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Abstract: [1.1.1]Propellane, a compound whose structure includes two saturated carbons in which all
four bonds are directed into a single hemisphere, is of theoretical interest, but has also seen recent
practical applications. Mono-, di-, and trisubstituted derivatives of this propellane (by substitution of
its CH2 bridges with O, S, NH, CF2, CO, SO, and SO2) remain unknown despite several computational
studies that have suggested some may be stable. In this study, we show that, in several cases,
substituted propellanes are spontaneously formed upon the attempted computational optimization
of the geometries of anionic bridgehead bromide precursors using the ωB97X-D/aug-cc-pVDZ DFT
method. Spontaneous formation suggests that these propellanes are at lower energy relative to the
precursors and, therefore, are promising synthetic targets. The success or failure to spontaneously
form the propellane is considered in relation to the length and strain energy of the central bridgehead-
bridgehead bond, as well as the total strain energy of each propellane.

Keywords: propellanes; [1.1.1]propellane; optimization; strained bonds

1. Introduction

[1.1.1]Propellane, 1 (Figure 1), a compound whose structure includes two saturated car-
bons in which all four bonds are directed into a single hemisphere, was first synthesized in
1982 by Wiberg [1]. While 1 remains a target of fascination for theoretical chemists because
of the unusual bonding arrangement between the two inverted bridgehead carbons [2–5],
it has also seen recent practical applications for a variety of synthetic purposes [6,7]. There
has been ongoing interest in the possibility of synthesizing mono-, di-, and trisubstituted
[1.1.1]propellanes by replacing one or more of the CH2 groups of 1 (see compounds 2–4,
Figure 1) [8–16]. Although these substituted compounds remain synthetically elusive,
several computational studies have suggested the possibility that they could exist as stable
entities [8,10,12,13]. A computational study on a series of trisubstituted propellanes, 4,
was carried out by Pittman using a coupled-cluster approach (CCSD/aug-cc-pVDZ) [8].
That study identified a number of trisubstituted [1.1.1]propellanes that appeared to be
sufficiently stable so as to recommend them as synthetic targets.
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Wiberg’s synthesis of [1.1.1]propellane is outlined in Scheme 1 [1]. Thus, upon treat-
ing 1,3-dibromobicyclopentane, 5, with nBuLi, a metal/halogen exchange process occurs 
that leads to the formation of the anionic bridgehead bromide intermediate 6. The intra-
molecular displacement of the second bromine atom forms the strained bridgehead‒
bridgehead bond. A number of other propellanes have been synthesized in a similar man-
ner [17,18], which provides a straightforward and perhaps general means by which to 
synthesize propellanes, including (potentially) those substituted as discussed above. 

 
Scheme 1. Formation of [1.1.1]propellane (1) via formation of anionic bridgehead bromide 6 by way 
of the 1,3-dibromobicyclopentane, 5. 

In an earlier computational study, we found that, upon an attempted computational 
optimization of the geometry of the unsubstituted anionic bridgehead bromide com-
pound 6 at the B3LYP/6-31G* level of theory, it spontaneously formed 1 via an ejection of 
the bridgehead bromine as a bromide ion during the optimization process [19]. Thus, com-
pound 6 itself was not a stationary point on the potential energy surface (PES) but led 
seamlessly to the propellane structure, thereby mimicking the experimental behavior ob-
served by Wiberg. Furthermore, we were able to successfully model a number of other 
spontaneous formations of propellanes from anionic bridgehead bromide compounds 
that varied by the number of carbon atoms in the bridges [19]. Interestingly, however, 
attempts at forming the [2.2.2]propellane 8 (see Scheme 2) via an optimization of anionic 
bridgehead bromide 7 was unsuccessful, with the central bridgehead‒bridgehead bond 
resisting formation [19]. This computational behavior appeared to portend the experi-
mental finding that [2.2.2]propellane, formed in a manner similar to that outlined in 
Scheme 1, is highly unstable, and unable to be isolated. Additionally, optimizing the ge-
ometry of the [3.2.2] anionic bridgehead bromide 9 resulted in the loss of the bromine 
atom as a bromide ion, but with bond scission (i.e., a Grob fragmentation) to form the bis-
methylene compound 10 rather than the formation of the propellane [19]. Interestingly, a 
similar Grob fragmentation process had been observed as the means of decomposition of 
8 as well as several other propellanes [17,20]. While [3.2.2]propellane has been synthesized 
and characterized [21], it was not synthesized via an anionic bridgehead precursor, so it 
is not known whether it would undergo a Grob fragmentation under those reaction con-
ditions. Overall, then, it appeared that computational modeling did a remarkable job of 
predicting known experimental results. 

Figure 1. Structure of the parent [1.1.1]propellane (1), and variously substituted analogs 2–4.
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Wiberg’s synthesis of [1.1.1]propellane is outlined in Scheme 1 [1]. Thus, upon treating
1,3-dibromobicyclopentane, 5, with nBuLi, a metal/halogen exchange process occurs that
leads to the formation of the anionic bridgehead bromide intermediate 6. The intramolecu-
lar displacement of the second bromine atom forms the strained bridgehead-bridgehead
bond. A number of other propellanes have been synthesized in a similar manner [17,18],
which provides a straightforward and perhaps general means by which to synthesize
propellanes, including (potentially) those substituted as discussed above.
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Scheme 1. Formation of [1.1.1]propellane (1) via formation of anionic bridgehead bromide 6 by way
of the 1,3-dibromobicyclopentane, 5.

In an earlier computational study, we found that, upon an attempted computational
optimization of the geometry of the unsubstituted anionic bridgehead bromide compound 6
at the B3LYP/6-31G* level of theory, it spontaneously formed 1 via an ejection of the bridge-
head bromine as a bromide ion during the optimization process [19]. Thus, compound 6
itself was not a stationary point on the potential energy surface (PES) but led seamlessly
to the propellane structure, thereby mimicking the experimental behavior observed by
Wiberg. Furthermore, we were able to successfully model a number of other spontaneous
formations of propellanes from anionic bridgehead bromide compounds that varied by the
number of carbon atoms in the bridges [19]. Interestingly, however, attempts at forming the
[2.2.2]propellane 8 (see Scheme 2) via an optimization of anionic bridgehead bromide 7 was
unsuccessful, with the central bridgehead-bridgehead bond resisting formation [19]. This
computational behavior appeared to portend the experimental finding that [2.2.2]propel-
lane, formed in a manner similar to that outlined in Scheme 1, is highly unstable, and unable
to be isolated. Additionally, optimizing the geometry of the [3.2.2] anionic bridgehead
bromide 9 resulted in the loss of the bromine atom as a bromide ion, but with bond scission
(i.e., a Grob fragmentation) to form the bis-methylene compound 10 rather than the forma-
tion of the propellane [19]. Interestingly, a similar Grob fragmentation process had been
observed as the means of decomposition of 8 as well as several other propellanes [17,20].
While [3.2.2]propellane has been synthesized and characterized [21], it was not synthe-
sized via an anionic bridgehead precursor, so it is not known whether it would undergo
a Grob fragmentation under those reaction conditions. Overall, then, it appeared that
computational modeling did a remarkable job of predicting known experimental results.
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Scheme 2. (A) Anionic bridgehead bromide 7 fails to form [2.2.2]propellane 8 upon geometry
optimization. (B) Optimization of 9 leads to fragmentation to form 10 instead of a propellane.

In Pittman’s study, the feasibility of formation of the substituted propellanes 4 was
based solely on the anticipated strain energies of the final propellane structures [8]. Model-
ing the final propellane product may indicate whether the propellane has any chance of
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existing or not, but it provides no indication as to whether there is an energetic driving
force for the formation of the central bond. The computational optimizations discussed
above provide this information, as either the central bond will be formed, or not, depending
on whether the propellane is at lower energy relative to the anionic bridgehead bromide,
and as long as there is a viable energetic pathway that allows for its formation. If such
a viable energetic path exists, we would expect spontaneous ejection of the bromine as a
leaving group and the formation of the substituted propellane upon geometry optimization.
The synthetic pursuit of these substituted [1.1.1]propellanes would, therefore, be most
promising. If a viable energetic path does not exist, we would expect that either the anionic
bridgehead bromide would optimize as a stationary point of its own (i.e., it does not lead
to propellane formation), or another pathway may be followed other than that of the
propellane formation (e.g., such as Grob fragmentation). These substituted propellanes
would either not be attractive to pursue synthetically (especially if the strain energies of the
propellane structures themselves are particularly high), or they should be pursued using a
synthetic method other than via anionic bridgehead bromide precursors.

In the current study, we have modeled a series of anionic bridgehead bromides
substituted at one, two, and all three of the bridging CH2 groups of 6 to observe whether
they would spontaneously form the corresponding propellanes upon optimization. We
chose many of the same groups as earlier investigated by Pittman to allow for direct
comparison with those findings. In addition, we have analyzed the strain energies inherent
in all of the proposed propellanes and have attempted to correlate the strain energies
with the propensity to form propellanes upon geometry optimization of the precursor
anions. Based upon this work, we are able to recommend pursuing the synthesis of those
propellanes most likely to be successfully formed via the synthetic method outlined in
Scheme 1.

2. Materials and Methods

All the calculations were performed at theωB97X-D/aug-cc-pVDZ level of theory in
the solvent THF via the polarizable continuum model (PCM) using the software package
GAMESS [22,23] as implemented through the ChemCompute.org website [24]. Default
computational parameters were employed. All the optimizations were repeated at least
three times to ensure the consistency of the results. The frequency calculations were carried
out at all stationary points to ensure the lack of imaginary frequencies.

3. Results and Discussion

Pittman selected the CCSD computational level of theory for modeling a series of
substituted [1.1.1]propellanes 4 [8]. Unfortunately, however, this level of theory is exceed-
ingly time and resource expensive, especially when using it to model the (often) many
iterative steps required to eject the bromide ion from the anionic bridgehead bromides
to form the resulting substituted [1.1.1]propellanes. We had used density functional the-
ory (DFT) successfully in our earlier work [19], and we decided to continue using DFT.
However, we opted to switch from the B3LYP functional we had used earlier to the more
robustωB97X-D functional, which provides the benefit of including dispersion effects that
are absent in B3LYP but could be of importance during the geometry optimizations [25].
Additionally, the ωB97X-D functional has been used in a number of recent studies by
others to successfully describe the reactivity of propellanes and related structures [26–28].
We used the same basis set (aug-cc-pVDZ) as employed by Pittman as it includes diffuse
functions that are important for the accurate modeling of anions. Furthermore, this basis
set is of a size sufficient to model these compounds (as reflected by Pittman’s work), but it
is not so large as to make the calculations unwieldly. Finally, we included solvent effects
using the polarizable continuum model (PCM) to better reflect the behavior of the ions in
solution. Tetrahydrofuran (THF) was selected as a solvent since it is a solvent often chosen
for synthetic work with carbanions. All stationary points were tested by calculating the IR
frequencies to confirm the absence of any imaginary frequencies.
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While Pittman and others have focused on [1.1.1]propellanes substituted at all three
of the bridging CH2 groups, we have expanded these studies to investigate the effect
of mono- (2), di- (3), and trisubstitution (4) of the CH2 bridges of 1. This allows for un-
derstanding the cumulative effect of successive substitution and may indicate whether
lesser-substituted propellanes (i.e., 2 and 3) might be more viable synthetic targets than the
fully substituted counterparts (i.e., 4).

3.1. Comparison of Computational Methods for Modeling Propellanes 1–4

We began by optimizing the geometries of the neutral substituted propellanes in
comparison with previous results by Pittman, where available. In general, the bridgehead-
bridgehead bond distances are calculated to be slightly shorter than those calculated using
the CCSD method, with the mean absolute difference being 0.037 Å (see column 2, Table 1).
The CCSD method predicted an order of 4O < 4NH < 4S < 4CH2 < 4CF2 < 4SO < 4SO2
for the propellane bond lengths [8]. The results of the ωB97X-D method are in good
agreement with the CCSD results, with the exception of a swap between 4CF2 and 4SO.
However, these two bond lengths are predicted to be close to one another according to
both of the computational methods (1.721 and 1.733 for CCSD, respectively, and 1.698 and
1.697 for ωB97X-D). Additionally, the bond length values calculated in this work were
nearly identical to several of the same bond lengths calculated at the B3LYP/6-31G(d,p)
level of theory as reported earlier [11]. Interestingly, the DFT method did not locate
4CO as a stationary point. Instead, repeated attempts at optimizing to the corresponding
propellane led to ring opening to form bisketene 11 (Figure 2). Note, however, that the
bond length predicted when using the CCSD method for 4CO of 1.855 Å is exceptionally
long, suggesting that 4CO as modeled using CCSD is not a true propellane structure to
begin with, and likely occupies an unsustainable geometry. The same can be said for 4SO2
for which CCSD predicted a bond length of 1.978 Å, andωB97XD a bond length of 1.912 Å,
both well out of the range of a possible legitimate C–C bond. On the whole, therefore, we
were satisfied with the geometries predicted using theωB97XD DFT functional in relation
to those calculated using the CCSD method.
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Figure 2. Structure of the bisketene obtained upon attempted optimization of 4CO.

3.2. Optimization of Anionic Bridgehead Bromide Precursors

The geometries of the anionic bridgehead bromide compounds 12, 13, and 14 (see
Scheme 3) were optimized at the ωB97X-D/aug-cc-pVDZ level of theory. Note that, for
those compounds with multiple N-H bonds or S-O bonds, the H/O atoms were oriented so
as to be in a uniform clockwise direction. In addition, while we used NH bonds to simplify
the calculations, an N-H bond would be incompatible with the formation of bridgehead
anions, and the use of N-R derivatives would be more practical (e.g., R = Me). For all
the compounds, optimization led either to ejection of the Br atom as a bromide ion and
formation of the corresponding propellane, or simple optimization of the originally guessed
geometry for the anionic bridgehead bromide compounds. In no cases were ring-opened or
alternative products formed. If propellane formation did not occur, a frequency calculation
was carried out on the optimized anionic bridgehead bromide compounds to ensure that
it was a stationary point at an energy minimum. The results of these optimizations are
compiled in column 3 of Table 1. As representative examples of the outcomes of these
optimizations, the result of the optimization of precursor 12O that led successfully to
propellane 2O is shown in Figure 3A, and the optimization of precursor 14O that did not
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result in the formation of propellane 4O, but only in the optimization of the geometry of
14O, is shown in Figure 3B. A video showing the iterative steps involved in the optimization
of precursor 12O to form 2O is provided in the Supplementary Materials.

Table 1. Summary of results on the length of the optimized propellane central bonds, calculated
strain energies, and whether optimizations of the anionic bridgehead bromide precursors led to
propellane formation.

Propellane

Propellane
C–C Bond
Distance 1

(Å)

Propellane
Formation Upon

Optimization
Of Precursor? 2

Propellane
Total

Strain E 3

(kcal/mol)

Propellane
Central Bond

Strain E 4

(kcal/mol)

1 1.566 (1.604) Yes “0” “0”
2O 1.529 Yes 5 7
3O 1.500 Yes 11 21
4O 1.482 (1.511) No 27 (18) 40

2NH 1.544 Yes 2 2
3NH 1.525 Yes 3 7
4NH 1.511 (1.537) Yes 4 (–2) 13

2S 1.573 Yes 1 4
3S 1.573 Yes 3 6
4S 1.557 (1.601) No 9 (3) 5

2CF2 1.610 Yes 16 11
3CF2 1.656 Yes 39 21
4CF2 1.698 (1.721) No 69 (61) 30
2CO 1.661 Yes 17 17
3CO 1.755 No 39 31
4CO N/A 5 (1.855) No N/A 5(57) N/A 5

2SO 1.614 Yes –4 10
3SO 1.660 No 1 16
4SO 1.697 (1.733) No 11 (–2) 18
2SO2 1.687 No 16 20
3SO2 1.808 No 50 33
4SO2 1.912 (1.978) No 103 (82) 41

1 The distance between the bridgehead carbons of the corresponding propellanes as modeled atωB97X-D/aug-
cc-pVDZ. Values in parenthesis correspond to Pittman’s distances calculated using the CCSD/aug-cc-pVDZ
method [8]. 2 “Yes” means the anionic bridgehead bromide formed the corresponding [1.1.1]propellane upon
geometry optimization. “No” means a propellane failed to form. 3 Total strain energy of the propellane relative to
unsubstituted 1 according to isodesmic Equations (1)–(3). Values in parenthesis correspond to values calculated
in an identical manner by Pittman but using the CCSD/aug-cc-pVDZ method [8]. 4 Strain energy of the central
bridgehead–bridgehead bond relative to unsubstituted 1 as calculated according to isodesmic Equations (4)–(6).
5 This [1.1.1]propellane was not a stationary point on the potential energy surface at theωB97X-D/aug-cc-pVDZ
level of theory.
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Figure 3. Representative results of optimizations for examples in which computational optimization
of anionic bridgehead bromide precursor (A) 12O led to formation of corresponding propellane 2O via
ejection of the bromine atom as bromide, and (B) 14O did not lead to formation of propellane 4O but
only to optimization of the geometry of the precursor. Atom colors: gray= carbon; yellow = oxygen;
and red = bromine.

Several general observations may be made from the data in the table:

(i) In almost all cases, trisubstituted compounds 14 failed to generate the propellane 4,
with the exception of 14NH.

(ii) In no cases were propellanes formed at substitution levels beyond those in which
propellane formation failed (i.e., if propellane formation failed for 3, propellane
formation also failed for 4).

(iii) The most resistant-to-form propellanes were those precursors substituted with CF2,
CO, SO, and SO2 groups.

(iv) While there is no direct correlation between the bond length of the propellane central
bond and whether the propellane formed or not, generally those with shorter bond
distances (<1.66 Å) were more likely to successfully form, while those with longer
bond distances (>1.66 Å) were resistant to forming.

For those anionic bridgehead bromide precursors that failed to form a propellane,
we calculated the free energy change for the formation of the propellane from the corre-
sponding anionic precursor. The results are provided in Table 2. For most cases (4O, 4S,
4CF2, 3CO, 4SO, 3SO2, and 4SO2) the conversions are endergonic, which clearly explains
the resistance to spontaneous formation of the propellane. However, for two of the cases
(3SO and 2SO2), the conversions are exergonic. In these two cases, the lack of formation of
the propellanes could possibly be attributed to the ability of these substituents to stabilize
the negative charge on the precursor, thereby overcoming the energetic drive to form the
corresponding propellanes.

Table 2. Free energy change for formation of propellanes from the corresponding anionic bridgehead
bromid precursors.

Propellane ∆G (kcal/mol) 1

4O +28
4S +15

4CF2 +7
3CO +1
3SO –5
4SO +9

2SO2 –8
3SO2 +22
4SO2 +40

1 Difference in free energy between the optimized anionic bridgehead bromide precursor and the sum of the
energies of the neutral propellane and Br–.
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From these observations, it would appear that anionic bridgehead bromides 12 and
13 substituted with O, NH, and S would be the most attractive synthetic targets with the
highest likelihood of successfully forming the desired corresponding propellanes.

3.3. Estimating the Total Strain Energy in Propellanes 2–4

Pittman had utilized an isodesmic equation, represented by Equation (1) of Figure 4,
to estimate the total strain energies inherent in the trisubstituted propellanes 4 relative to
unsubstituted 1 [8]. We extended his method of calculating the strain energies for the mono
and disubstituted derivatives 2 and 3 according to Equations (2) and (3). These calculated
strain energies are provided in column 4 of Table 1.
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Figure 4. Pittman’s isodesmic equation to estimate the overall strain energy of trisubstituted propel-
lanes 4 relative to unsubstituted 1 is represented by Equation (1) [8]. Extension of this methodology to
the mono- and disubstituted propellanes 2 and 3 are represented by isodesmic Equations (2) and (3).

As can be seen in Table 1, while there is reasonable agreement between the relative
total strain energies calculated at theωB97X-D versus the CCSD levels of theory, the DFT
method consistently provided slightly higher strain energy estimates relative to CCSD
theory. However, the general trend of the relative energies is retained, and groups may be
partitioned into those with low (4NH, 4S, and 4SO), medium (4O), and high (4CF2, 4CO,
and 4SO2) levels of strain. Furthermore, there is generally observed to be an increase in
the strain energy with each subsequent substitution of a CH2 bridge as one progresses in
the series from 2 to 4. For NH, S, and SO substitutions, the increase in the strain energy
upon successive substitution is relatively small. This is especially true for NH substitutions
in which the strain energy increases only marginally with increasing substitution. For O,
the third substitution to form 4O dramatically increases the strain relative to 2O and 3O,
but, overall, the strain is not very high. Particularly interesting, however, is the low strain
energies predicted for the sulfoxide series. The propellane 2SO is predicted to be even less
strained than unsubstituted 1, while 3SO and 4SO remain only marginally more strained.
In contrast to those substituted series for which the strain is manageable, each addition of a
CF2, CO, or SO2 group increases the strain energy dramatically.

As with the C-C bond distance of the final propellane structures, there is no obvious
direct correlation of the probability of the successful formation of a propellane upon
geometry optimization of an anionic bridgehead bromide with the total strain energy of
the final propellane, although the propellane formation was generally favored when the
total strain energy was less than 27 kcal/mol. However, several propellanes with strain
energies below this level (e.g., 4S, 3SO, 4SO, and 2SO2) also failed to spontaneously form.

3.4. Estimating the Central Bridgehead-Bridgehead Bond Strain Energy in Propellanes 1–4

Given that the total strain energy of the final propellanes was not a conclusive in-
dicator as to whether the propellane would form spontaneously upon the optimization
of the anionic bridgehead bromide precursor, we wondered whether a better predictor
would be the strain energy of the centrally formed bridgehead-bridgehead bond. Isodesmic
Equations (4)–(6) (see Figure 5) were developed to more directly isolate the strain experi-
enced by the central propellane bonds of the derivatives relative to that of the unsubstituted
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propellane 1. The energies of the variously substituted bicyclopentanes found on the right
side of these equations and the energy of the unsubstituted bicyclopentane found on the
left side of these equations were calculated using the same optimization conditions as had
been used for the propellanes. The resulting change in energy for each derivative was taken
as an estimate of the strain energy localized at the bridgehead-bridgehead bond relative to
that of 1. These calculated central bond strain energies are compiled in column 5 of Table 1.
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Figure 5. Isodesmic reactions to estimate the amount of strain energy present in the central
bridgehead-bridgehead bonds of propellane derivatives 2–4 relative to unsubstituted 1.

The trend in the strain energies of the central bonds calculated via isodesmic reactions
(4)–(6) was identical to that calculated earlier on a subset of these compounds using the
B3LYP/6-31G(d,p) method based on hydrogenation of the central bond of the propellane to
form the corresponding bicyclopentane (see Equation (7) in Figure 6) [9,11]. Both methods
predict the order of stability of 1 > 2NH > 2S ~ 3NH ~ 2O > 4NH > 3O > 4O.
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Figure 6. Estimation of strain on the central bond of a subset of the propellanes 2–4 based on the heat
of hydrogenation as described in [9].

An interesting trend emerges when comparing the central bond energy strain (column
5, Table 1) relative to the total strain energies (column 4, Table 1). For those substituted
propellanes that had overall lower total strain energies (O, NH, S, and SO), one notices
that the strain of the central bond is generally higher than the total strain energy of the
molecules. Hence, the central bond strain is compensated for by the substituents either
structurally and/or electronically. However, for those propellanes that had higher total
strain energies (CF2, CO, and SO2), their total strain energies are generally greater than
that of the central bond strain energy. Hence, those substituents are unable to compensate
for the strain introduced by the central bond and their bonding situation is apparently
worsened either structurally and/or electronically. While it is certainly of interest as to what
structural and/or electronic factors may be at play to either accommodate or exacerbate the
strain energies of these molecules, this would require an in-depth analysis of the complex
bonding situations [2], which is beyond the scope of this current work.

The central bond strain energies were, therefore, also not direct predictors as to
whether the propellane structure would form spontaneously upon geometry optimization
of 12–14. While, generally, propellane formation occurred with compounds containing low
central bond energy strain (i.e., <21 kcal/mol), in some cases, propellane formation failed
to occur (e.g., for 4S, 3SO, 4SO, and 2SO2). However, in no cases were propellanes formed
when the central bond strain energy exceeded 21 kcal/mol.
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4. Conclusions

In many of the studied cases, geometry optimization of the anionic bridgehead bro-
mide precursors spontaneously formed the corresponding propellane compounds. This
suggests that for those compounds, the propellane is energetically favored relative to the
precursor, and has a higher likelihood of forming the propellane experimentally. It should
be noted, however, that for those anionic bridgehead bromides that did not spontaneously
form propellanes, it is not impossible that they could also successfully form propellanes un-
der the proper conditions. It may be that those bromides have an energetic barrier toward
the formation of the propellanes, and, when provided that energy, may be able to surmount
that barrier and form the desired propellanes. However, in our quest to locate the most
promising propellane targets, we prioritize the anionic bridgehead bromides that form the
propellanes spontaneously upon optimization. Combining the results of the optimizations
with what was learned from the analysis of the lengths of the central propellane bonds
and the strain energies (both total strain energies and those of the central bond), it would
appear that the most promising synthetic targets using the synthetic method outlined in
Scheme 1 would be those propellanes that:

(i) Successfully formed the corresponding propellane upon geometry optimization of
precursors 12–14.

(ii) Form propellanes that have central bridgehead-bridgehead bond lengths <1.66 Å.
(iii) Have low total strain energies (i.e., <27 kcal/mol).
(iv) Have low central C-C bond energies (i.e., <21 kcal/mol).

The most synthetically attractive propellanes, therefore, would be compounds 2O,
2NH, 3NH, 4NH, 2S, and 3S. Compounds 2CF2, 2CO, and 2SO are also possible contenders,
but the behavior of their more highly substituted counterparts render them more suspect
than the former recommendations. We hope that the results from this study stimulate
synthetic chemists to consider ways in which to synthesize the precursor compounds for
further experimental investigations.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/org4020016/s1, GAMESS output files for all the propellanes, bicy-
clopentanes, and anionic bridgehead bromide optimizations. A video showing the optimization of
anionic bridgehead bromide 12O to form propellane 2O.
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