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Abstract: In this paper, the aim is to classify torque signals that are received from a 3-DOF manipulator
using a pattern recognition neural network (PR-NN). The output signals of the proposed PR-NN
classifier model are classified into four indicators. The first predicts that no collisions occur. The
other three indicators predict collisions on the three links of the manipulator. The input data to
train the PR-NN model are the values of torque exerted by the joints. The output of the model
predicts and identifies the link on which the collision occurs. In our previous work, the position
data for a 3-DOF robot were used to estimate the external collision torques exerted by the joints
when applying collisions on each link, based on a recurrent neural network (RNN). The estimated
external torques were used to design the current PR-NN model. In this work, the PR-NN model,
while training, could successfully classify 56,592 samples out of 56,619 samples. Thus, the model
achieved overall effectiveness (accuracy) in classifying collisions on the robot of 99.95%, which is
almost 100%. The sensitivity of the model in detecting collisions on the links “Link 1, Link 2, and
Link 3” was 97.9%, 99.7%, and 99.9%, respectively. The overall effectiveness of the trained model is
presented and compared with other previous entries from the literature.

Keywords: collisions classification; industrial robot; neural network; pattern recognition; evaluation;
comparison

1. Introduction

Usually, safety is the first effective key factor in any working industrial area. As the
need for flexibility in manufacturing continues to increase, robots have been deployed
in many fields of manufacturing. More flexibility makes the automation processes more
complex. Usually, the optimal level of automation turns out to be less than 100% and,
consequently, the role of the human worker remains particularly important [1]. The
interaction between humans and the working robots can cause one of the following losses:
injuries to workers, machine faults, and time with halted operations. The losses may be
complicated when all losses mentioned occur simultaneously. As such, there is a need
to consider standards for safety and other issues related to their use in working areas,
and they must be fit for purpose [2,3]. Safety issues become very considerable when
human–robot interaction (HRI) takes place [4]. Interaction between humans and robots
increases the probability of collisions occurring between humans and robots. In 2011,
ISO published a standard entitled “Robots and robotic devices—safety requirements for
industrial robots” [5,6] as guidance for human interaction with industrial robots. Thus,
there is an urgent need to develop reliable methods to estimate and detect collisions
between humans and robots.
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Usually, cost is a key parameter in engineering design. Any physical property can
be traditionally measured using a certain sensor. As torque exerted by a robotic joint is
one of these properties, it can be detected by a torque sensor attached to the robotic joint.
The interaction between robots and surrounding objects can be detected by vision sensors.
Any robot is usually equipped with position sensors, but not all of them are equipped
with torque sensors. Also, most robot working environments are not equipped with vision
sensors. Equipping a robot or the working environment with additional sensors tends
to raise the cost of manufacturing and maintenance. Therefore, there is motivation to
investigate the feasibility of torque sensors for measuring torque on joints and detecting
undesired torque. The process of detecting the undesired torque and classifying certain
values as due to external collisions needs an analysis procedure for the torque signals that
come from the torque sensors. According to the literature, this analysis can take place
using control approaches, machine-learning methods, or deep-learning methods. The next
section, Section 1.1, presents some works that tried to estimate and classify interactions
between humans and robots using different types of sensors and to analyze the output
signals of sensors based on different methods.

The aim of the present work in this paper is to investigate the feasibility of collecting
and analyzing position data from robotic joints to estimate and classify the torque values
exerted by the robotic joints.

1.1. Related Work

Some researchers have developed safety methods to estimate and detect collisions
through active control based on sensors’ measurements. Avanzini et al. [7] reported that
they developed a control strategy based on signals received from distributed distance
sensors mounted on a robotic arm. This work aimed to improve the safety of workers
when interacting with robots by assessing the dangers raised by robots. Their experiments
were conducted on an ABB IRB140 industrial robot. Bdiwi [8] developed a robotic system
involving several types of sensors to keep humans safe while interacting with robots. The
sensors used were vision, sensitive skin, and force sensors. Luca and Flacco [9] developed
an integrated control framework for safe physical human–robot interaction (pHRI) based
on a hierarchy of consistent behaviors. They conducted experiments on a KUKA LWR-IV
and a Kinect sensor. Geravand et al. [10] presented an end-user approach to detect collisions
and reactions on an industrial robotic arm having its own closed-control architecture. The
inputs to the control system were joint positions and electric currents of motors. To classify
human–robot collision situations, Cioffi et al. [11] studied different algorithms for machine-
learning classification. The aim was to obtain a high classification accuracy based on a time
series of joint-load torque signals. Based on a 3D point cloud, Wang et al. [12] proposed
an algorithm to predict collisions on a dual-arm robot. Sharkawy et al. [13] proposed a
method based on a multilayer feedforward neural network (MLFFNN) to detect collisions
between humans and a 3-DOF robot. The results showed that the method they developed
was effective to detect human–robot collisions.

On the other hand, other researchers have used data-based approaches to estimate and
detect collisions. Sharkawy et al. [14] reported that they achieved an effective classification
for force sensor signals received from a robot using a pattern recognition neural network
(PR-NN). The PR-NN method resulted in high-accuracy results. Chen et al. [15] also
reported high-accuracy results. In another application, they developed a model using
PR-NN for the purpose of disassembly task recognition in the field of e-wastes (electronic
wastes). They used this model for the purpose of human–robot collaboration (HRC) in
disassembly tasks. Popov et al. [16] suggested using NN to detect and classify collisions on
a 7-DOF industrial manipulator KUKA-IIWA LBR 14 R820. They trained their model using
torque data detected by torque sensors on the robotic joints. The detection achieved about
a 94% accuracy. Zhang et al. [17] developed an online collision detection and identification
(CDI) scheme for human-collaborative robots. They used signals from external torque
sensors as input signals to classify the collisions. Their scheme achieved an accuracy
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of 99.6%. Narukawa et al. [18] proposed a real-time collision detection method. They
built their method on the one-class support vector machine (SVM) method for the safe
movement of humanoid robots. They only used the data of motion to train and create
a model to detect collisions. Using neuro-fuzzy inferences, Shin et al. [19] improved the
ability of a fish robot to recognize obstacles and avoid collisions. Their method only used
IR sensor measurements as inputs to the neuro-fuzzy inference model. Abu Al-Haija
and Al-Saraireh [20] applied five methods of machine learning to detect collisions. These
methods were the k-nearest neighbor (KNN) model, the fine decision trees (FDT) model,
the logistic regression kernel (LRK), the subspace discriminator (SDC), and the ensemble of
bagging trees (EBT) model. The parameters that they used to train their models were the
torque, position, and velocity of robotic joints. They reported that the EBT model achieved
the best accuracy compared with the other four models. The EBT achieved an accuracy
of 97.1%.

1.2. The Main Contribution

The challenge is to estimate and classify torques exerted by robot joints, just by
analyzing position and velocity data of robot joints. The seeking is not only to detect
whether a collision occurs or not, but also to detect the link of the robot on which collision
occurred. The main contribution of the current paper can be outlined as the following:

The first part of the challenge, which is to estimate the external torques exerted on robot
joints, was accomplished in our previous work [21]. In our previous work, the external
torques were estimated based only on joint position signals. Therefore, the proposed
method can be applied with any conventional industrial robot.

This paper proposes a solution for the last part of the challenge. The proposal is to
classify the torque signals to detect collisions using PR-NN. The external torques exerted
on the robot joints are used as inputs to train a PR-NN model.

Conjugate gradient backpropagation algorithm is considered for the training of the
proposed PR-NN. The conjugate gradient backpropagation algorithm has the advantage of
a higher accuracy and being more effective when it is compared to the backpropagation
algorithm. The backpropagation algorithm becomes unsuitable when dealing with large
problems because its convergence rate is exceptionally low [22].

A comparison of the effectiveness of the proposed classifier with other previous
literature is also presented.

The rest of this paper is divided as follows: Section 2 shows the proposed method
in brief and how it is implemented. Section 3 presents the executed experiments and
the obtained results from the developed classifier. In Section 4, a comparison is carried
out between the developed classifier and other previous literature. Finally, Section 5
summarizes the crucial points of the paper and puts forth some future work.

2. Material and Methods

As referred to in our previous work [21], a 7-DOF KUKA robot was configured to act
as a 3-DOF robot. The KUKA robot used in this work is a collaborative robot, i.e., all joints
are equipped with torque sensors. As presented in next section, Joints A1, A4, and A6 of
this robot represent Joints J1, J2, and J3, respectively. Link 2 and Link 3 are affected by
gravity while Link 1 is not. The working motion θ(t) for the three joints is governed by the
following equation:

θ(t) =
1
4
− 1

4
cos(2πft) (1)

f: frequency of sinusoidal motion.
A model of a recurrent neural network RNN was implemented to estimate collisions

on the robot. The training data inputs were the position data of joints, where the training
data outputs were the torque signals, collected from torque sensors on the joints, by the
KUKA robot controller KRC. Table 1 contains the main parameters of the training of the
RNN model. Figure 1A shows the structure of the trained RNN.
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Table 1. The main parameters of developing and training the RNN model.

Parameters Values

Number of layers Three layers: input, hidden, and output layers.

Number of inputs Nine inputs: the position of joint, previous position of joint, and
angular velocity of joint, for Joints 1, 2, and 3.

Activation function of hidden layer Tanh (hyperbolic tangent)—hidden layer is nonlinear

Number of hidden neurons 80

Number of outputs Three outputs; force sensor signal, external torque of Joint 1 and
of Joint 2

Activation function of output layer Non-linear

Training algorithm Levenberg–Marquardt (LM)

Total collected samples 70,776 samples

Number of training samples 80% of total samples

Number of validation samples 10% of total samples

Number of testing samples 10% of total samples

Processer used for training Intel(R) Core (TM) i7-7500U CPU @ 2.70GHz 2.90 GHz

Software used for training MATLAB

Number of epochs 1000

Criterion considered for the training
Considering the lowest mean square error MSE. Consequently,
the smallest MSE means that the model is the highest accuracy

to estimate the external torque.

The smallest (MSE) 0.03173

Regression obtained from training 0.96797

The model was designed and implemented to estimate external collisions at the robot
links using joint position data as inputs. The algorithm used to train the RNN model was
the Levenberg–Marquardt (LM) algorithm.

In this work, the values of external torque estimated by the RNN model are used as
inputs to the PR-NN. The outputs of PR-NN determine/predict whether there is a collision
or not.

The approach proposed in this paper is accomplished by the following steps:

(1) The design of the proposed PR-NN considers the external torque estimated in [21] to
recognize the torques of collision. Figure 1 shows the design scheme of the PR-NN
classifier model;

(2) The structure of PR-NN consists of a input layer, hidden layer, and output layer. The
number of inputs and neurons of the hidden layer are determined;

(3) Searching for the best number of neurons of the hidden layer which leads to a lower
cross-entropy value and consequently a higher performance. Many trials are con-
ducted to obtain this best number of neurons.

(4) There is a need for testing and validation of the trained PR-NN to ensure its perfor-
mance so that it can precisely classify collisions. Other data, rather than those used to
train the PR-NN, are used to test and validate the PR-NN. When testing and validation
show a high performance (lower cross-entropy), this reveals that the PR-NN is ready
to make the classifications;

(5) A comparison is made between the classification approach proposed in this paper
and other approaches proposed in some other publications.
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Figure 1. The proposed method to create a PR-NN classifier model: (A) The structure of the trained
RNN used to estimate the external torques on joints; (B) The proposed PR-NN model which classifies
collision according to its inputs of estimated external torques.

3. Results

In this section, the experimental work conducted to design, train, test, and validate
the PR-NN is shown in the first subsection. The second subsection shows the results of the
processes conducted in the first subsection.

3.1. Experimental Work

As illustrated in [21], a 7-DOF KUKA was configured to act as a 3-DOF robot. A
motion was applied on its three active joints to act in the form of sinusoidal motion. The
robot used in this experimental work is interactive, so each joint has a torque sensor. After
applying motion on the joints, some collisions were applied on the links from different
directions (Figure 2). The data collected and recorded from each joint of the robot are the
current position θi(k), the previous position θi(k − 1), and the angular velocity

.
θi(k), and

the exerted torque τ(k). While conducting the experiment, the number of samples recorded
for each of these data was 70,775 samples. These data were used in our previous work [21]
for training an RNN model to estimate torques and determine the torque threshold for each
joint. The torque threshold identifies the torque due to collision. When the torque reaches
the value of the threshold, it means that a collision has occurred. In this work, the data of
the torque were collected from our previous work and classified to train a PR-NN model to
classify the collisions. The criteria on which the classification of collision classes occurred
are as follows:
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Class (1): No collisions: this means no collision torques exerted by any joint;
Class (2): Collision on Link 1: this means there is collision torque exerted on Joint 1 only;
Class (3): Collision on Link 2: this means there are collision torques exerted on Joints 1 and 2;
Class (4): Collision on Link 3: this means there are collision torques exerted on Joints 1, 2,
and 3.
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Figure 2. Configuration of the KUKA robot as a 3-DOF robot and direction of applying collisions.

These samples were distributed into three sets to train, test, and validate the PR-NN
model. The distribution is presented in Table 2. The grid search method was applied using
MATLAB to fine-tune the parameters. To obtain an effective PR-NN model, the samples
were distributed in three sets in which there were no duplicated data among sets.

Table 2. Number of samples used for the training, testing, and validation of the proposed PR-NN model.

Process

Number of Samples
(Samples without

Collision+ Samples
with Collision)

Sample without
Collision

Samples with
Collision

Training 56,619 54,711 1908

Testing 7069 6854 215

Validation 7078 6877 201

Based on our previous work [21], the PR-NN proposed in this present work is to be
designed to classify collisions according to torque signals received from torque sensors on
the robot’s joints. The simplicity of the structure of neural networks (NNs) makes them
widely used in the field of robotics control and collision detection and avoidance, e.g., this
research [21,23–26]. Moreover, NNs have the advantage of the ability of generalization and
adaptation [27–29]. PR-NNs can produce good classification results in different fields like
collision detection in robots [14] and the diagnosis of crack faults [30].

Figure 1B shows the structure of a PR-NN, where the structure is illustrated as
the following:

Input layer: This involves three inputs. The three inputs are the three torque values
exerted by the three joints of the 3-DOF robot (external torque of Joints 1, 2, and 3). These
three inputs were obtained from our previous work [21].

The hidden layer: This is a non-linear layer. It is governed by a non-linear function
which is the hyperbolic tangent function “tanh”. The best number of hidden neurons in
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this layer is obtained by a trial and error method. Many trials were carried out. The trials
revealed that the best number of hidden neurons is 120 neurons. It is notable that cross-
entropy is an indicator of performance. Through probability and error theory, cross-entropy
decreases as the likelihood of occurrence of something increases. When cross-entropy
decreases, this means that a higher performance of the PR-NN model is achieved. Cross-
entropy is a form of loss function that is widely used. It matches the logistic loss applied to
the outputs of the NN when using the SoftMax function [31].

The output layer: This is a non-linear layer which has a SoftMax function as the
activation function. The SoftMax function is commonly used in artificial NNs when making
a multiclass classification. It usually works in the last layer of an NN. The SoftMax function
can be defined by the following formula [32]:

sm(z)i =
ezi

∑k
j=1 ezj

, f or i = 1, .., k and z = (z1, . . . , zi) ∈ Rk (2)

For each element “zi” of the input vector “z”, the exponential function is to be applied.
In the equation, dividing by the sum of all the exponentials provides normalization for the
resulting values. Normalization can guarantee that each element of the output vector sm(z)
will not exceed the value of “1”.

After designing the PR-NN model, the next step is to train, test, and validate the
model. The MATLAB program was used to execute the processes of this step. The conju-
gate gradient backpropagation algorithm was used to train the model. This algorithm is a
supervised learning algorithm. It has a super-linear convergence rate when dealing with
most problems [33]. When comparing this algorithm with a backpropagation algorithm,
it can be found that the conjugate gradient backpropagation algorithm is more effective
and faster than the backpropagation algorithm [34]. Although the same concepts of the
backpropagation algorithm are used for the strategy of general optimization in the conju-
gate gradient backpropagation algorithm, the last one can effectively define the optimum
direction of the search and step size through information arising from the second-order
approximation expressed by the following equation:

E(w + y) ≈ E(w) + E′(w)Ty + 0.5 yTE′′ (w)y (3)

The global error function is expressed in Equation (1), where it is presented for each
point E(w + y) using the Taylor expression. In this equation, w represents the weight vector.
E(w) varies depending on the weights and biases connected with the NN. E(w) can also be
the standard least square function or it can be any other appropriate error function.

The training occurs using the data mentioned in Table 2. Many experiments were
conducted to train the PR-NN model, using many different hidden neurons as shown in
Table 3. The table shows the cross-entropy resulting from using different hidden neurons.
The lowest cross-entropy (closer value to zero) achieves the highest performance. By the
completion of training process, the testing and validation processes occur. The numbers of
samples used to test and validate are shown in Table 2. The results are presented in the
next section.

Table 3. The resulted cross-entropy after conducting many trials with different number of
hidden layers.

Number of Hidden Neurons 40 80 120 160 200

Cross-entropy 0.00059 0.00071 0.00026 0.00060 0.00058

3.2. Experimental Results

In this section, the results of the training, testing, and validation of the PR-NN model
are presented.
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After conducting many trials to train the PR-NN model, the best performance was
accomplished through the following parameters:

(1) The number of hidden neurons, at which the lowest cross-entropy is achieved, is 120;
(2) The number of iteration/epochs at which the training process ended and the lowest

cross-entropy was achieved is 232 epochs;
(3) The lowest cross-entropy achieved is 0.00026922;
(4) The time of training is about 19 s. It does not matter what time spent is to complete

the training process. The process was accomplished offline. Thus, the prominent issue
is to produce a PR-NN model achieving a higher performance.

Figure 3 shows the behavior of the PR-NN model during the training process. It also
shows the behavior of the testing and validation processes. The figure reveals that the
lowest value of cross-entropy was obtained at 0.00026922 (remarkably close to zero), where
the best performance was achieved. Appendix A shows the resulting cross-entropy of other
training trials using different numbers of neurons, showing that all of them achieved higher
cross-entropy values. Figure 4 presents an error histogram for the PR-NN while in training,
testing, and validation. It shows that the values of the error between the predicted values
and true targets in all samples are remarkably close to zero. These results reveal that the
PR-NN model was trained effectively.
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Figure 3. The resulted cross-entropy from training process for the PR-NN model.

The receiver operating characteristics (ROC) graph has the property of organizing the
classifier model and visualizing its performance [35]. The ROC is usually used to measure
the relative difference between the true positive rate and the false positive rate [36]. It is
memorable that the true positive rate is that rate at which classifier model obtains [positive]
for those observations that are truly positive, whereas the false positive rate is that rate at
which classifier model obtains [positive] for those observations that are truly negative [14].
Thus, the optimum classification occurs in the case at which the true positive rate is “1”
while the false positive rate is “0”. Figure 5 shows the ROC for the proposed PR-NN model,
and Figure 6 shows a magnified view for the vertical axis. The figure reveals that the
optimum case is achieved in the training process in Figure 5a. The true positive rate is “1”
while the false positive rate is around “0”.
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As mentioned, the proposed PR-NN model was tested and validated by using data
different than those used to train the model. The resulting ROC curve of validation is
presented in Figure 5b. It can be clearly seen that the true positive rate is “1” while the
false positive rate is around “0”. This shows that the PR-NN model was doing well during
the validation process. The resulted ROC curve of testing is presented in Figure 5c. As in
training and validation, the true positive rate is “1” while the false positive rate is around
“0”. Figure 5d shows the resulting ROC curve for the entire dataset collected (training,
testing, and validation data). The resulting ROC curve shows that the true positive rate is
“1” while the false positive rate is “0”. This clearly indicates that the true positive rate is “1”
while the false positive rate is around “0”.

A confusion matrix can be defined as a collection of predicted information and actual
known classification data which is executed in a particular system. Data estimated and
obtained for this system are evaluated for the analysis of the performance of the system.
While predictive analysis is in progress, a confusion matrix, in the form of a square matrix,
is created. The matrix contains positive and negative rates (both true and false).

Individually, the corresponding rates of all these cases are computed [37]. Using
positive and negative rates, the accuracy/effectiveness, specificity, sensitivity, precision,
negative predictive value, and null error rate are evaluated.
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The specific layout of the confusion matrix table allows statistical classification and
visualization of the performance of the applied algorithm [38]. The layout of the confusion
matrix table is shown in Table 4. Each row in the table represents an instance of predicted
values, whereas the column represents the actual values, or vice versa. The confusion
matrix contains four major cells/areas. These cells/areas are:

True positive (TP) cell: both the actual value and the predicted value are positive;
True negative (TN) cell: the actual and predicted values are both negative;
False positive (FP) cell: the actual value is negative, but the model predicted value
is positive;
False negative (FN) cell: the actual value is positive, but the model predicted value
is negative.

Table 4. Layout of the confusion matrix.

Predicted Classes

Positive Negative

A
ct

ua
lC

la
ss

es Positive True Positive
(TP)

False Negative
(FN)

Sensitivity
TP

TP+FN

Negative False Positive
(FP)

True Negative
(TN)

Specificity
TN

TN+FP

Precision
TP

TP+FP

Negative
predictive value

TN
TN+FN

Accuracy/Effectiveness
TP+TN

TP+TN+FP+FN

In Figure 7, the confusion matrix reveals the effectiveness of the proposed PR-NN
during the process of training, testing and validation. It is very notable that the MATLAB
program rounds the values up, so it calculates and shows some values of effectiveness as
100% when they were not exactly 100% but around 100%. The confusion matrices present
four cases:

Case (1): No collisions detected on any link;
Case (2): Collisions detected on Link 1;
Case (3): Collisions detected on Link 2;
Case (4): Collisions detected on Link 3.

Figure 7a presents the effectiveness of the proposed PR-NN during the training pro-
cess. The PR-NN model correctly classified non-collision in 54,695 samples of a total of
54,711 samples. From this, the sensitivity of the model to classify non-collision is 99.97%,
which is around 100%. The PR-NN model correctly classified 382 collision samples on Link
1 of a total of 390 samples. From this, the sensitivity of the model to classify collisions
on Link 1 is 97.9%. The PR-NN model correctly classified 751 collision samples on Link
2 of a total of 753 samples. From this, the sensitivity of the model to classify collisions on
Link 2 is 99.7%. The PR-NN model correctly classified 764 collision samples on Link 3 of
a total of 765 samples. From which, the sensitivity of the model to classify collisions on
Link 3 is 99.9%. The effectiveness overall of the PR-NN model while training processes is
about 100%.

Figure 7b presents the effectiveness of the proposed trained PR-NN during the val-
idation process. As mentioned in Table 2, other data rather than those used to train the
model, were used to validate the proposed PR-NN mode. The PR-NN model correctly
classified non-collision 6876 samples of a total of 6877 samples. From this, the sensitivity of
the model to classify non-collisions is 99.98% which is around 100%. The PR-NN model
correctly classified 42 collision samples on Link 1 of a total of 42 samples. From this, the
sensitivity of the model to classify collisions on Link 2 is 100%. The PR-NN model correctly
classified 72 collision samples on Link 2 of a total of 72 samples. From which, the sensitivity
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of the model to classify collisions on Link 2 is 100%. The PR-NN model correctly classified
87 collision samples on Link 3 of a total of 87 samples. From this, the sensitivity of the
model to classify collisions on Link 3 is 100%. The effectiveness overall while validation is
about 100%.
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Class (2): Collision on Link 1, Class (3): Collision on Link 2, Class (4): collision on Link 3.

Figure 7c presents the effectiveness of the proposed trained PR-NN during the testing
process. Referring to Table 2, amount of data rather than those used to train and validate
the model, were used to test the proposed PR-NN mode. The PR-NN model correctly
classified non-collision 6852 samples of a total of 6854 samples. From which, the sensitivity
of the model to classify non-collisions is 99.97% which is around 100%. The PR-NN model
correctly classified 62 collision samples on Link 1 of a total 64 of samples. From this, the
sensitivity of the model to classify collisions on Link 1 is 96.9%. The PR-NN model correctly
classified 73 collision samples on Link 2 of a total of 73 samples. From this, the sensitivity
of the model to classify collisions on Link 2 is 100%. The PR-NN model correctly classified
87 collision samples on Link 3 of a total of 87 samples. From this, the sensitivity of the
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model to classify collisions on Link 3 is 100%. The effectiveness overall while testing is
about 99.9%.

Finally, as shown in Figure 7d, all data collected to train, validate, and test the proposed
PR-NN model were used to test the PR-NN model. The PR-NN model correctly classified
68,423 samples of a total of 68,442 samples of non-collision cases. From this, the sensitivity
of the model to classify non-collisions is 99.97% which is around 100%. The PR-NN model
correctly classified 486 collision samples on Link 1 of a total 4of 96 samples. From this, the
sensitivity of the model to classify collisions on Link 1 is 98%. The PR-NN model correctly
classified 896 collision samples on Link 2 of a total of 898 samples. From this, the sensitivity
of the model to classify collisions on Link 2 is 99.8%. The PR-NN model correctly classified
938 collision samples on Link 3 of a total of 939 samples. From this, the sensitivity of the
model to classify collisions on Link 3 is 99.9%. The effectiveness overall while this final
stage is 99.95% which is about 100%.

The results of training, testing, and validation indicate and promise that the trained
PR-NN model will show a high performance when testing it using different data. This is
effectively achieved when different data collected of the robot moving, containing collisions,
were classified using the proposed trained PR-NN model. Figure 8 shows how the signals
generated by the PR-NN model are based on the torque signals that the model receives.
The collected data were fed to the proposed PR-NN model, and the output was observed.
The data fed were torque signals received from the robot on which the model had been
trained. This robot is a KUKA robot on which an RNN model was trained, in our previous
work [21], to predict and estimate the threshold of collision torque on each joint. The signals
are transmitted from torque sensors on the three joints. The effectiveness of the proposed
PR-NN model will become obvious when observing the behavior of the torque signals and
detecting the response of the PR-NN model when the torque signal exceeds the torque
threshold. Excess torque via the threshold means that a collision occurs at this torque value.
The optimal behavior by the PR-NN model is to generate a signal having a value of “1”
when the torque signal excess the torque threshold, i.e., when detecting a collision. Figure 7
shows clearly that in most collision cases, the PR-NN model indicates the collision and
produces an output signal, colored by red on the graph, having the value of “1”.
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4. Discussion and Comparisons

In this section, the results of our proposed method are compared with the results of
other previous researchers. In addition, their methods are developed and used on our data
for justifying and effective comparison.

4.1. General Comparison with Literature

In this section, a comparison between the results of the present work and the result of
other previous literature is made. Both the present work and the previous research included
the required inputs for designing and training the classifier, appropriate applications, and
the effectiveness of the classifier. Thus, the results of the present work are discussed through
comparison. The classifiers that are to be compared with the present work are:

(1) The classifier proposed by Sharkawy et al. [14] based on MLFFNN;
(2) The classifier proposed by Popov et al. [16] based on NN;
(3) The classifier proposed by Zhang et al. [17] based on Bayesian decision theory;
(4) The classifier proposed by Abu Al-Haija and Al-Saraireh [20] based on EBT.

Table 5 presents a comparison between the present PR-NN classifier model, which is
proposed in this work, and other classifiers proposed by other researchers. The aspects to
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be compared are the method used to train the classifier model; the inputs used train the
model; and the scope of application of the trained classifier model.

Table 5. A comparison between the proposed PR-NN-based classification method and other classifi-
cation methods proposed by other researchers.

Author’s Name Robot’s DOF Method Based on Inputs Used to Train
the Classifier Model Application

Sharkawy et al. [14] KUKA
2-DOF MLFFNN

Three inputs: signal of
estimated external

force sensor and signals
of the estimated

external torques on
both robot joints.

There is no need for
torque signals to

classify collisions, so it
can be used for any

serial robot.

Popov et al. [16] 7-DOF FFNN

Five inputs: joint
positions, commanded
joints positions, joints
torque, external joints

torque, and
end-effector

Cartesian positions.

As torque sensors are
urgently needed to

make the classification,
this method is

restricted to being used
for collaborative robots

which are equipped
with joint

torque sensors.

Zhang et al. [17] 7-DOF Bayesian decision
theory

Seven inputs: torque
signals transmitted

from torque sensors on
the seven joints.

As torque sensors are
urgently needed to

make the classification,
this method is

restricted to being used
for collaborative robots

which are equipped
with joint torque

sensors.

Abu Al-Haija and
Al-Saraireh [20] 7-DOF EBT

Four inputs: torque,
position, and velocity

of joints.

As torque sensors are
urgently needed to

make the classification,
this method is

restricted to being used
for collaborative robots

which are equipped
with joint

torque sensors.

The present work 3-DOF PR-NN

Three inputs: signals of
the estimated external
torques on the three

robot joints.

There is no need for
torque signals to

classify collisions, so it
can be used for any

serial robot.

When looking at the proposed classifier for this work and that proposed by Sharkawy et al. [14],
it can be found that both classifier models are widely applicable. Both have common aspects worth
mentioning. This aspect is that the torque signals used to train their classifier models are originally
estimated by another NN models. These NN models, which are proposed in previous works,
predict the collision torques based solely on the position parameters of joints. Accordingly, both
models are widely applicable in any robot type. Other classifiers proposed by Popov et al. [16] and
Zhang et al. [17] urgently require torque sensors to accomplish the classification process. Thus, they
are restricted to being applicable for collaborative robots.

Comparing the effectiveness (accuracy) of the approach proposed in this work to other
mentioned approaches in Table 5, it can be found that the effectiveness of the proposed PR-
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NN model is 99.95% (which is around 100%) as shown in the confusion matrix (Figure 7a).
This is the highest value among those models. A comparison between the effectiveness
of the four approaches is presented in Figure 9, showing a comparison between the ef-
fectiveness (%) of the present PR-NN classifier proposed in this work and other previous
classifiers. Although the results of effectiveness seem close to each other, the proposed
method in this paper has the advantage of being applicable in most arm robot types. The
PR-NN model proposed in this paper solely uses data of the position and angular velocity
of robot joints. These data can be recorded from any working arm robot. Thus, the approach
used in this paper can be generalized.
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Figure 9. Comparison between the effectiveness (%) of the present PR-NN classifier proposed in this
work and other previous classifiers [14,16,17,20].

4.2. Experimental Validation for Comparison

In this section, our dataset is used to reproduce the trained models of the methods
mentioned in the previous comparison (Section 4.1). The training is conducted using the
Python program. The PR-NN is a feedforward NN-based approach for classifications. Thus,
FFNN was indeed conducted to produce our PR-NN trained model.

Using the training dataset of our PR-NN model, we tried to produce two trained
models based on the EBT method and Bayesian decision theory. Figure 10 shows the
training confusion matrix for the EBT trained model. Figure 11 shows the training confusion
matrix for the trained model based on Bayesian decision theory.

The data used to train the models are the same as our training data which are collected
from a 3-DOF industrial robot. For the EBT model, the training confusion matrix shows
that the accuracy of the model is 100%. The input data for the training model are signals
of the estimated external torques on the three robot joints. In comparison, the accuracy
of the model proposed by Abu Al-Haija and Al-Saraireh [20] is 97.1%. Their model was
produced using collected data from a 7-DOF robot. The input data for the training model
are the torque, position, and velocity of joints. This reveals that the complicity of data leads
to a decreasing model accuracy. The accuracy decreases from 100% to 97.1% while the
dataset enlarges, from the data of a 3-DOF robot to the data of a 7-DOF robot. Moreover,
the number of input parameters needed to train the model is bigger in the case of 7-DOF.
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Figure 10. Confusion matrix of the model trained by EBT.

Our proposed method (PR-NN), which is based on FFNN, shows a close accuracy
and more than 99%. Even if the number of input parameters used to train the model
increases and the training dataset enlarges, the accuracy value is preserved as higher
than 99% [16]. Moreover, one of the limitations associated with ensemble methods is
the high computational cost [39]. Another limitation is that making a joint optimization
for ensemble loss, although theoretically appealing, can lead to degenerate behavior and
pseudo-diversity. This consequently fails to generalize beyond the training data [40].

Classification based on Bayesian decision theory does not have the capacity to recog-
nize intricate correlations between variables [20]. Thus, while the accuracy is about 99%,
the average F1-score is about 68%. F1-score is an alternative machine-learning evaluation
metric that assesses the predictive skill of a model by elaborating on its class-wise perfor-
mance. It measures the predictive performance of the trained model. In our work, the
F1-score is about 99.2%. Thus, when using Bayesian decision-based classifier, it is important
to check the values of the F1-score.

Figure 12 shows a comparison between the accuracy of the mentioned models. As
mentioned above, although the EBT-based model achieved a higher accuracy when training
with the dataset of a 3-DOF robot, it reveals a lower accuracy with larger datasets. It is
observed clearly by looking at the accuracy obtained when the model is trained using the
dataset of a 7-DOF robot. The training using FFNN, which our proposed approach is based
on, preserves a higher accuracy when trained by small and big datasets.
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Figure 11. Confusion matrix of the trained model based on Bayesian decision theory.
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The accuracies of both models, that trained by the dataset of a 3-DOF robot and the
other one which is trained by the dataset of a 7-DOF robot, are close to each other. The ac-
curacy of naïve Bayes is not directly correlated with the degree of the feature dependencies
which are measured as the class-conditional mutual information between the features [41].
This can interpret why the F1-score is low (68%) while the accuracy is high (99%). In our
trained model, the accuracy is 99.95% and the F1-score is about 99.2%. Thus, the predictive
performance of the trained model is high.

5. Conclusions and Future Work

In this work, a PR-NN classifier model was developed to classify collisions of humans
with robots. First, the PR-NN classifier model was designed using external torques exerted
on the robot. The values of these external toques were estimated in [21]. The target of the
proposed PR-NN classifier was to obtain an output classifying whether there were collisions
on the robot or not. Moreover, the output determines the link on which the collision has
occurred. Secondly, an algorithm of scaled conjugate gradient backpropagation was used
to train the PR-NN model. As a result, the smallest value of cross-entropy achieved was
0.00026922 with an effectiveness of 99.95%, which is around 100%.

From the results revealed in this paper, it can be concluded that the PR-NN model can
be trained to recognize and classify collision torques using data of the joint position and
angular velocity of joints. Comparisons with other previous models were conducted to
present the effectiveness of the proposed method.

In future work, we propose applying different methods to develop a classifier model
to classify training data inputs. This classification helps to optimize data preparation and
distribution and consequently obtain a higher quality classifier which is more reliable.
The proposed method will be applied on a higher DOF robot, such as a 7-DOF robot, to
investigate its effectiveness and the ability to generalize. Other methods based on neural
networks can be used individually or in an integrated system, like the neuro-fuzzy method,
to classify collisions on robotic arms.
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List of Appreciations

PR-NN pattern recognition neural network
RNN recurrent neural network
pHRI physical human–robot interaction
HRI human–robot interaction
CDI collision detection and identification
SVM support vector machine
IR sensor infrared sensor
HRC human–robot collaboration
ROC receiver operating characteristics
NN neural network
MLFFNN multi-layer feedforward neural network
FFNN feedforward neural network
EBT ensemble of bagging trees



Automation 2024, 5 32

KNN k-nearest neighbor
FDT fine decision trees
LRK logistic regression kernels

Appendix A. Performance of the Tried PR-NN Models

Many trials were conducted to achieve the lowest cross-entropy of the trained model.
The following shows training trials which achieved greater values of cross-entropy com-
pared with the one used. As mentioned before in the text of the paper, the lower the
cross-entropy, the higher the performance, see Figure A1.
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