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Abstract: This study was carried out to develop a green approach to synthesising sodium cyanide
(NaCN) using hydrogen cyanide (HCN) extracted from cassava (Manihot esculenta Crantz) leaves
after 120 min of maceration at 30 ◦C and 45 min of recovery under vacuum at 35–40 ◦C. The CN-

ion released via autolysis was reacted with the Na+ ion following vacuum extraction of the former
to produce NaCN by saturating the absorbing sodium hydroxide (NaOH) solution. This specific
extraction method avoided direct contact between the cassava leaves homogenate and the absorbing
solution. NaCN was crystallised by drying the NaCN slurry at 100 ◦C in an air oven. A total of
15.70 kg of fresh cassava leaves was needed to produce 32.356 g of NaCN (green-NaCN) (% NaCN
yield = 0.21%). The results of X-ray diffraction, attenuated total reflectance–Fourier transform infrared
spectroscopy and scanning electron microscopy with energy-dispersive X-ray spectroscopy, show
that NaCN was successfully prepared using the proposed method. These spectral techniques showed
that the control and green-NaCN contained sodium carbonate impurities. The latter was quantified
by the titration experiments and was found to be 0.61% and 2.29% in the control and green-NaCN,
respectively. Furthermore, the titration experiments revealed that the residual NaOH content was
1.63% in control NaCN and 4.68% in green-NaCN. The aim of modifying the green synthesis route
for producing NaCN from cassava, developed by the Attahdaniel research group in 2013 and 2020,
was achieved.

Keywords: green synthesis; sodium cyanide; hydrogen cyanide; cassava; cyanogenic glucoside; linamarin

1. Introduction

Sodium cyanide (NaCN) is a hygroscopic white crystalline or granular powder that
releases a very toxic gas (hydrogen cyanide, HCN) when contacted with acids [1]. Indus-
trially, NaCN was first produced by the Castner process, which is based on the reaction
between sodium metal, charcoal and ammonia [1,2], as shown in Scheme 1:
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1. Introduction 
Sodium cyanide (NaCN) is a hygroscopic white crystalline or granular powder that 

releases a very toxic gas (hydrogen cyanide, HCN) when contacted with acids [1]. Indus-
trially, NaCN was first produced by the Castner process, which is based on the reaction 
between sodium metal, charcoal and ammonia [1,2], as shown in Scheme 1: 

2 Na      +       2 C        +     2 NH3                             2 NaCN    +      3 H2
Sodium Charcoal Ammonia Sodium

cyanide
Hydrogen

 
Scheme 1. Preparation of sodium cyanide via the Castner process. 
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Scheme 1. Preparation of sodium cyanide via the Castner process.

Currently, it is manufactured exclusively by the neutralisation or wet process. This
process involves the reaction of sodium hydroxide (NaOH) and liquid or gaseous HCN, as
shown in Scheme 2 [1,2]:
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Currently, it is manufactured exclusively by the neutralisation or wet process. This 
process involves the reaction of sodium hydroxide (NaOH) and liquid or gaseous HCN, 
as shown in Scheme 2 [1,2]: 

NaOH     +     HCN                              NaCN     +     H2O
Sodium

hydroxide
Hydrogen
cyanide

Sodium
cyanide

Water
 

Scheme 2. Preparation of sodium cyanide via the neutralisation process. 

Hydrogen cyanide (hydrocyanic acid or prussic acid), a clear poisonous liquid or gas, 
can be directly or indirectly prepared. It was first prepared in solution by Scheele in 1782 
[3]. HCN can be produced when enough energy is supplied to any system containing car-
bon, hydrogen and nitrogen [3] using one of the following processes: 

1.1. Direct synthesis of HCN 
1.1.1. Andrussow Process 

According to Scheme 3, this widely used method, created around 1930, involves the 
reaction between methane, ammonia and air over platinum metals used as catalysts [1,3]. 

   CH4      +     NH3      +   1.5 O2                                   HCN    +   3 H2O   (ΔH=    474 kJ/mol)       
Methane     Ammonia      Oxygen                             Hydrogen     Water
                                                                                    Cyanide

Pt/Rh or Pt/Ir
>1000°C

 
Scheme 3. Preparation of hydrogen cyanide via the Andrussow process. 

1.1.2. Methane–Ammonia Process or Blausaure Methane Anlage (BMA) 
HCN is prepared by reacting methane and ammonia in the absence of oxygen [1,3], 

as shown in Scheme 4. 

  CH4      +    NH3                                   HCN    +    3 H2         (ΔH= + 252 kJ/mol)
Methane     Ammonia                        Hydrogen    Hydrogen
                                                            cyanide

Pt
>1200°C

 
Scheme 4. Preparation of hydrogen cyanide via the BMA process. 

1.1.3. Shawinigan Process 
This HCN production method, developed in 1960, is also called the Fluohmic pro-

cess. HCN is prepared by reacting hydrocarbon gases (mainly propane) with ammonia in 
an electrically heated fluidised bed of coke and in the absence of catalysts [1,3], as shown 
in Scheme 5. 

3 NH3      +       C3H8                                3 HCN      +     7 H2
Ammonia Propane Hydrogen

cyanide
Hydrogen

 
Scheme 5. Preparation of hydrogen cyanide via the Shawinigan process. 

1.2. Indirect Synthesis of HCN 
Sohio Process 

HCN is produced as a by-product of the manufacturing of acrylonitrile during the 
reaction of propene and ammonia [1,4] according to Scheme 6. 

Scheme 2. Preparation of sodium cyanide via the neutralisation process.

Hydrogen cyanide (hydrocyanic acid or prussic acid), a clear poisonous liquid or gas,
can be directly or indirectly prepared. It was first prepared in solution by Scheele in 1782 [3].
HCN can be produced when enough energy is supplied to any system containing carbon,
hydrogen and nitrogen [3] using one of the following processes:

1.1. Direct Synthesis of HCN
1.1.1. Andrussow Process

According to Scheme 3, this widely used method, created around 1930, involves the
reaction between methane, ammonia and air over platinum metals used as catalysts [1,3].
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1.1.2. Methane–Ammonia Process or Blausaure Methane Anlage (BMA)

HCN is prepared by reacting methane and ammonia in the absence of oxygen [1,3], as
shown in Scheme 4.
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1.1.3. Shawinigan Process

This HCN production method, developed in 1960, is also called the Fluohmic process.
HCN is prepared by reacting hydrocarbon gases (mainly propane) with ammonia in an
electrically heated fluidised bed of coke and in the absence of catalysts [1,3], as shown in
Scheme 5.
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1.2. Indirect Synthesis of HCN
Sohio Process

HCN is produced as a by-product of the manufacturing of acrylonitrile during the
reaction of propene and ammonia [1,4] according to Scheme 6.
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From environmental management and sustainable perspectives, it is crucial to find
alternative routes for the production of HCN to reduce the global energy and environmental
problems associated with the use of hydrocarbons.

For this reason, since HCN is also known to naturally occur [3], further research was
conducted by [2] and [5] to develop a green way to produce NaCN from cassava. The
significant difference between these two studies is the method used to release HCN from
cassava. In the study done by [2], HCN was released by the acid hydrolysis method, while
the direct hydrolysis method was used in the study done by [5]. In both studies, the cassava
extract was directly contacted with a 3.6 mol/L NaOH absorbing solution to form NaCN.

HCN is naturally produced by several organisms, such as bacteria, algae, fungi,
plants [6,7], and some animals [6,8]. These organisms release HCN through the cyanogenic
process as a defensive and offensive mechanism [7]. Plants are the primary natural source
of HCN, with more than 2000 species producing it as cyanogenic glycosides (CNGs) [9,10].

Cassava, a staple food for more than half a billion people [5,11,12], is such a plant [13].
Cassava (Manihot esculenta Crantz), also called manioc or yuca [14], originated from Latin
America. Although Portuguese merchants introduced it into western Africa in the 16th
century [15,16], it became a staple food that was widely cultivated across the African
continent in the middle of the 19th century [16]. Cassava was introduced in South Africa
(SA) in the 1830s and 1860s during the Tsonga tribe’s migrations. The Tsonga tribes adopted
cassava as a food crop following its introduction into Mozambique by the Portuguese in
the 17th century. Their migration routes took them westwards into Mpumalanga province
(old Eastern Transvaal) and Swaziland, southwards into the North of KwaZulu-Natal
province [17–19].

The two CNGs found in cassava, linamarin (93%) and lotaustralin (7%) [20,21], are
called cyanogenic glucosides, since the cyano group is attached to a glucose molecule
(Figure 1).
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Figure 1. Structures of cyanogenic glucosides found in cassava. 
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prepare NaCN salt. The method developed in this study allowed the preparation of NaCN 
salt (green-NaCN) to be devoid of any plant contaminants arising from the direct contact 
between the plant homogenate and the absorbing solution. 
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HCN is produced following the release of hydrolytic enzymes during either the
maceration of plant tissues or ingestion by the gut microflora [13], according to the reaction
shown in Scheme 7:
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Scheme 7. Hydrolysis of cyanogenic glucoside (cyanogenesis).

This study extracted the HCN released from cassava leaves under vacuum at 35–40 ◦C,
and then trapped it in a 3.6 mol/L NaOH absorbing solution to prepare NaCN. This
extraction method was chosen as a competitive method to the ones used by [2] and [5]
to prepare NaCN salt. The method developed in this study allowed the preparation of
NaCN salt (green-NaCN) devoid of any plant contaminants arising from the direct contact
between the plant homogenate and the absorbing solution.
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2. Materials and Methods
2.1. Materials
2.1.1. Sample Collection

Fresh cassava leaves were purchased in Johannesburg, South Africa.

2.1.2. Chemicals

Chemicals used: 37% hydrochloric acid (HCl), 95% sodium cyanide * (NaCN, Product
No 205222/Sigma-Aldrich, Johannesburg, South Africa), 99.5% sodium carbonate (Na2CO3,
Product No 222321/Sigma-Aldrich, Johannesburg, South Africa), moist picric acid **,
sodium hydroxide (NaOH), 95% sulphuric acid (H2SO4), Milli-Q water, phenolphthalein
and methyl orange indicators.

Caution:
* Sodium cyanide and all other cyanides are deadly poisons, and extreme care must

be taken in their use.
** Moist picric acid (2,4,6-Trinitrophenol) is dangerously explosive if it is allowed to

dry out.

2.2. Methods
2.2.1. Optimisation of Maceration Time and Temperature and HCN Recovery Time

The cassava leaves samples (80 g of washed leaves grounded in 200 mL of cold Milli-
Q water for 3 min) were macerated at different times (60, 120, 180 and 240 min) and
temperatures (18 ◦C or room temperature, 30 ◦C and 37 ◦C) to determine the optimum
conditions for autolysis to give the maximum amount of HCN. The optimal time for the
HCN recovery under vacuum at 35–40 ◦C was also investigated after 30, 45 and 60 min
of extraction.

The quantity of cassava leaves and Milli-Q water, given above, was tripled during
the optimisation of the maceration temperature and quadrupled to optimise the other two
parameters. The prepared homogenate was evenly divided into three or four portions
before being subjected to the respective optimisation experiment. The four portions used
to optimise the maceration time were macerated at 30 ◦C, while the ones used to optimise
the % recovery of the released HCN were macerated at 30 ◦C for 120 min. Of the four
homogenates prepared for the HCN recovery study, three were subjected to the optimisation
process, and the fourth flask was used to determine the initial concentration. The three
portions used to optimise the maceration temperature were macerated for 120 min. The
liberated HCN was collected in 25 mL of a 3.6 mol/L solution. All optimisation experiments
were done in quadruplicate.

The percentage (%) recovery of the released HCN was calculated as follows:

% HCN recovered =
Final (Average) HCN concentration

Initial HCN concentration
× 100% (1)

2.2.2. Sample Preparation

The sample preparation process is illustrated in Figure 2. A total of 250 g of washed
cassava leaves were ground in a blender for 3 min in 1000 mL of cold Milli-Q water. Cold
water was used to avoid the loss of the HCN gas released from the cassava leaves. The
homogenate was immediately transferred to a stoppered distillation flask and macerated
under optimum conditions.
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Figure 2. Preparation of cassava homogenate.

2.2.3. Saturation of 3.6 mol/L NaOH Solution

This process was achieved by connecting the flask containing the homogenate to a
gas-tight system, as shown in Figure 3. The released HCN was recovered at 35–40 ◦C under
a vacuum using optimum extraction conditions. Atmospheric air was used to agitate the
homogenate and carry the liberated HCN into 250 mL of 3.6740 mol/L NaOH solution to
form NaCN. Before reaching the homogenate flask, the air was passed through a carbon
dioxide (CO2) remover system. The CO2 remover system consisted of five vessels mounted
in series, containing 10 mol/L NaOH. The saturation of the 3.6 mol/L NaOH absorbing
solution was done until the plateauing of the NaCN concentration occurred. The minimal
change in the NaCN concentration caused the plateau formation observed during the
saturation process.
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2.2.4. Quantification of NaCN Solution

The alkaline picrate method, used to determine the concentrations of NaCN, is based
on the reaction between the cyanide and alkaline picrate solution (prepared by mixing
equal volumes of 2.56% picric acid and 5% sodium carbonate) [22], as shown in Scheme 8:
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Scheme 8. Formation of sodium isopurpurate [23].

The cyanide concentration in the samples was determined after appropriate dilution.
The absorbance of the HCN standard solutions, ranging from 0.5 to 10 µg HCN/mL,
prepared with 0.01 mol/L sulphuric acid (H2SO4), was measured on a Shimadzu UV-1800
UV/Visible spectrometer at 485 nm. The results were used to draw the calibration curve,
from which the cyanide content of the sample was extrapolated.

The sodium isopurpurate was formed by adding 2 mL of alkaline picrate solution to
2 mL of the standard and green-NaCN solutions. The resulting solutions were incubated
for 15 min in a water bath set at 37 ◦C. A total of 15 µL of concentrated H2SO4 was added to
the cold solutions to terminate the reaction and stabilise the readings before measurements
were taken (Figure 4). The absorbances were measured against a blank containing only
0.01 mol/L H2SO4 and the alkaline picrate solution.
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Where C is the concentration in mg/L (the same as µg/mL) from the curve, Vm (L) is the
volume of Milli-Q water used to macerate the sample, and W (kg) is the weight of the
sample used to prepare the homogenate.

The concentration of NaCN (mol/L) was determined from the HCN concentration
and the molecular weights (g/mol) of NaCN and HCN using the equation shown below:

NaCN (mol/L) =
HCN

( g
L
)
× (Molecular weight o f NaCN/Molecular weight o f HCN)

Molecular weight o f NaCN
(3)

2.2.5. Determination of Sodium Carbonate and Residual Sodium Hydroxide in Standard
and Green-Sodium Cyanide Solutions

Sodium carbonate (Na2CO3) and residual sodium hydroxide (NaOH) were determined
using the indicator method against a standardised 0.1 mol/L HCl solution. The complete
neutralisation of NaOH and the half neutralisation of Na2CO3 were detected with phenolph-
thalein, while the neutralisation of the bicarbonate was detected with methyl orange.

2.2.6. Drying of Green-Sodium Cyanide Solution

The drying process was achieved following the steps described in Figure 5. The
Na2CO3 present in the concentrated green-NaCN solution, obtained in step 1, was removed
by the freezing-out carbonates method [24]. The NaCN concentrate was cooled to a
temperature close to zero (1–4 ◦C) to remove Na2CO3 as a precipitate. The supernatant was
removed after decantation and subjected to the rest of the drying process. The green-NaCN
slurry and any precipitated Na2CO3 were dried in an oven at 100 ◦C.
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The percentage yield of green-NaCN was calculated as follows:

% yield o f NaCN =
Mass o f green NaCN

Mass o f cassava leaves
× 100% (4)

2.2.7. Structural Confirmation of Synthesised Sodium Cyanide Salt

The identity, crystal structure and purity of the NaCN solid (green-NaCN), obtained
as described in Section 2.2.6, were compared against a control sample (NaCN standard) by
attenuated total reflectance–Fourier transform infrared spectroscopy (ATR–FTIR), powder
X-ray diffraction analysis (XRD) and scanning electron microscopy with energy-dispersive
X-ray spectroscopy (SEM/EDS).

• Attenuated total reflectance–Fourier transform infrared spectroscopy (ATR–FTIR)
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The ATR–FTIR spectra of both the NaCN standard and green-NaCN were recorded in
the wavenumber range of 4000–400 cm−1 on a Shimadzu QART-S single reflectance ATR
accessory attached to an IR Spirit Shimadzu spectrophotometer. The precipitated Na2CO3
was also examined under the same parameters and compared against the control Na2CO3.

• X-ray diffraction analysis (XRD)

This technique determined the crystal structure and phase purity of finely crushed and
homogeneous green-NaCN and precipitated Na2CO3. The XRD patterns were recorded at
25 ◦C and an angle of 2θ on a PANalytical X’Pert PRO X-ray diffractometer using CuKα

radiation with a wavelength of 1.54060 Å. The PANalytical X’Pert Highscore software
was used to analyse all samples in a range of 4.0124 to 89.9814◦2θ with a step size of
0.0170◦/step. The data were processed using the Match! Software (Version 3.8.2.148).

• Scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS)

SEM-EDS was used to examine the morphology and determine the elemental compo-
sition of finely crushed green-NaCN and precipitated Na2CO3 using the JEOL 7800F Field
Emission Scanning Electron Microscope (FE-SEM).

3. Results and Discussion
3.1. Optimisation of Maceration Time and Temperature and Recovery Time for Maximum Release
of Hydrogen Cyanide from Cassava Leaves

Figure 6 shows the concentration of the HCN released after 60, 120, 180 and 240 min of
maceration. The HCN concentration increased with time. However, it is interesting to note
that the increase in released HCN from 120 to 240 min is minimal, rather than the abrupt
cyanide increase observed from 60 to 120 min. This trend was seen across the board in all
replicate experiments.
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Figure 6. Concentrations of HCN (mg/kg) obtained after 45 min of extraction under vacuum
at 35–40 ◦C and analysed, as depicted in Figure 4, after maceration (n = 4) of cassava leaves at
30 ◦C for different times (Symbols •, �, �, and N represent maceration time of 60, 120, 180 and
240 min, respectively).

These findings are similar to the study results by [25]. According to this study, linseed
was macerated for 120 to 240 min to release HCN. Therefore, since the increase in the HCN
concentration was minimal in this range, 120 min of maceration time was used throughout
the study.

Figure 7 shows the concentration of the HCN released after 120 min of maceration at
18 ◦C (room temperature), 30 ◦C and 37 ◦C. The HCN concentration increased from 18 to
30 ◦C before decreasing. All replicate experiments revealed the same trend. The decrease in
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the HCN concentration could be explained by a reduction in enzymatic activities [26]. These
results suggest that the optimum temperature for the maximum HCN release is 30 ◦C.
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Figure 7. Concentrations of HCN (mg/kg) obtained after 45 min of extraction under vacuum at
35–40 ◦C and analysed, as depicted in Figure 4, after maceration (n = 4) of cassava leaves for 120 min
at different temperatures (Symbols •, �, and � represent maceration temperature of 18, 30 and
37 ◦C, respectively).

The concentrations of the HCN released after macerating the cassava leaves for 120 min
at 30 ◦C and recovered after 30, 45 and 60 min of extraction under vacuum at 35–40 ◦C, are
shown in Table 1. The experimental setup is depicted in Figure 8.

Table 1. The various concentrations, % recovered and % RSD values for HCN recovery from cassava
leaves after 120 min of maceration (n = 4) at 30 ◦C and extraction under vacuum at 35–40 ◦C for 30,
45 and 60 min.

Initial HCN concentration (mg/kg) *

Run 1 Run 2 Run 3 Run 4

581.40 784.86 414.01 317.96

Final/recovered HCN concentration
(mg/kg)

Run 1 Run 2 Run 3 Run 4

30 min
extraction 574.19 756.18 406.24 309.98 Average % recovered % RSD

Recovery (%) 98.76 96.35 98.12 97.49 97.68 1.05

45 min
extraction 571.22 766.26 403.56 317.17 Average % recovered % RSD

Recovery (%) 98.25 97.63 97.47 99.75 98.28 1.06

60 min
extraction 568.38 761.29 394.72 305.62 Average % recovered % RSD

Recovery (%) 97.76 97.00 95.34 96.12 96.55 1.09
* The cassava leaves used for each run did not come from the same batch.
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Figure 8. Experimental setup of the recovery study.

The percentage recoveries were 97.68 ± 1.03%, 98.28 ± 1.04% and 96.55 ± 1.05%
after 30, 45 and 60 min of extraction, respectively, as shown in Figure 9. Irrespective of
the cassava leaves batch used, the % recoveries were approximately the same at each
extraction time and within the acceptable analytical range. These percentage recoveries
were calculated using Equation (1). From these results, we can see that the maximum HCN
recovery was achieved after 45 min of extraction.
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Figure 9. HCN recovered (%) at different times under vacuum at 35–40 ◦C after maceration (n = 4) of
cassava leaves at 30 ◦C for 120 min.

Thus, the optimum conditions for the succeeding experiments were maceration at
30 ◦C for 120 min followed by 45 min of extraction under vacuum at 35–40 ◦C.

3.2. Saturation of 3.6740 mol/L Absorbing Solution

Figure 10 shows the saturation of 250 mL of the 3.6740 mol/L NaOH solution. This pro-
cess was done using the optimum extractions conditions and continued until the plateauing
of the NaCN concentration was observed.
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Figure 10. Preparation of NaCN solution by saturation of 3.6740 mol/L NaOH absorbing solution
over time with HCN gas extracted for 45 min under vacuum at 35–40 ◦C from cassava leaves after
120 min of maceration at 30 ◦C.

From Figure 10, we see that 15.70 kg of fresh cassava leaves were used to saturate the
absorbing solution with extracted HCN gas. This result suggests that the quantity of cassava
leaves needed to saturate the absorbing solution solely depends on the concentration of
the HCN liberated. Hence, the leaves used in this study had a low HCN content. The
saturation process was stopped when the concentration of the prepared NaCN solution
plateaued around 2.6 mol/L. Interestingly, the final NaCN concentration (2.6408 mol/L)
was lower than the concentration of the absorbing solution (3.6740 mol/L). This result
shows that the concentration of the absorbing solution and the amount of CO2 absorbed
from the atmosphere restrict the final concentration of NaCN. The former can be overcome
by increasing the concentration of the absorbing solution, while the latter can be minimised
by limiting the contact time between the absorbing solution and atmospheric CO2.

The concentration of NaCN in the absorbing solution was extrapolated from a calibra-
tion curve, as shown in Figure 11, generated using the method described in Section 2.2.4.
The colour intensity of the sodium isopurpurate is directly proportional to the amount of
cyanide present in the samples (Figure 12). This process was repeated with fresh reagents
until saturation was complete.Amended Figures 11 and 12. 
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Figure 11. Typical standard calibration curve for spectrophotometric determination of HCN.
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Figure 12. Typical absorption spectra of cyanide standards and the sample obtained from the
proposed method.

3.3. Estimation of Sodium Carbonate and Residual Sodium Hydroxide in Standard and
Green-Sodium Cyanide Salts

Table 2 shows the titration results, and the amounts of sodium carbonate (Na2CO3)
and residual sodium hydroxide (NaOH) contained in the standard and green-NaCN salts.
Na2CO3 is found in both NaCN salts and originates from the reaction between the atmo-
spheric CO2 and the absorbing solution during the neutralisation and drying processes.

Table 2. Estimation of Na2CO3 and residual NaOH in standard and green-NaCN.

Sample
Aliquot

(mL)

Burette Reading
(mL) Titrant Used

for NaOH and
Half of

Na2CO3 (mL)

Titrant Used
for NaOH and
Na2CO3 (mL)

Titrant Used
for HCO3−

(mL)

Titrant Used
for Na2CO3

(mL)
Titrant Used for

NaOH (mL)Initial
Volume

1st
Endpoint

2nd
Endpoint

V1 V2 V3 V4 = (V2 − V1) V5 = (V3 − V1) V6 = (V5 − V4) Va = 2V6 Vb = (V5 − 2V6)

Titration of 2.6408 mol/L control NaCN solution

25 0.00 4.47 ± 0.01 5.00 ± 0.01 4.47 ± 0.01 5.00 ± 0.01 0.53 ± 0.00 1.05 ± 0.01 3.95 ± 0.01

Titration of 2.6408 mol/L green-NaCN solution

25 0.00 17.52 ±
0.02

20.25 ±
0.02 17.52 ± 0.02 20.25 ± 0.02 2.74 ± 0.01 5.47 ± 0.02 14.78 ± 0.02

Estimation of Na2CO3 and residual NaOH

Na2CO3 Residual NaOH

Control NaCN
solution

Green-NaCN
solution

Control NaCN
solution

Green-NaCN
solution

Molarity (mol/L) 0.05746 0.2165 0.4323 1.1699

Strength (g/L) 6.0902 22.9468 17.2920 46.7960

Percentage (% w/v) 0.61 2.29 1.73 4.68

The Na2CO3 and residual NaOH contents were 0.61% and 1.73% in the control NaCN
sample and 2.29% and 4.68% in green-NaCN. The results obtained from the green-NaCN
reveal the presence of a substantial amount of NaOH after the saturation process. Hence,
since NaOH readily reacts with atmospheric CO2 to form Na2CO3, it is advisable to
continue saturation well past the onset of plateauing of the NaCN concentration to decrease
the concentration of unreacted NaOH. The Na2CO3 present in the NaCN salts could have
been formed during the preparation of the NaOH absorbing solution and the latter’s
handling during the saturation process when it came into contact with atmospheric CO2.
However, Na2CO3 is also present in commercial NaCN, devoid of any residual NaOH
from its reaction with the product formed by atmospheric CO2 and water (H2O). Hence,
NaCN salt must always be stored in a tightly-closed container to avoid contact with
atmospheric CO2.
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3.4. Structural Characterisation of Sodium Cyanide Salt

A total of 32.356 g of NaCN salt (green-NaCN) was obtained after drying the green-
NaCN solution according to the method described in Section 2.2.6. The percentage yield of
the green-NaCN prepared from cassava leaves was determined using Equation (4):

% yield green − NaCN =
32.356 g

15.70 × 103 g
× 100% = 0.21%

The yield obtained from the cassava leaves, using the proposed method, was very low
as compared to the values obtained by [2] and [5] (Table 3).

Table 3. The % yield of NaCN salt obtained from different cassava samples.

Cassava Sample
Method Used to Extract
Cyanogenic Glucosides

ReferenceFresh
Leaves

Fresh
Peels

Fresh
Tuber
Tissue

Fresh Whole
Tuber Tissue

Dried
Leaves

Dried
Peels

Dried
Whole
Tuber

5.68 5.50 5.90 5.27 4.61 4.27 5.11 Acid hydrolysis [2]

- 10.08 10.06 9.46 - - - Acid hydrolysis

[5]
- 5.50 5.86 3.92 - - - Direct hydrolysis

(Deionised water)

0.21 - - - - - - Direct hydrolysis
(Deionised water) This study

The low yield that was obtained in this study could be due to the low HCN content of
the cassava leaves variety used. The low yield can be overcome using the cassava variety
or other cyanogenic plants with high HCN contents.

The identity, crystal structure and purity of green-NaCN and precipitated Na2CO3
were confirmed against control NaCN and control Na2CO3.

3.4.1. Attenuated Total Reflectance–Fourier Transform Infrared Spectroscopy (ATR–FTIR)

The ATR–FTIR spectra and the characteristic peaks of control NaCN and green-
NaCN are given in Figure 13. Both spectra show a small, sharp O-H stretching peak
at 2970 cm−1 due to water absorption. They exhibited a characteristic sharp, high-intensity
peak at 2090 cm−1, corresponding to the C≡N stretching vibration, observed in inorganic
cyanide [27]. The O-H bending is displayed at 1738 cm−1 by both samples and at 1594 and
1607 cm−1 by the control NaCN and green-NaCN, respectively. These peaks appeared from
the vapour phase of water.
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The IR spectra of both NaCN samples also revealed the presence of bands specific to
the carbonate group. It is to be expected, since the formation of the latter arises from the
reaction between atmospheric CO2 and (I) NaOH during the preparation of NaCN by the
neutralisation method; (II) the unreacted NaOH during the drying of NaCN slurry in an
air oven; (III) atmospheric H2O to form carbonic acid (H2CO3), which will react with pure
NaCN (free of residual NaOH) to give sodium bicarbonate (NaHCO3), Na2CO3 and HCN
in equilibria. If HCN is released, the equilibrium would shift. The C-O stretching peak, and
C-O in-plane and out-of-plane bending peaks were, respectively, observed at 1449 cm−1,
863 cm−1 and 686 cm−1 in the IR spectrum of control NaCN.

The observed intense broadband at 1438 cm−1 was attributed to C-O stretching. The
narrow sharp bands at 879 cm−1 and 702 cm−1, corresponding to C-O in-plane and out-of-
plane bending, were observed in the spectrum of green-NaCN. The IR spectrum, shown
in Figure 12, also revealed that green-NaCN has more Na2CO3 impurity than the control
sample. These findings further support the titration results displayed in Table 2.

Figure 14 shows the ATR–FTIR spectra of the control Na2CO3 and precipitated
Na2CO3. A small, broad peak at 1738 cm−1, resulting from the vapour phase of wa-
ter, was observed on the spectrum of the control sample. C-O stretching gave rise to the
intense, broad absorption band observed at 1421 cm−1. C-O in-plane and out-of-plane
bending gave the narrow sharp bands at 878 cm−1 and 702 cm−1. Similar peaks, except
for the small, broad peak at 3575 cm−1, caused by the vapour phase of water, and the
narrow peak at 2970 cm−1, caused by water absorption by the sample, were observed on
the spectrum of precipitated Na2CO3.
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3.4.2. X-ray Diffraction (XRD)

The XRD spectra were generated using the Match! 3 software. It allowed us to identify
the different phases present in the NaCN and Na2CO3 samples. The quantitative phase
analysis was done using the Rietveld analysis. Although the R Bragg average values were
high, the quality fits that gave the best difference plots are displayed in Figures 15 and 16.

The X-ray diffraction patterns of control NaCN and green-NaCN, recorded at 2θ
angles, are shown in Figure 15. Control NaCN (a) and green-NaCN (b) showed similar
XRD patterns at (30.3622◦, 30.4557◦); (34.1697◦, 34.3051◦); (38.6422◦, 38.5661◦); (43.4601◦,
43.5524◦); (51.4398◦, 51.5940◦); (53.9323◦, 54.0450◦); (63.1456◦, 63.2228◦) and (71.6529◦,
71.,7345◦), respectively. The control NaCN phase strongly matched the sodium cyanide
reference phase, ICDD 00-030-1187 (Sodium cyanide hydrate). The green-NaCN phase
matched the sodium cyanide reference phase, ICDD 00-037-1490 (Sodium cyanide). The
amount of NaCN was 93.1% in the control sample and 76.5% in the green-NaCN. In
addition, the XRD pattern of green-NaCN confirmed that the synthesised NaCN had
more carbonates (8.8% of Na2CO3 and 14.5% of NaHCO3) than the control sample, which
only had 4.9% of Na2CO3 and 1.9% of NaHCO3. The sodium carbonate present in green-
NaCN was matched to the reference phase, ICDD 00-037-0451 (Sodium carbonate). Both
NaCN samples contained trace levels of NaOH (0.1% in the control sample and 0.2% in
green-NaCN). These results further confirm the presence of Na2CO3, identified by NaCN
ATR–FTIR and titration, as shown in Figure 12 and Table 2, respectively. The discrepancy
in Na2CO3 and the NaOH concentration could have been caused by human error during
titration, or the quality of fit during the Rietveld refinement fitting.

The visual inspection of the patterns displayed in Figure 15 indicates that the green-
NaCN crystals are smaller than the ones from the control sample.
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Figure 15. X-ray diffraction patterns of (a) control NaCN and (b) green-NaCN.

Figure 16 shows the XRD patterns of control Na2CO3 (a) and precipitated Na2CO3
(b) removed from the NaCN concentrated solution according to the method described in
Section 2.2.6. The majority of peaks observed on the XRD pattern of precipitated Na2CO3
were similar to those appearing on the XRD pattern of the control sample. The following
peaks from the control sample and precipitated Na2CO3 XRD patterns at 2θ angles are
the ones with a noticeable intensity: (26.0488◦, 26.1171◦); (27.6403◦, 27.6929◦); (30.1267◦,
30.2095◦); (33.0273◦, 33.1090◦); (34.1899◦, 34.2551◦); (34.5083◦, 34.5967◦); (35.2238◦, 35.2897◦);
(37.9650◦, 38.0721◦); (41.0923◦, 41.1613◦); (41.4807◦, 41.5597◦); (46.5246◦, 46.6025◦); (48.2568◦,
48.3199◦); (53.5670◦, 53.6561◦); (72.2691◦, 72.0894◦); (74.4908◦, 74.5749◦) and (80.3060◦,
80.4246◦), respectively. The control Na2CO3 phase strongly matched the sodium carbonate
reference phase, ICDD 04-011-4108 (Sodium carbonate - Natrite), while the precipitated
Na2CO3 was a strong match to the sodium carbonate reference phase, ICDD 05-001-0022
(Sodium carbonate -γ-form). In the control and precipitated samples, the carbonates were
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88.1% and 90.9% of Na2CO3 and 11.5% and 7.7% of NaHCO3, respectively. Trace levels of
NaOH were also found in the control sample (0.4%) and the precipitated sample (0.3%).
The precipitated sample had 1.1% of NaCN. It originated from the residual green-NaCN
solution remaining during the drying process (see Section 2.2.6). Both the green-NaCN and
the precipitated Na2CO3 were found to be crystalline, with the former exhibiting a cubic
crystal structure [28], while the latter had a monoclinic crystal structure.
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3.4.3. Scanning Electron Microscopy with Energy-Dispersive X-ray Spectroscopy (SEM-EDS)

The ideal morphology of NaCN and Na2CO3 crystal is cubic and monoclinic, respec-
tively. Figure 17 shows the morphology of control NaCN (a) and the product synthesised
in this study (green-NaCN (b)). As can be seen, both control NaCN (Figure 17a) and
green-NaCN (Figure 17b) exhibited a cubic shape with some monoclinic shape due to
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Na2CO3. The control Na2CO3 (Figure 18a) and precipitated Na2CO3 (Figure 18b), removed
from the concentrated NaCN solution, were monoclinic. These results complement and
confirm the findings of the ATR–FTIR and XRD analyses.
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The EDS analysis was performed on synthesised salt to validate the production of
NaCN by the suggested technique. Both NaCN and Na2CO3 were observed in the syn-
thesised sample according to the EDS spectrum in Figure 17b. The same findings were
obtained in the control sample (Figure 17a). In green-NaCN, the atomic percentages of
sodium (Na), carbon (C), nitrogen (N), and oxygen (O) were 25.8, 32.3, 7.2, and 34.7, re-
spectively. In control NaCN, their atomic % amounts were 12.2, 59.0, 16.3, and 12.5. There
was also a negligible amount of aluminium impurities (0.1 atomic %) in the control NaCN.
The spectra in Figure 17 also show that the NaCN crystals in the green-NaCN sample are
smaller than in the control sample. Na, C, and O were found in 28.3, 31.9, and 39.8 atomic %,
respectively, in the EDS spectra of precipitated Na2CO3 (Figure 18a). The EDS spectra of
the control Na2CO3 (Figure 18b) indicated atomic % values of 24.0, 37.5, and 38.5 for Na, C,
and O, respectively. As a result, the precipitated Na2CO3 may be used to make an alkaline
picrate solution to test for cyanide (see Section 2.2.4). These data support and validate the
findings of the ATR–FTIR and XRD analyses.
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Figure 18. SEM images and EDS spectra of (a) control Na2CO3 and (b) precipitated Na2CO3.

4. Conclusions

This paper described the successful production of sodium cyanide (green-NaCN) via
the saturation of a NaOH absorbing solution using hydrogen cyanide (HCN) extracted
from cassava leaves after 120 min of maceration at 30 ◦C and 45 min of extraction under
vacuum at 35–40 ◦C. A total of 32.356 g of green-NaCN were produced from 15.70 kg of
fresh cassava leaves, representing a percentage yield of 0.21%. The XRD data confirmed
the formation of the NaCN crystals having a characteristic cubic structure. The SEM results
complemented the latter finding. Moreover, confirming these findings, the EDS data also
revealed that the control sample had an aluminium (Al) impurity. The ATR–FTIR results
substantiated the synthesis of NaCN crystal, as depicted by a peak at 2090 cm−1 which was
attributed to C≡N from inorganic cyanides. The obtained results also showed the presence
of carbonates (Na2CO3 and NaHCO3) and NaOH impurities in both the standard and
green-NaCN. Finally, based on the protocol established in this study, it can be concluded
that it is possible to synthesise NaCN with minimal carbonate impurities if the following
steps are taken: (I) limit the contact time between the NaOH absorbing solution and
atmospheric CO2; (II) continue the saturation process well past the onset of plateauing of
the NaCN concentration to decrease the residual NaOH content; (III) dry the NaCN slurry
in an inert oven; (IV) degas the Milli-Q water before preparing the homogenate.
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