide two different regioisomers depending on 
which nitrogen reacts with the imidate. To evaluate the selectivity of the imidate alkyla-
tion, 3-methyl-5-phenyl-1H-pyrazole 61 was subjected to the transformation with 
phenethyl trichloroacetimidate (Scheme 1). This provided the two regioisomers, pyrazoles 
62 and 63, in 40% and 16% yield, respectively (a 2.5:1 ratio). The position of alkylation was 
verified by NOESY experiments on the two compounds, with compound 62 showing an 
interaction between the pyrazole methyl group and the phenethyl group, while isomer 63 
lacked this signal. The position of alkylation appears to be the result of steric effects, which 
favor alkylation at the less hindered nitrogen of the pyrazole ring. We also attempted to 
determine the selectivity of the alkylation with regard to an alcohol functional group, as 
alcohols are common and imidates are known to react with them under similar conditions 
[41–44]. Using the commercially available 1H-pyrazole-4-methanol 64 as a substrate, treat-
ment of this bifunctional compound with one equivalent of imidate 23 under the alkyla-
tion conditions gave the dialkylated product 65 as the only product in 30% yield, with 
none of the monoalkylation products being detected. While puzzling at first, this result 
can be rationalized by the poor solubility of 64 in DCE, and the increase in solubility that 
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The new alkylation conditions were also evaluated with regard to the pyrazole nu-
cleophile (Table 3). A number of pyrazoles substituted at the 4-position with halogens, 
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although the yields for these reactions were generally lower than for 3-substituted pyra-
zoles. This may be due to steric effects with the groups next to the nitrogen slowing the 
alkylation. Unsubstituted pyrazole 57 was also utilized in the alkylation, providing a 45% 
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Unsymmetrical pyrazoles can provide two different regioisomers depending on 
which nitrogen reacts with the imidate. To evaluate the selectivity of the imidate alkyla-
tion, 3-methyl-5-phenyl-1H-pyrazole 61 was subjected to the transformation with 
phenethyl trichloroacetimidate (Scheme 1). This provided the two regioisomers, pyrazoles 
62 and 63, in 40% and 16% yield, respectively (a 2.5:1 ratio). The position of alkylation was 
verified by NOESY experiments on the two compounds, with compound 62 showing an 
interaction between the pyrazole methyl group and the phenethyl group, while isomer 63 
lacked this signal. The position of alkylation appears to be the result of steric effects, which 
favor alkylation at the less hindered nitrogen of the pyrazole ring. We also attempted to 
determine the selectivity of the alkylation with regard to an alcohol functional group, as 
alcohols are common and imidates are known to react with them under similar conditions 
[41–44]. Using the commercially available 1H-pyrazole-4-methanol 64 as a substrate, treat-
ment of this bifunctional compound with one equivalent of imidate 23 under the alkyla-
tion conditions gave the dialkylated product 65 as the only product in 30% yield, with 
none of the monoalkylation products being detected. While puzzling at first, this result 
can be rationalized by the poor solubility of 64 in DCE, and the increase in solubility that 
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The new alkylation conditions were also evaluated with regard to the pyrazole nu-
cleophile (Table 3). A number of pyrazoles substituted at the 4-position with halogens, 
alkyl groups, aryl groups, and esters could be employed with good to moderate results 
(entries 1–5). The 3,5-disubstituted pyrazoles 53 and 55 were also successfully employed, 
although the yields for these reactions were generally lower than for 3-substituted pyra-
zoles. This may be due to steric effects with the groups next to the nitrogen slowing the 
alkylation. Unsubstituted pyrazole 57 was also utilized in the alkylation, providing a 45% 
yield. Indazole 59 also participated in the alkylation, providing the N1-alkyl product in 
41% yield. None of the regioisomeric N2-alkyl indazole was detected. 
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Unsymmetrical pyrazoles can provide two different regioisomers depending on 
which nitrogen reacts with the imidate. To evaluate the selectivity of the imidate alkyla-
tion, 3-methyl-5-phenyl-1H-pyrazole 61 was subjected to the transformation with 
phenethyl trichloroacetimidate (Scheme 1). This provided the two regioisomers, pyrazoles 
62 and 63, in 40% and 16% yield, respectively (a 2.5:1 ratio). The position of alkylation was 
verified by NOESY experiments on the two compounds, with compound 62 showing an 
interaction between the pyrazole methyl group and the phenethyl group, while isomer 63 
lacked this signal. The position of alkylation appears to be the result of steric effects, which 
favor alkylation at the less hindered nitrogen of the pyrazole ring. We also attempted to 
determine the selectivity of the alkylation with regard to an alcohol functional group, as 
alcohols are common and imidates are known to react with them under similar conditions 
[41–44]. Using the commercially available 1H-pyrazole-4-methanol 64 as a substrate, treat-
ment of this bifunctional compound with one equivalent of imidate 23 under the alkyla-
tion conditions gave the dialkylated product 65 as the only product in 30% yield, with 
none of the monoalkylation products being detected. While puzzling at first, this result 
can be rationalized by the poor solubility of 64 in DCE, and the increase in solubility that 
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The new alkylation conditions were also evaluated with regard to the pyrazole nu-
cleophile (Table 3). A number of pyrazoles substituted at the 4-position with halogens, 
alkyl groups, aryl groups, and esters could be employed with good to moderate results 
(entries 1–5). The 3,5-disubstituted pyrazoles 53 and 55 were also successfully employed, 
although the yields for these reactions were generally lower than for 3-substituted pyra-
zoles. This may be due to steric effects with the groups next to the nitrogen slowing the 
alkylation. Unsubstituted pyrazole 57 was also utilized in the alkylation, providing a 45% 
yield. Indazole 59 also participated in the alkylation, providing the N1-alkyl product in 
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Unsymmetrical pyrazoles can provide two different regioisomers depending on 
which nitrogen reacts with the imidate. To evaluate the selectivity of the imidate alkyla-
tion, 3-methyl-5-phenyl-1H-pyrazole 61 was subjected to the transformation with 
phenethyl trichloroacetimidate (Scheme 1). This provided the two regioisomers, pyrazoles 
62 and 63, in 40% and 16% yield, respectively (a 2.5:1 ratio). The position of alkylation was 
verified by NOESY experiments on the two compounds, with compound 62 showing an 
interaction between the pyrazole methyl group and the phenethyl group, while isomer 63 
lacked this signal. The position of alkylation appears to be the result of steric effects, which 
favor alkylation at the less hindered nitrogen of the pyrazole ring. We also attempted to 
determine the selectivity of the alkylation with regard to an alcohol functional group, as 
alcohols are common and imidates are known to react with them under similar conditions 
[41–44]. Using the commercially available 1H-pyrazole-4-methanol 64 as a substrate, treat-
ment of this bifunctional compound with one equivalent of imidate 23 under the alkyla-
tion conditions gave the dialkylated product 65 as the only product in 30% yield, with 
none of the monoalkylation products being detected. While puzzling at first, this result 
can be rationalized by the poor solubility of 64 in DCE, and the increase in solubility that 
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The new alkylation conditions were also evaluated with regard to the pyrazole nu-
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62 and 63, in 40% and 16% yield, respectively (a 2.5:1 ratio). The position of alkylation was 
verified by NOESY experiments on the two compounds, with compound 62 showing an 
interaction between the pyrazole methyl group and the phenethyl group, while isomer 63 
lacked this signal. The position of alkylation appears to be the result of steric effects, which 
favor alkylation at the less hindered nitrogen of the pyrazole ring. We also attempted to 
determine the selectivity of the alkylation with regard to an alcohol functional group, as 
alcohols are common and imidates are known to react with them under similar conditions 
[41–44]. Using the commercially available 1H-pyrazole-4-methanol 64 as a substrate, treat-
ment of this bifunctional compound with one equivalent of imidate 23 under the alkyla-
tion conditions gave the dialkylated product 65 as the only product in 30% yield, with 
none of the monoalkylation products being detected. While puzzling at first, this result 
can be rationalized by the poor solubility of 64 in DCE, and the increase in solubility that 
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tion, 3-methyl-5-phenyl-1H-pyrazole 61 was subjected to the transformation with 
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which nitrogen reacts with the imidate. To evaluate the selectivity of the imidate alkyla-
tion, 3-methyl-5-phenyl-1H-pyrazole 61 was subjected to the transformation with 
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Unsymmetrical pyrazoles can provide two different regioisomers depending on which
nitrogen reacts with the imidate. To evaluate the selectivity of the imidate alkylation,
3-methyl-5-phenyl-1H-pyrazole 61 was subjected to the transformation with phenethyl
trichloroacetimidate (Scheme 1). This provided the two regioisomers, pyrazoles 62 and 63,
in 40% and 16% yield, respectively (a 2.5:1 ratio). The position of alkylation was verified by
NOESY experiments on the two compounds, with compound 62 showing an interaction
between the pyrazole methyl group and the phenethyl group, while isomer 63 lacked this
signal. The position of alkylation appears to be the result of steric effects, which favor
alkylation at the less hindered nitrogen of the pyrazole ring. We also attempted to determine
the selectivity of the alkylation with regard to an alcohol functional group, as alcohols
are common and imidates are known to react with them under similar conditions [41–44].
Using the commercially available 1H-pyrazole-4-methanol 64 as a substrate, treatment
of this bifunctional compound with one equivalent of imidate 23 under the alkylation
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conditions gave the dialkylated product 65 as the only product in 30% yield, with none
of the monoalkylation products being detected. While puzzling at first, this result can
be rationalized by the poor solubility of 64 in DCE, and the increase in solubility that
occurs when the first alkylation takes place. Once the substrate is monoalkylated, it
becomes significantly more soluble in the solvent, leading to the selective formation of
the dialkylation product. The yield could be increased to 64% by increasing the amount
of imidate to 2.5 equivalents. As the alkylation requires a nonpolar solvent to proceed in
good yield (Table 1), conditions where selective monoprotection occurs will require further
study.
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Scheme 1. Selectivity Studies on the Alkylation.

These results may be rationalized by the mechanism presented in Figure 2 below.
Initially, the imidate 7 is protonated by the CSA, which then ionizes to form the acetamide
B and the carbocation C. The carbocation is then trapped with the pyrazole, resulting in the
protonated pyrazole D. This intermediate can then react with another equivalent of imidate
to provide alkylated pyrazole and regenerate the protonated imidate A.
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Figure 2. Proposed Reaction Mechanism.

3. Materials and Methods
3.1. General Experimental Information

All anhydrous reactions were run under a positive pressure of argon. Dichloromethane
(DCM) was dried by passage through an alumina column [45]. 1,2-Dichloroethane (DCE)
was freshly distilled from calcium hydride before use. Tetrahydrofuran (THF) was freshly
distilled from Na/benzophenone still before use. Ethyl acetate (EA) and hexanes were
used as received from the manufacturer. Silica gel column chromatography was performed
using 60 Å silica gel (230−400 mesh). Melting points are uncorrected. Copies of spectra are
available in the supplementary material.

3.2. Preparation of Trichloroacetimidates

Most of the trichloroacetimidates (7 [46], 11 [47], 13 [36], 15 [43], 17 [48], 19 [49], 21 [48],
23 [47], 25 [48], 27 [37], 33 [50], and 35 [51]) were synthesized from the corresponding
alcohols as reported previously. Trichloroacetimidates 29, 31, 37, 39 and 41 were purchased
from commercial sources.
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3.3. General Procedure for the Synthesis of N-Alkyl Pyrazoles

A round-bottom flask was charged with imidate (1 equiv), pyrazole (1 equiv), and CSA
(0.2 equiv) and put under an atmosphere of argon. Dry DCE was added to form a 0.25 M
solution. The reaction was left to stir at room temperature for 4 h. After 4 h, the reaction
mixture was diluted with EA, washed with sat. aq. NaHCO3 and brine, dried (Na2SO4)
and concentrated. The residue was purified by silica gel flash column chromatography
to provide the N-alkyl pyrazole product. The alkylations were typically performed on a
1 mmol scale.

3.4. Tabulated Characterization Data for N-Alkyl Pyrazoles

4-Chloro-1-(1-phenylethyl)-1H-pyrazole (8). Yield 77%; TLC Rf = 0.37 (5% EA/95%
hexanes); IR (ATR) 3129, 3030, 2936, 1493, 1310, 960, 696, 617 cm−1; 1H NMR (400 MHz,
CDCl3) δ 7.50 (s, 1H), 7.39–7.30 (m, 4H), 7.24 (d, J = 7.6 Hz, 2H), 5.48 (q, J = 7.0 Hz, 1H), 1.89
(d, J = 7.0 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 141.1, 137.5, 128.9, 128.2, 126.4, 126.0,
109.9, 61.9, 21.1; Anal Calcd for C11H11ClN2: C, 63.93; H, 5.36; N, 13.55; Found: C, 63.86; H,
5.00; N, 13.57.

4-Chloro-1-[1-(p-methoxyphenyl)ethyl]-1H-pyrazole (12). Yield 97%; TLC Rf = 0.26
(5% EA/95% hexanes); 1H NMR (400 MHz, CDCl3) δ 7.33 (s, 1H), 7.20 (s, 1H), 7.05 (d,
J = 8.4 Hz), 6.75 (d, J = 8.4 Hz, 2H), 5.27 (q, J = 7.4 Hz, 1H), 3.65 (s, 3H), 1.71 (d, J = 7.4 Hz,
3H); 13C{1H} NMR (100 MHz, CDCl3) δ 159.4, 137.3, 133.0, 127.8, 125.8, 114.2, 109.7, 61.4,
55.3, 21.1. This compound has been reported previously [52].

4-Chloro-1-[1-(2-naphthyl)ethyl]-1H-pyrazole (14). Yield 67%; mp = 92–94 ◦C; TLC
Rf = 0.28 (5% EA/95% hexanes); IR (ATR) 3112, 3047, 2991, 2952, 1388, 1313, 838, 747 cm−1;
1H NMR (400 MHz, CDCl3) δ 7.69 (d, J = 7.2 Hz, 3H), 7.56 (s, 1H), 7.38–7.35 (m, 3H), 7.26 (s,
1H), 7.19 (d, J = 8.2 Hz, 1H), 5.48 (q, J = 7.2 Hz, 1H), 1.83 (d, J = 7.2 Hz, 3H); 13C{1H} NMR
(100 MHz, CDCl3) δ 138.3, 137.6, 133.2, 133.0, 128.8, 128.1, 127.7, 126.5, 126.4, 126.1, 125.3,
124.3, 110.0, 62.0, 21.1; Anal Calcd for C17H13ClN2O2: C, 70.18; H, 5.10; N, 10.91; Found: C,
70.14; H, 5.05; N, 10.87.

1-Benzhydryl-4-chloro-1H-pyrazole (16). Yield 59%; mp = 100–103 ◦C; TLC Rf = 0.35
(5% EA/95% hexanes); IR (ATR) 3108, 3027, 2927, 1520, 726, 694 cm−1; 1H NMR (400 MHz,
CDCl3) δ 7.42 (s,1H), 7.26–7.22 (m, 6H), 7.13 (s, 1H), 7.00–6.99 (m, 4H), 6.61 (s, 1H); 13C{1H}
NMR (100 MHz, CDCl3) δ 138.8, 138.2. 128.8, 128.4, 128.2, 127.6, 110.0, 70.3; Anal Calcd for
C16H13ClN2: C, 71.51; H, 4.88; N, 10.42; Found: C, 71.58; H, 4.82; N, 10.19.

4-Chloro-1-[(p-methoxyphenyl)phenylmethyl]-1H-pyrazole (18). Yield 71%; TLC
Rf = 0.30 (5% EA/95% hexanes); IR (ATR) 3132, 3030, 2835, 1610, 1510, 1247, 730 cm−1;
1H NMR (400 MHz, CDCl3) δ 7.41 (s, 1H), 7.24–7.22 (m, 3H), 7.13 (s, 1H), 6.97–6.95 (m,
4H), 6.79–6.77 (m, 2H), 6.55 (s, 1H), 3.69 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 159.6,
139.4, 138.2, 130.8, 129.7, 128.8, 128.2, 127.8, 127.5, 114.2, 109.9, 69.8, 55.3; Anal Calcd for
C17H15ClN2O: C, 68.34; H, 5.06; N, 9.38; Found: C, 68.39; H, 4.97; N, 9.41.

4-Chloro-1-[phenyl(p-tolyl)methyl]-1H-pyrazole (20). Yield 98%; mp = 70–72 ◦C; TLC
Rf = 0.35 (5% EA/95% hexanes); IR (ATR) 3129, 3055, 2919, 1512, 1293, 990, 735 cm−1; 1H
NMR (400 MHz, CDCl3) δ 7.41 (s, 1H), 7.24–7.22 (m, 3H), 7.13 (s, 1H), 7.06 (d, J = 7.6 Hz,
2H), 6.98 (d, J = 6.9 Hz, 2H), 6.91 (d, J = 7.6 Hz, 2H), 6.57 (s, 1H), 2.25 (s, 3H); 13C{1H} NMR
(100 MHz, CDCl3) δ 139.1, 138.3, 138.2, 135.8, 129.5, 128.8, 128.3, 128.2, 128.0, 127.5, 109.9,
70.1, 21.2; Anal Calcd for C17H15ClN2: C, 72.21; H, 5.35; N, 9.91; Found: C, 71.20; H, 5.20;
N, 9.74.

4-Chloro-1-[(p-chlorophenyl)phenylmethyl]-1H-pyrazole (22). Yield 76%; TLC
Rf = 0.46 (5% EA/95% hexanes IR (ATR) 3133, 3096, 1490, 967, 735 cm−1; 1H NMR (400 MHz,
CDCl3) δ 7.42 (s, 1H), 7.27–7.21 (m, 5H), 7.14 (s, 1H), 7.01–6.99 (m, 2H), 6.92 (d, J = 8.8 Hz,
2H), 6.56 (s, 1H); 13C{1H} NMR (75 MHz, CDCl3) δ 138.5, 138.3, 137.5, 134.3, 129.5, 129.0,
128.9, 128.7, 128.3, 127.6, 110.6, 69.6; Anal Calcd for C16H12ClN2: C, 63.39; H, 3.99; N, 9.24;
Found: C, 63.19; H, 3.94; N, 9.59.

4-Chloro-1-[phenyl(o-tolyl)methyl]-1H-pyrazole (26). Yield 85%; mp = 89–92 ◦C; TLC
Rf = 0.36 (5% EA/95% hexanes); IR (ATR) 3099, 3029, 2920, 1488, 1299, 964, 708 cm−1; 1H
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NMR (400 MHz, CDCl3) δ 7.55 (s, 1H), 7.39–7.37 (m, 3H), 7.30–7.16 (m, 4H), 7.09–7.07 (m,
2H), 6.90 (s, 1H), 6.72 (d, J = 7.4 Hz, 1H), 2.23 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ
138.3, 138.2, 137.2, 136.6, 130.9, 128.9, 128.4, 128.3, 128.1, 127.7, 126.4, 109.9, 67.6, 29.7, 19.2;
Anal Calcd for C17H15ClN2: C, 72.21; H, 5.35; N, 9.91; Found: C, 71.94; H, 5.44; N, 9.81.

1-[(2H-1,3-Benzodioxol-5-yl)phenylmethyl]-4-chloro-1H-pyrazole (28). Yield 98%; TLC
Rf = 0.30 (5% EA/95% hexanes); IR (ATR) 3134, 3062, 2893, 1501, 1487, 1235, 1035 cm−1; 1H
NMR (400 MHz, CDCl3) δ 7.42 (s, 1H), 7.25–7.23 (m, 3H), 7.16 (s, 1H), 6.98 (d, J = 6.6 Hz,
2H), 6.67 (d, J = 7.7 Hz, 1H), 6.49 (m, 3H), 5.86 (s, 2H); 13C{1H} NMR (100 MHz, CDCl3) δ
148.1, 147.7, 139.0, 138.3, 132.6, 128.8, 128.3, 127.9, 127.5, 122.1, 109.9, 108.8, 108.4, 101.4, 69.9;
Anal Calcd for C17H13ClN2O2: C, 65.29; H, 4.19; N, 8.96; Found: C, 65.27; H, 4.14; N, 8.63.

1-Benzyl-4-chloro-1H-pyrazole (30). Yield 73%; TLC Rf = 0.31 (10% EA/90% hexanes);
1H NMR (400 MHz, CDCl3) δ 7.49 (s, 1H), 7.37–7.33 (m, 4H), 7.24–7.22 (m, 2H), 5.23 (s, 2H);
13C{1H} NMR (100 MHz, CDCl3) δ 137.9, 135.8, 130.0, 128.4, 127.9, 127.3, 110.3, 56.7. This
compound has been reported previously [53].

4-Chloro-1-[(p-methoxyphenyl)methyl]-1H-pyrazole (32). Yield: 92%; TLC Rf = 0.32
(10% EA/90% hexanes); IR (ATR) 3124, 2999, 2933, 2834, 1612, 1511, 1244 cm−1; 1H NMR
(400 MHz, CDCl3) δ 7.46 (s, 1H), 7.32 (s, 1H), 7.20 (d, J = 8.6 Hz, 2H), 6.90 (d, J = 8.6 Hz, 2H),
5.19 (s, 2H), 3.82 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 159.7, 137.7, 129.5, 127.6, 126.9,
114.3, 110.2, 56.3, 56.3; Anal Calcd for C11H11ClN2O: C, 59.33; H, 4.98; N, 12.58; found: C,
59.44; H, 4.92; N, 12.83.

4-Chloro-1-[(p-chlorophenyl)methyl]-1H-pyrazole (34). Yield 37%; mp = 52–55 ◦C;
TLC Rf = 0.27 (5% EA/95% hexanes); IR (ATR) 3129, 3045, 2943, 1492, 970, 755 cm−1; 1H
NMR (400 MHz, CDCl3) δ 7.37 (s, 1H), 7.25–7.22 (m, 4H), 7.05 (d, J = 8.3 Hz, 2H), 5.11 (s,
2H); 13C{1H} NMR (100 MHz, CDCl3) δ 138.2, 134.4, 134.3, 129.1, 128.9, 127.2, 110.6, 55.9;
Anal Calcd for C10H8Cl2N2: C, 52.89; H, 3.55; N, 12.34; found: C, 52.81; H, 3.54; N, 12.17.

2-[(4-Chloro-1H-pyrazol-1-yl)methyl]-1,3-isoindolinedione (36). Yield 62%; mp = 164–
168 ◦C; TLC Rf = 0.30 (30% EA/70% hexanes); IR (ATR) 3135, 2963, 1771, 1717, 1401,
1323 cm−1; 1H NMR (400 MHz, (CD3)2SO) δ 8.13 (s, 1H), 7.95–7.88 (m, 4H), 7.58 (s, 1H),
5.85 (s, 2H); 13C{1H} NMR (100 MHz, (CD3)2SO) δ 167.2, 138.7, 135.5, 131.6, 129.5, 124.1,
109.2, 52.8; Anal Calcd for C12H8ClN3O2: C, 55.08; H, 3.08; N, 16.06; Found: C, 54.73; H,
2.88; N, 16.40.

4-Bromo-1-(1-phenylethyl)-1H-pyrazole (44). Yield: 70%. IR (ATR) 3124, 3028, 2980,
2933, 1304, 987, 696 cm−1; TLC Rf = 0.37 (5% EA/95% hexanes); 1H NMR (400 MHz, CDCl3)
δ 7.38 (s, 1H), 7.25–7.17 (m, 4H), 7.10 (d, J = 6.7 Hz, 2H), 5.35 (q, J = 7.0 Hz, 1H), 1.75 (d,
J = 7.0 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 141.1, 139.6, 128.9, 128.2, 128.1, 126.4,
93.1, 61.9, 21.2; Anal Calcd for C11H11BrN2: C, 52.61; H, 4.42; N, 11.16; Found: C, 52.51; H,
4.46; N, 11.28.

4-Iodo-1-(1-phenylethyl)-1H-pyrazole (46). Yield: 70%. IR (ATR) 3109, 2978, 1493, 960,
696 cm−1; TLC Rf = 0.37 (5% EA/95% hexanes); 1H NMR (400 MHz, CDCl3) δ 7.58 (s, 1H),
7.44 (s, 1H), 7.39–7.23 (m, 5H), 5.53 (q, J = 7.0 Hz, 1H), 1.90 (d, J = 6.9 Hz, 3H); 13C{1H} NMR
(100 MHz, CDCl3) δ 144.2, 141.1, 132.4, 128.9, 128.2, 126.4, 61.7, 56.2, 21.3; Anal Calcd for
C11H11IN2: C, 44.32; H, 3.72; N, 9.40; Found: C, 44.02; H, 3.44; N, 9.03.

4-Methyl-1-(1-phenylethyl)-1H-pyrazole (48). Yield: 62% IR (ATR) 3085, 2980, 1493,
1340, 1156, 990 cm−1; TLC = Rf 0.63 (30% EA/70% hexanes); 1H NMR (400 MHz, CDCl3)
δ 7.36–7.27 (m, 4H), 7.21–7.18 (m, 3H), 5.48 (q, J = 7.3 Hz, 1H), 2.07 (s, 3H), 1.88 (d, J = 7.1
Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 142.1, 139.2, 128.7, 127.7, 126.7, 126.3, 116.0,
60.9, 21.4, 8.9; Anal Calcd for C12H14N2: C, 77.38; H, 7.58; N, 15.04; Found: C, 77.28; H, 7.55;
N, 14.92.

Ethyl 1-(1-phenylethyl)-1H-pyrazole-4-carboxylate (50). Yield: 50%. IR (ATR) 2981,
1708, 1551, 1408, 1217, 1024 cm−1; TLC Rf = 0.34 (20% EA/80% hexanes); 1H NMR
(400 MHz, CDCl3) δ 7.94 (s, 1H), 7.89 (s, 1H), 7.37–7.30 (m, 3H), 7.22 (d, J = 7.2 Hz, 2H), 5.52
(q, J = 7.0 Hz, 1H), 4.27 (q, J = 7.1 Hz, 2H), 1.90 (d, J = 7.1 Hz, 3H), 1.32 (t, J = 7.1 Hz, 3H);
13C{1H} NMR (100 MHz, CDCl3) δ 163.1, 140.8, 140.6, 131.2, 128.9, 128.3, 126.4, 115.0, 61.7,
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60.1, 21.3, 14.4; Anal Calcd for C14H16N2O2: C, 68.83; H, 6.60; N, 11.47; Found: C, 68.80; H,
6.56; N, 11.58.

4-(p-Nitrophenyl)-1-(1-phenylethyl)-1H-pyrazole (52). Yield: 43%. mp = 119–123 ◦C;
IR (ATR) 3068, 2943, 1597, 1500, 1333, 1112 cm−1; TLC Rf = 0.35 (25% EA/75% hexanes); 1H
NMR (400 MHz, CDCl3) δ 8.19 (d, J = 8.7 Hz, 2H), 7.90 (s, 1H), 7.74 (s, 1H), 7.58 (d, J = 8.7
Hz, 2H), 7.39–7.34 (m, 3H), 7.29–7.27 (m, 2H), 5.57 (q, J = 7.1 Hz, 1H), 1.96 (d, J = 7.1 Hz,
3H); 13C{1H} NMR (100 MHz, CDCl3) δ 146.0, 141.0, 139.4, 137.1, 128.9, 128.2, 126.4, 125.9,
125.5, 124.4, 121, 61.7, 21.3; Anal Calcd for C17H15N3O2: C, 69.61; H, 5.15; N, 14.33; Found:
C, 69.66; H, 5.25; N, 14.42.

3,5-Dimethyl-1-(1-phenylethyl)-1H-pyrazole (54). Yield: 52%. TLC Rf = 0.22 (5%
EA/95% hexanes); 1H NMR (400 MHz, CDCl3) δ 7.20–7.15 (m, 2H), 7.13–7.09 (m 1H), 6.99
(d, J = 7.4 Hz, 2H), 5.73 (s, 1H), 5.24 (q, J = 7.0 Hz, 1H), 2.18 (s, 3H), 1.99 (s, 3H), 1.81 (d, J =
7.0 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 146.9, 143.0, 138.9, 138.6, 127.2, 125.9, 105.6,
57.3, 21.8, 13.8, 11.2. This compound has been reported previously [1].

Dimethyl 1-(1-phenylethyl)-1H-pyrazole-3,5-dicarboxylate (56). Yield: 44%. mp =
74–77 ◦C; IR (ATR) 3141, 2988, 1719, 1456, 1218, 1086 cm−1; TLC Rf = 0.69 (20% EA/80%
hexanes); 1H NMR (400 MHz, acetone-d6) δ 7.32–7.24 (m, 6H), 6.67 (q, J = 7.0 Hz, 1H), 3.86
(d, J = 3.8 Hz, 6H), 1.91 (d, J = 7.0 Hz, 3H); 13C{1H} NMR (100 MHz, acetone-d6) δ 161.5,
159.3, 142.0, 141.9, 133.4, 128.5, 127.7, 126.4, 113.8, 59.8, 51.7, 51.2, 21.8; Anal Calcd for
C15H16N2O4: C, 62.49; H, 5.59; N, 9.72; Found: C, 62.42; H, 5.60; N, 9.79.

1-(1-Phenylethyl)-1H-pyrazole (58). Yield: 45%; TLC Rf = 0.33 (20% EA/80% hexanes);
1H NMR (400 MHz, CDCl3) δ 7.56–7.55 (s, 1H), 7.41 (d, J = 2.1 Hz, 1H), 7.35–7.27 (m, 3H),
7.20–7.18 (m, 2H), 6.27 (t, = 2.0 Hz, 1H), 5.55 (q, = 7.1 Hz, 1H), 1.90 (d, J = 7.1 Hz, 1H);
13C{1H} NMR (100 MHz, CDCl3) δ 141.9, 139.0, 128.7, 127.8, 127.7, 126.3, 105.4, 61.0, 21.5.
This compound has been previously reported [54].

1-(1-Phenylethyl)-1H-indazole (60). Yield: 41%. mp = 91–93 ◦C; IR (ATR) 3067,
2983, 1626, 1513, 1448, 1167, 1010 cm−1; TLC Rf = 0.65 (25% EA/75% hexanes); 1H NMR
(400 MHz, CDCl3) δ 7.91 (s, 1H), 7.75 (d, J = 8.8 Hz, 1H), 7.62 (d, J = 8.4 Hz, 1H), 7.36–7.27
(m, 6H), 7.07 (t, J = 7.5 Hz, 1H), 5.86 (q, J = 7.0 Hz, 1H), 2.06 (d, J = 7.1 Hz, 3H); 13C{1H}
NMR (100 MHz, CDCl3) δ 148.1, 140.8, 128.9, 128.2, 126.6, 126.2, 121.8, 121.6, 121.5, 120.2,
117.4, 62.7, 21.6; Anal Calcd for C15H14N2: C, 81.05; H, 6.35; N, 12.60; Found: C, 81.07; H,
6.12; N, 12.46.

5-Methyl-3-phenyl-1-(1-phenylethyl)-1H-pyrazole (62). Yield: 16%. IR (ATR) 3060,
2981, 2932, 1603, 1453, 1260, 764 cm−1; TLC Rf = 0.41 (10% EA/90% hexanes); 1H NMR
(400 MHz, CDCl3) δ 7.85 (d, J = 7.4 Hz, 2H), 7.39 (d, J = 7.5 Hz, 2H), 7.31–7.28 (m, 3H),
7.25–7.21 (m, 1H), 7.18 (d, J = 7.3 Hz, 2H), 6.36 (s, 1H), 5.47 (q, J = 7.0 Hz, 1H), 2.17 (s, 3H),
1.98 (d, J = 7.0 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 149.5, 142.6, 139.6, 133.9, 128.6,
128.5, 127.3, 126.2, 126.0, 125.6, 103.2, 58.1, 21.9, 11.3; Anal Calcd for C18H18N2: C, 84.41; H,
6.92; N, 10.68; Found: C, 82.37; H, 6.88; N, 10.70.

3-Methyl-5-phenyl-1-(1-phenylethyl)-1H-pyrazole (63). Yield: 40%. IR (ATR) 3060,
2978, 1494, 1444, 1256 759 cm−1; TLC Rf = 0.34 (10% EA/90% hexanes); 1H NMR (400 MHz,
CDCl3) δ 7.38–7.36 (m, 3H), 7.29–7.27 (m, 2H), 7.24–7.20 (m, 3H), 7.13 (d, J = 7.7 Hz, 2H),
6.09 (s, 1H), 5.45 (q, J = 7.0 Hz, 1H), 2.37 (s, 3H), 1.89 (d, J = 7.0 Hz, 3H); 13C{1H} NMR
(100 MHz, CDCl3) δ 147.8, 144.6, 143.1, 131.2, 129.1, 128.5, 128.4, 128.3, 127.1, 126.1, 106,
57.2, 22.1, 13.8; Anal Calcd for C18H18N2: C, 84.41; H, 6.92; N, 10.68; Found: C, 82.36; H,
6.86; N, 10.64.

1-Benzhydryl-4-[(benzhydryloxy)methyl]-1H-pyrazole (65). Yield: 61%. IR (ATR):
3060, 3027, 2866, 1493, 1451, 1060, 694 cm−1; TLC Rf = 0.47 (30% EA/70% hexanes); 1H
NMR (400 MHz, CDCl3) δ 7.60 (s, 1H), 7.35–7.29 (m, 15H), 7.23 (bs, 2H), 7.12–7.10 (m, 4H),
6.77 (s, 1H), 5.40 (s, 1H), 4.43 (s, 2H); 13C{1H} NMR (100 MHz, CDCl3) δ 141.9, 139.6, 139.3,
129.4, 128.7, 128.4, 128.3, 128.1, 127.5, 127.1, 118, 82.1, 69.6, 61.6; Anal Calcd for C18H18N2:
C, 83.69; H, 6.09; N, 6.51; Found: C, 83.59; H, 6.19; N, 6.49.
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4. Conclusions

In conclusion, a new method for the N-alkylation of pyrazoles has been developed
utilizing trichloroacetimidates and camphorsulfonic acid as a Brønsted acid catalyst. This
method provides ready access to N-alkyl pyrazoles which are present in a variety of
medicinally relevant structures. Benzylic, phenethyl and benzhydryl trichloroacetimidates
provide moderate to good yields of the N-alkyl pyrazole products. Unsymmetrical pyra-
zoles provide a mixture of the two possible regioisomers, with sterics controlling the which
isomer is the major product. This method is differentiated from past N-alkylations in that it
does not depend on transition metal catalysts or the use of strong base, instead proceeding
under mild acid-catalyzed conditions.
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