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Abstract: Background: Implant primary stability is determined by screw characteristics and surgical
procedure. The aim of the present study was to evaluate, on a polyurethane model, the insertion
torque (IT), removal torque (RT), and resonance frequency analysis (RFA) of multi-scale roughness
dental implants of different diameters. Methods: Two implant sizes were tested on two polyurethane
blocks (20 pounds per cubic foot (PCF) and 30 PCF): 3.0 diameter and 13 mm length and 5.0 diameter
and 13 mm length. The IT, RT, and RFA were assessed. Results: A significant difference of IT and
RT was present in favor of wider implants at both polyurethane densities. No statistical difference
was present between the 5.0 diameter and 3.0 diameter implants at both polyurethane densities.
A statistically increased RFA was reported for 5.0 implant 30 PCF polyurethane blocks. Conclusions:
Multi-scale roughness dental implants of both diameters showed high insertion torque and primary
stability on polyurethane blocks, which is valuable for implant loading protocols.
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1. Introduction

Primary stability is the main clinical condition for the early and long-term success of dental
implant osteointegration [1,2]. This clinical condition determines the induction of the healing of the
peri-implant tissues and permits the creation of an ankylotic relationship at the level of the bone-to
implant interface, new bone formation, and remodeling [1,3].

Dental implant primary stability is defined as the mechanical friction determined by the surface
contact of a clinically stable screw with the osteotomy wall during its positioning [4–7].

The presence of micromovements of over than 150 microns has been reported as a condition
favorable for soft tissue interposition between the bone and implant surface inducing fibrous
integration [8–13]. Bone tissue is a dynamic, highly responsive connective tissue to functional loading [3].
In the literature, it has been reported that stress and strain on stable dental implants are able to induce
cortical bone modification, bone–implant contact, and density increase around the screw interface [14,15].
Several different techniques have been described for implant site preparation such as drilling
protocols [16–20], osseodensification technique [21–23], ultrasonic piezoelectric device [17,24,25],
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manual osteocondensation [26], and conventional and under-preparation osteotomy [27,28]. Primary
stability is also determined by the macro-geometry and thread shape of the implant [29]. Comparative
studies reported, in a polyurethane block simulation, that a cylindrical implant design showed
increased insertion torque (IT) and implant stability quotient (ISQ) compared to conical implants [30].
The insertion torque and removal strength are clinically determined by the micro-mechanical interaction
between the dental implant and the surrounding bone wall [31]. The minimum insertion torque
necessary to achieve implant osseointegration is undefined, while a positioning torque ≥30 Ncm is
clinically required for immediate loading protocol into healed bone ridges and post-extraction alveolar
sockets [27]. The implant stability quotient (ISQ) is a reproducible, repeatable, and highly predictive
measurement for dental implant stability [32]. This procedure has been proposed to evaluate the
stability and clinical prognosis of teeth and dental implants in the oral cavity as a cost-effective and
non-operator-dependent diagnostic technique [32].

The solid rigid polyurethane bone block has been proposed as a valuable material for orthopedics
and maxillofacial medical devices [5,11,33]. The material is available in different densities and
microstructures able to simulate the mechanical and physical properties of human bone and its cortical
and cancellous components [34]. In the literature, many different materials have been proposed to
evaluate dental implants’ primary stability such as bovine or pig ribs, rabbit tibiae, sheep mandible,
and cadaveric human bone [35–38]. Polyurethane blocks present a uniform density, elastic and strength
characteristics, and are unaffected by desiccation [30,39].

The aim of the present investigation was to compare the primary stability between two different
diameters’ multi-scale roughness dental implants positioned into solid rigid polyurethane blocks of
different densities.

2. Materials and Methods

2.1. Polyurethane Foam Blocks

Polyurethane solid rigid blocks represent a validated bone simulator to test the response of
dental implants and medical devices in a standardized environment (ASTM F-1839-08) [11,30,39].
Polyurethane blocks present a uniform density, elastic and strength characteristics, and are unaffected by
desiccation. Polyurethane presents similar properties to human bone and it requires no special handling
or preservation protocol. This synthetic material presented consistent mechanical characteristics.
For the present investigation, two different densities of 20–30 pounds per cubic foot (PCF) (D2–D1)
of polyurethane solid rigid block (Sawbones, Vashon Island, Washington USA) with a size of
120 × 170 × 30 mm were tested.

2.2. Implant Characteristics

Internal hexagon cylindrical implants (IC, Resista, Omegna VB, Italy) were evaluated in the
present investigation (Figures 1 and 2).

The differential multi-scale surface treatments were provided in the coronal, median, and apical
portions of the device to increase the osteogenic response of the peri-implant tissues.

The cervical portion was characterized by a smooth machined surface to oppose bacteria adhesion
and proliferation. The micro-thread area was provided by a nano-rough surface with Ra < 1 µ.
The presence of a textured surface is able to increase the absorption of proteins and the stabilization of
blood clots, platelets, and fibrin adhesion in the healing phase, promoting implant osteointegration.
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The median part of the implant screw was characterized by a dual acid-etched (DAE) micro-
rough surface (mean Ra: 3/7 µ) and the apical portion by a slow dual acid-etched (DAE) micro-rough 
surface (mean Ra: 8/12 µ). 
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Figure 2. Optimal positioning into the bone tissue of the dental implant tested in the
present investigation.

The median part of the implant screw was characterized by a dual acid-etched (DAE) micro-rough
surface (mean Ra: 3/7 µ) and the apical portion by a slow dual acid-etched (DAE) micro-rough surface
(mean Ra: 8/12 µ).

2.3. Drilling Protocol and Insertion (IT) and Removal Torque (RT) Assessment

A total of 20 dental implants were positioned in the present polyurethane research. Two different
solid rigid polyurethane densities were tested (SawBones H, Pacific Research Laboratories Inc, Vashon,
WA, USA) (Figure 2). The polyurethane block was characterized by a closed cell range from 96.0% to
99.9%. The 20-pound per cubic foot (lb/ft3) (PCF) polyurethane density, equal to 0.32 g/cm3, presented
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similar rigidity and consistency to D2, and 30 PCF, equal to 0.48 g/cm3, simulated the rigidity and
consistence of D1 bone (Figure 3).
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Figure 3. Details of the procedural phase of the experimental protocols.

Polyurethane solid rigid blocks (Sawbones, Vashon Island, Washington DC, USA) with two
different densities of 20–30 PCF (D2-D1) were prepared for 3.0 diameter IC implant according to the
following drilling protocol: lance drill, 2.0 diameter drill, 2.6 diameter drill, 2.8 diameter drill.

The implant site preparation for the 5.0 diameter IC implant was according to the following
drilling protocol: lance drill, 2.0 diameter drill, 2.6 diameter drill, 2.8 diameter drill, 3.2 diameter drill,
3.8 diameter drill, 4.5 diameter drill. The surgical hand-piece was set with a speed of 800 rpm and
a torque of 30 Ncm for implant site preparation. After the implant site preparation according to the
manufacturer’s protocol, the insertion torque and removal torque were recorded by dynamometric
analysis during the screw positioning. Torque measurement was assessed with a software package
(ImpDat Plus, East Lansing, MI, USA).

2.4. Resonance Frequency Analysis (RFA)

RFA (Osstell, Columbia MD USA) is an electromechanical assessment that is performed by an
electronic device that measures the micromovement of an implant for a total of 16 times.

The RFA device is able to self-eliminate the non-compliant pulse offering a reliable and reproducible
measurement of the implant micro-mobility.

The measurements are classified according to the implant stability quotient score (ISQ), ranging
between 1 and 100:

- Good stability: >70 implant stability quotient (ISQ);
- Medium stability: 60–69 implant stability quotient (ISQ);
- Low stability: <60 implant stability quotient (ISQ).
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2.5. Statistical Analysis

The normal distribution of the study data was evaluated by the Kolmogorov–Smirnov test.
A one-way ANOVA followed by the Tukey post-hoc test was performed to evaluate the statistical
significance of the study variables. The study data were analyzed using the statistical software package
GraphPad 8.0 (Prism, San Diego, CA, USA). The statistical significance was set at p < 0.05.

3. Results

The mean IT assessment for both groups is presented in Figure 4 and Table 1. The 3.0 IC implant
showed a mean IT in 20 PCF and 30 PCF cases of 25.80± 0.8367 Ncm and 49.40± 2.702 Ncm, respectively
(p < 0.05). A statistically significant higher IT was reported for the 5.0 IC implant at 20 PCF and 30 PCF
with a mean of 51.60 ± 1.049 and 90.00 ± 0.3012 Ncm, respectively (p < 0.05).
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Table 1. Insertion torque values of the 3.0 IC and 5.0 IC dental implants.

INSERTION TORQUE 3.0 IC 20 PCF 5.0 IC 20 PCF 3.0 IC 30 PCF 5.0 IC 30 PCF

Minimum 25.00 45.00 50.00 90.00
25% Percentile 25.00 47.00 50.50 90.00

Median 26.00 50.00 51.00 90.00
75% Percentile 26.50 51.50 53.00 90.00

Maximum 27.00 52.00 55.00 90.00
Range 2.000 7.000 5.000 0.000
Mean 25.80 49.40 51.60 90.00

Std. Deviation ±0.8367 ±2.702 ±1.949 ±0.3012
Std. Error of Mean 0.3742 1.208 0.8718 0.000

Lower 95% CI of mean 24.76 46.05 49.18 90.00
Upper 95% CI of mean 26.84 52.75 54.02 90.00

The mean RT measurements are presented in Figure 5 and Table 2, where the 5.0 IC implant
at 20 PCF and 30 PCF showed a statistically significant higher mean RT of 51.60 ± 1.049 and
79.00 ± 11.40 Ncm, respectively (p < 0.05). The 3.0 IC implant showed an average RT at 20 PCF and
30 PCF of 24.80 ±1.304 and 46.00 ± 2.345 Ncm, respectively (p < 0.05).
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Osteology 2021, 1 68

Table 3. RFA values of the 3.0 IC and 5.0 IC dental implants.

RFA 3.0 IC 20 PCF 5.0 IC 20 PCF 3.0 IC 30 PCF 5.0 IC 30 PCF

Minimum 58.00 61.00 62.50 68.00
25% Percentile 58.00 62.25 63.00 72.25

Median 58.50 63.50 65.50 77.00
75% Percentile 60.00 64.25 66.25 78.00

Maximum 60.50 64.50 67.00 78.50
Range 2.500 3.500 4.500 10.50
Mean 58.90 63.30 64.80 75.50

Std. Deviation ±1.084 ±1.351 ±1.789 ±4.257
Std. Error of Mean 0.4848 0.6042 0.8000 1.904

Lower 95% CI of mean 57.55 61.62 62.58 70.21
Upper 95% CI of mean 60.25 64.98 67.02 80.79

The 3.0 IC implant showed a mean implant stability quotient (ISQ) value at 20 PCF and 30 PCF of
58.90 ± 1.084 and 63.30 ± 1.351, respectively (p > 0.05). The 5.0 IC implant at 20 PCF showed a mean
value of 64.80 ± 1.789 (p < 0.05). A statistically significant higher RFA measurement was reported
for the 5.0 IC implant at 30 PCF with an average ISQ value of 75.50 ± 4.257. The aim of the present
investigation was to evaluate the primary stability of cylindrical multi-scale roughness dental implants
of two different diameters.

4. Discussion

The rationale of the present investigation was to evaluate the effect of different sizes of implant
diameter on primary stability through a standardized simulation on an artificial polyurethane model.
The implant choice was made in accordance with the recent and most diffused macro-geometry and
internal prosthetic platform for endosseous implants in order to preserve the experimental repeatability
and reduce the study variables [40].

The choice of the appropriate implant diameter is clinically determined by prosthetic factors,
aesthetics, the residual thickness of the bone ridge, and the distance between adjacent elements [41].
A minimum distance of 1.4–2mm should be always maintained between the marginal bone and
the implant surface [42]. The implant positioning could be affected by anatomical features such as
knife-edged alveolar ridges that require a regenerative approach [42,43]. Primary stability is determined
by different mechanical and frictional factors such as absence of micromovements, implant design,
screw size and diameter, bone quality, and surgical technique [1,15].

The adoption of an increased implant diameter of 1 mm is able to induce a higher surface contact
area percentage with the surrounding tissues by between 30% and 200%, which could actively influence
the primary stability and the functional bone stress distribution [44].

In the present investigation, both dental implant diameters showed a high insertion torque value
(>25 Ncm). Moreover, no significant difference in terms of ISQ stability was present at both 20 PCF
and 30 PCF polyurethane densities (p > 0.05).

Clinically, the presence of optimal primary stability also with a reduced dental implant diameter
could represent a determining factor that could contribute to the rehabilitation of regions with limited
prosthetic space and/or bone thickness [45,46]. This effectiveness could be further improved by
adopting solidarized implants for an immediate or delayed protocol of functional loading [6].

Multi-scale roughness represents a surface treatment able to create differentiated roughness
levels in the various parts of an implant screw. The most common implant surface treatments are
machining, sandblasted surfaces, acid-etched treatment, lasered surfaces, and anodized titanium
surfaces [47,48]. The coronal part is critical for potential early bacteria colonization of the peri-implant
tissue [49]. Rodriguez and Baena et al. reported in vitro that machined titanium and nano-roughness
surface are able to reduce the bacterial adhesion of Aggregatibacter actinomycetecomitans, Streptococcus
mutans, and Streptococcus sanguis strains [49]. Moreover, the authors reported the lowest amount of
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bacterial contamination for the nano-roughness surface. It is well known in the literature that the
micro-roughness surface rugophilia is a key factor for the induction of osteogenic actors’ activity [49,50].
Several studies reported in animal experiments that implant micro-roughness is associated with
higher bone-to-implant contact compared to machined implants [51–54]. In this way, implant surface
treatment is important to create wettability and an optimal environment for early stabilization of blood
clots and for supporting the integration healing of the implant [55,56]. Blood and proteins’ adsorption
seems to be related to direct bone osteogenesis from the implant surface oriented to the implant site
bone wall [3]. Distance osteogenesis is associated, in the literature, to machined topography, with an
osteogenesis vector oriented from the old bone to the implant surface [3].

5. Conclusions

In conclusion, both of the diameters tested for multi-scale roughness dental implants positioned
in synthetic bone models showed enhanced primary stability that is valuable for implant loading
protocols. The larger implant diameter should be preferred in the case of bone volume availability to
obtain higher primary stability.
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