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Abstract

:

The current economic development paradigm, which is based on steadily rising resource consumption and pollution emissions, is no longer viable in a world with limited resources and ecological capacity. The “green economy” idea has presented this context with a chance to alter how society handles the interplay between the environmental and economic spheres. The related concept of “green nanotechnology” aims to use nano-innovations within the fields of materials science and engineering to generate products and processes that are economically and ecologically sustainable, enabling society to establish and preserve a green economy. Many different economic sectors are anticipated to be impacted by these applications, including those related to corrosion inhibitor nanofertilizers, nanoremediation, biodegradation, heavy metal detection, biofuel, insecticides and pesticides, and catalytic CO2 reduction. These innovations might make it possible to use non-traditional water sources safely and to create construction materials that are enabled by nanotechnology, improving living and ecological conditions. Therefore, our aim is to highlight how nanotechnology is being used in the green economy and to present promises for nano-applications in this domain. In the end, it emphasizes how critical it is to attain a truly sustainable advancement in nanotechnology.
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1. Introduction


Many factors have contributed to the widespread acceptance of the “green economy” concept in policy discussions. These include the ongoing global economic crisis, the projected increase in global energy demand of more than one-third between 2010 and 2035, price hikes for commodities, and the urgent need to address global issues about energy, the environment, and health. The term “green economy”, which mostly relates to the ideas of sustainable development, was first used by a group of well-known environmental economists in a revolutionary 1989 assessment for the federal government of the United Kingdom [1,2,3]. The most widely recognized and reliable definition of a “green economy” comes from the United Nations Environment Programme, which states that one is “a green economy if it leads to enhanced human well-being and social equity while substantially decreasing environmental risks and environmental shortages”. It is socially inclusive, low-carbon, and resource-efficient [4].



A collection of concepts, objectives, and practices collectively referred to as the “green economy” include (i) advocating for justice and equity for all generations; (ii) upholding sustainable development principles; (iii) applying caution about the environment and social effect; (iv) appreciating natural and social capital through techniques such as whole-life expenses, internalizing external costs, and enhancing governance; (v) utilizing resources wisely and effectively; and (vi) aligning with previously present macroeconomic objectives by abolishing poverty, fostering green jobs, and enhancing competitiveness as well as development in significant industries [3,4,5,6,7].



It is widely acknowledged that nanoparticles play a key role in easing the shift to a green economy, which is defined by environmentally friendly and sustainable technologies. This recognition is a result of their unique qualities, which make it possible to use resources wisely and effectively. These materials have tremendous prospects for the creation of energy-efficient and commercially viable solutions at the nanoscale, which is consistent with the broad goals of the green economy [8].



The application of nanoparticles in the green economy has the potential to revolutionize various industries and promote sustainability. To ensure the success of nanoparticle applications in the green economy, careful consideration of these factors is essential to strike a balance between innovation and responsible implementation [9].



This study examines the opportunities and real-world challenges that nano-applications offer for addressing the principles of a green economy. There are examples given of how nano-applications could help with social and environmental issues. Green synthesis produces highly efficient nanoparticles without affecting the environment. The goal of this review article is to promote the use of regional botanical items for the synthesis of nanoparticles and their application for the control of environmental issues that harm both human health and the environment. Such a problem is faced worldwide, whether in developed countries, developing countries, or underdeveloped countries. This review supports the pathway to prepare nanoparticles and use them for mitigation in ecofriendly means, which is also a visionary action for sustainable development. This review is also concerned with the green synthesis of nanoparticles and their mitigation approach toward environmental problems, etc. Moreover, the study also focuses on the unique approach of green synthesis of nanoparticles, which are highly efficient, responsive to external stimuli, and cheap. The transformative potential of green nanotechnology across various sectors such as biofuel, CO2 reduction, detection of heavy metals, and many more is demonstrated graphically in Figure 1.




2. Green Synthesis


The environmentally friendly synthesis of nanoparticles is essential for the development of a green economy because it provides viable substitutes for conventional synthesis techniques. Green synthesis is the process of recycling biological and agricultural waste to minimize environmental effects while fostering resource efficiency and the circular economy. The resultant nanoparticles frequently show improved biocompatibility, which qualifies them for use in industry, agriculture, and medicine. All things considered, the green synthesis of nanoparticles addresses environmental issues, encourages innovation and supports responsible resource management, all of which lead to a more robust and sustainable economy [10,11].



A broad area of study encompasses multiple nanotechnology applications. There is now a trend to employ NPs for environmental purposes. Metallic nanoparticles are one of the many kinds of nanoparticles (NPs) employed in environmental applications. Plant-assisted synthesis of NPs is more affordable, ecologically benign, and commercially feasible than chemical and physical procedures [12,13]. Most often, in green synthesis, plant components are used as reducing and capping agents. Leaf, bark, fruit, and flower extracts have been used to make metallic nanoparticles (NPs) of a variety of sizes and shapes [14]. Particles made via green synthesis are not the same as particles generated via physicochemical methods. Metal or metal oxide nanoparticles were created by employing the bottom-up method. The green synthesis comprised the use of a costly chemical-reducing agent with a natural extract like the leaves from plants, crops or parts of fruits. There is enormous potential for the creation of NPs in biological beings. The reduction in metal precursors to respective NPs using biological sources is an environmentally friendly process. In general, the synthesis of NPs can be performed either “Top Down” or “Bottom Up” as in Figure 2, which illustrates a potential biological process for creating NPs [15]. Table 1 describes the use of plant-based green synthesis nanoparticles.




3. Applications


The current economic model is no longer viable in a society with finite resources and ecological capability since it depends on increasing pollution and resource consumption. The idea of the “green economy” presents an opportunity to redefine the environment–economic interface. Moreover, the application areas of nanoparticles include taking higher-resolution pictures, making nano-detectors for ecological contamination, and providing a high quantity of optoelectronics strategies in solar energy application processes, catalysts, and many more. Additionally, innovative nanostructures of silica efficiently eliminate contaminants [29,30,31]. In the past, researchers engaged in developing carbon- or mineral-based nanoparticles for effective services to serve mankind [32,33,34,35]. This review is concerned with the green synthesis of nanoparticles and their mitigation approach towards the environmental problem via biodiesel, heavy metal detection, catalytic conversion of CO2, etc. Moreover, the study focuses on the unique approach of the green synthesis of nanoparticles, which are highly efficient, responsive to external stimuli, and cheap, as shown in Figure 3. The green synthesis produces highly efficient nanoparticles without affecting the environment.



“Green nanotechnology” affects industries, including biofuel, nanofertilizers, nanoremediation, and more by employing materials science’s nanotechnologies to create economically and ecologically sound goods. Our goals are to address issues, particularly those related to worker health and safety, to emphasize the role that nanotechnology plays in promoting a green economy, and to underscore the necessity of sustainable advancements in nanotechnology.



Green-synthesized nanoparticles are essential to nature and have the following extensive applications.



3.1. Corrosion Inhibitor


The National Association of Corrosion Engineers (NACE International) reported in 2016 that the yearly cost of worldwide corrosion losses is USD 2.5 trillion, or 3.4% of the world GDP in 2013 [36,37]. The research shows that the corrosion losses in the world’s leading economies differ, with the US suffering 2.7% and China 4.2%. The effective use of currently available corrosion management techniques might potentially cut these losses by 15–35%, or USD 375–875 trillion annually on a worldwide scale [38]. This emphasizes the need for strong corrosion prevention technologies that are affordable and long lasting. In addition, there is a need for ongoing research into novel and long-lasting anticorrosion solutions to deal with this widespread problem that affects many different sectors and businesses globally.



The high volume-to-surface ratio of nanoparticles has led to a recent increase in the application of nanotechnology in corrosion inhibition. Nanoparticle coatings can be used to reduce corrosion, a costly and harmful natural occurrence, by functioning as barriers to limit the rate of corrosion. Despite their effectiveness, synthetic corrosion inhibitors are becoming less common because of environmental regulations and toxicological issues [36,37]. Promising substitutes include plant extracts like Chelidonium majus that naturally reduce rusting [38]. These environmentally friendly methods, which make use of plant extracts and phytochemicals, show promise in lowering dependency on hazardous chemicals, which represents a major breakthrough in corrosion prevention [39,40,41,42,43,44,45,46,47].



Due to its ability to increase the sustainability and efficiency of corrosion protection techniques, nanoparticles’ involvement in corrosion inhibition significantly advances the green economy. As corrosion inhibitors, nanoparticles provide metallic surfaces with durable protection that lowers maintenance costs and increases infrastructure longevity. Environmentally friendly and economical methods are frequently used in the application of these nanomaterials, which reduces the ecological impact of corrosion prevention and conserves resources. The approach of its application is presented in Figure 4 [48,49,50].



By depositing surfactant C16H33N + (CH3)3[CeCl3Br] − (CTACe)-modified silica nanoparticles, a metallic material was endowed with a good resistance to corrosion [27]. Since they are effective in preventing and managing the surface deterioration of metals caused by various corrosive substances, they are regarded as the most significant corrosion inhibitors [51,52,53]. Table 2 lists the nanoparticles that were isolated from the plant with their corresponding efficacy values.




3.2. Nanofertilizers


The production of mineral fertilizers is dominated by the US, China, India, and the EU, with nitrogen accounting for 60% of the total and phosphorus and potassium, making up 20% apiece [60]. The conflict between Russia and Ukraine will cause natural gas prices to rise in Europe in 2022, which will have a negative effect on energy-intensive industries like fertilizers. Since natural gas is essential to the production of fertilizers, European producers are changing their methods, which may result in a halt or reduction in production. Gas price increases reduced Europe’s supply of nitrogen fertilizer by 25% by September 2022 [61,62,63]. Even though the COVID-19 pandemic, climate change, and conflicts at first helped to reduce world hunger, undernourishment rose and now affects 10% of the world’s population (828 million) in 2021, up from 8% (678 million) in 2019. Creative thinking is required to meet the UN’s aim of zero hunger [64,65,66].



Through the optimization of agricultural output and resource utilization, nanofertilizers are essential to the advancement of the green economy. By precisely delivering nutrients, nanofertilizers increase crop yields and foster economic efficiency in the agriculture industry. Farmers save money because of the reduced need for fertilizers due to the regulated release of nutrients. Moreover, nanofertilizers help to ensure the sustainability of agricultural operations and their long-term economic viability by reducing environmental consequences, including pollution and nutrient runoff. In addition to providing financial benefits to farmers, the technology’s ability to enhance soil health and nutrient use efficiency positions agriculture as a more resilient and environmentally conscious component of the broader green economy. The broad use of nanofertilizers holds promise for a more environmentally and economically sustainable agricultural future as they continue to provide benefits through higher yields, resource conservation, and less environmental externalities [67,68,69].



The use of zinc oxide nanoparticles as a foliar fertilizer has been shown in several studies to enhance the agro-morphological characteristics, photosynthesis, and yields of wheat plants [70] and common bean plants. Tomato plants’ traits and yield are enhanced by carbon nanoparticles [71]. Zinc oxide nanoparticles are a more effective way to support wheat growth and germination than zinc sulphur dioxide. Additionally, at larger dosages, they demonstrated in the literature that zinc sulphur dioxide posed a greater risk than ZnO NPs [72]. The common bean that is harvested from the ZnO NP-treated plant affects the lipid parameters and the liver and renal functions of the rats that consume it [13]. Many plants, like squash, require the three nutrients iron, manganese, and zinc to flourish [73,74]. Furthermore, as observed by Kaur et al., the application of Mn nano-oxide greatly decreased the yield of fruit squash (kg/plant and tons/hectare), particularly when coupled with the application of Fe nano-oxide. It was also mentioned that the fruits of squash plants sprayed with Fe oxide nanoparticles had higher concentrations of energy, proteins, lipids, and organic matter [13].



Moreover, NFs may raise plants’ defence mechanisms, lengthen stress resistance, and improve nutrient absorption and output by maintaining the accessibility of nutrients in the rhizosphere. Due to their better suitability for promoting plant development, they can potentially replace synthetic fertilizers and provide a new route for sustainable and healthy agriculture [75]. They reduce external pressures and improve tolerance to unfavourable environmental conditions for plants. Recent nano-technological developments have been filling the gaps between agriculture and technology and have craved a sustainable plan for solving the global food crisis [76]. In light of this, nanoparticles are quickly becoming a cutting-edge agro-technology for agro-improvement. Surprisingly, they give crop plants the ability to resist stress, as described in Figure 5 [77]. Additional nanofertilizers have been studied with respective plants and are presented in Table 3.




3.3. Heavy Metal Detection


By solving environmental issues and fostering economic sustainability, the use of nanoparticles in heavy metal detection is crucial to the growth of the green economy. When used with state-of-the-art sensing technologies, nanoparticles improve the accuracy and efficacy of heavy metal detection techniques, allowing for the early detection of pollution in soil, water, and air. This reduces the financial burden of environmental cleanup and medical costs while also protecting human health and ecosystems [86]. Industries are adopting detecting systems based on nanoparticles in compliance with strict environmental rules, which lowers the possibility of legal repercussions and increases corporate accountability. Businesses that invest in and use these technologies not only help to create a cleaner and healthier environment, but also boost economic growth by creating and distributing novel solutions that support a green economy that is more robust and sustainable [87,88].



The primary heavy metals that are environmentally hazardous in recent research are Pb2+, Cr3+, Hg2+, As3+, and Cu2+. As a result, several attempts have been undertaken to measure and detect heavy metals using analytical techniques [89]. However, current technology is still needed for the sensitive and user-friendly detection of heavy metals. In response to this, nanotechnology was created. These nanotechnologies were demonstrated to be extremely sensitive, selective, and fast-acting, which improved the efficacy of analytical equipment [90]. For several reasons, including their low detection limit, high linear range, and ease of system integration, nano-based sensors are an effective tool for on-the-spot identification or on-field recognition. The benefits of using ways based on nanotechnology gave them a new idea for combining these technologies into portable devices that can be used anywhere and at any time, as Figure 6 illustrates [91]. Table 4 also contains a tabulation of the nanoparticles that were employed to detect heavy metals.




3.4. Biofuel


Out of all the basic energy sources, fossil fuels account for 80% of the world’s energy consumption [102]. Estimates indicate that bioenergy will become more significant, particularly in contemporary bioenergy applications, with a predicted increase to 145 EJ by 2060 [103]. For large-scale energy production, a variety of feedstocks, including wood, plants, and crops high in starch or oleaginous seeds, are suggested, including algae, crops, and lignocellulosic biomass [104]. In order to generate electricity, current power systems must first go through lengthy transmission and transformation operations before using the energy for end consumption [105].



Fossil fuels are the main energy source, but they also contribute to climate change, which is dangerous [106,107]. The world’s population is approaching 8 billion, and as technology develops, so does the demand for energy, with fossil fuels continuing to be the most popular source [108,109]. In order to comply with the Paris Agreement, the European Commission’s “Fit for 55” plan seeks to achieve climate neutrality by 2050 and a 55% reduction in net emissions by 2030 [110].



One of the keystones for advancing the green economy is the use of nanoparticles in the manufacturing of biofuel. When used as additives or catalysts, nanoparticles improve the productivity of biofuel synthesis processes, leading to higher yields and lower production costs. They play a key role in increasing the production of sustainable fuels because of their capacity to enhance reaction conditions and the overall effectiveness of biofuel production technologies. The application of nanoparticles makes it easier to create economical and ecologically beneficial processes for producing biofuels, which draws capital and promotes economic expansion in the renewable energy industry. A more effective and financially feasible route to sustainable energy is made possible by industries’ growing adoption of nanoparticle technology for the manufacturing of biofuels, and this is reflected in Figure 7 [110,111,112].



Utilizing green copper oxide nanoparticles, a study enhanced the transesterification of citrus medica-generated biodiesel in the core composite design. This green biodiesel that was manufactured adhered to international standards for properties like methyl ester. The characteristics of the biodiesel generated by this procedure demonstrate that it falls within the range of ASTM criteria. Green ZnO nanoparticles produced from banana corm extract showed significant performance in the production of biodiesel from waste fish lipids, with an ideal yield of 2.5% and over 90% transesterification efficiency [113]. The use of nanoparticles as catalysts for the production of biofuels are given in Table 5.




3.5. Catalytic Reduction of CO2


With the goal of achieving zero domestic net emissions by 2050, the government formed the Presidential Carbon Neutrality Committee in 2021 and unveiled the ambitious Carbon Neutrality Scenario 2050. The national greenhouse gas reduction target (NDC) was suggested to be increased by 40% by 2030 in comparison to 2018 levels by the committee [122]. As opposed to large industrialized nations like the UK, France, and Germany, which have been progressively lowering their emissions since the early 1990s, the predicted implementation period for carbon neutrality is between 50 and 60 years.



A third of the workforce in Asia work in climate-sensitive industries like agriculture and fisheries, making the region, which is home to roughly 70% of the world’s population, subject to immediate risks from rising sea levels. Asia’s developing countries may see a 24% GDP decline by 2100 if current warming trends continue, and the region’s proportion of global greenhouse gas emissions will practically double from 22% in 1990 to almost 50% in 2021 [123].



When it comes to catalytic CO2 reduction, nanoparticles are revolutionary and greatly advance the green economy. These small catalysts, which are frequently made of sustainable materials, improve the effectiveness of CO2 conversion processes and open up new economic opportunities by producing useful chemicals and fuels. Their distinctive characteristics and large surface area improve catalytic efficacy, maximizing reaction rates and lowering energy inputs. The commercial feasibility of CO2 reduction technologies can be enhanced by the application of nanoparticles, which can result in scalable and affordable catalytic systems [124,125,126].



The environmentally benign photocatalytic reduction of CO2 to CH3OH is achieved by the use of nanoporous CeO2, while sunlight is employed to initiate exothermic combustion, ensure uniform heating, and create vacancies in CeO2. The homogeneous distribution of heat energy made possible by the nanosize can raise CeO2’s reduction efficiency [127]. The triple-functional precursor NH3BH3, which has a narrow band that enhances light energy harvesting and electron transfers via the catalyst for surface adoption of CO2 in reduction, was used to synthesize the B, N co-doped TiO2 nanosheets [128]. Table 6 tabulates the nanoparticles involved in CO2 removal while the schematic diagram is shown in Figure 8.




3.6. Insecticides and Pesticides


Pesticide sales in the EU increased by 2.7% in 2021 to 355,175 tons, with agriculture being the primary user of these chemicals [133]. The Kyoto Protocol set off worldwide efforts to limit greenhouse gas (GHG) emissions in order to limit temperature increases to less than 2 °C. However, despite the fact that it was meant to end in 2012, many nations’ inadequate efforts to reduce carbon emissions caused it to continue longer [134,135].



Due to their revolutionary effect on agricultural operations, nanoparticles in herbicides and insecticides represent a significant step toward the advancement of the green economy. Pesticides and insecticides using nanoparticle-based formulations have a more focused and regulated delivery system, which boosts effectiveness while reducing environmental impact. The implementation of solutions based on nanoparticles improves resource efficiency and reduces the financial and ecological expenses linked to conventional pesticides. As a result of industry investments in and use of these cutting-edge technologies, the objectives of a green economy are advanced and a more environmentally conscious and sustainable agricultural sector is fostered, and economic growth is stimulated through the development and commercialization of cutting-edge environmentally friendly pest control solutions [136,137,138].



The usage of nanoparticles as insecticides in agriculture has increased recently. It is also being used as an inexpensive sensing tool, which has to be studied for better farming practices and higher yields [127]. Ulrichs et al. claim that NPs have a large surface area that affects lepidopteran insects in less than a day, which is necessary for human use [128]. Table 7 presents a tabulation of the nanoparticles present in the activity along with their interaction pests.





4. Conclusions


There is a substantial and adaptable influence of environmentally produced nanoparticles on a range of important fields, such as the development of insecticides and pesticides, the production of biofuel, the inhibition of corrosion, the use of nanofertilizers, the remediation of nano-damaged materials, the facilitation of biodegradation, the detection of heavy metals, and the catalytic reduction of CO2 to promote the green economy. Utilizing ecofriendly nanomaterials in novel ways highlights their revolutionary potential in advancing sustainability, as well as their ability to address urgent environmental and industrial issues [156]. This research offers a promising path towards a more environmentally conscious and commercially successful future by utilizing the multifaceted properties of green-synthesized nanoparticles. It also strengthens the fundamental role that these nanoparticles will play in forming a more sustainable and greener world by providing comprehensive solutions for a range of industries.



4.1. Future Perspectives


	
Ongoing investigation into novel environmentally friendly nanoparticle production techniques.



	
Researching materials for biodegradable nanoparticles to lessen their influence on the environment.



	
The creation of intelligent nanofertilizers to minimize chemical usage and enable precision farming.



	
Using nanoremediation methods to remediate pollution in water and soil.



	
Improving the biodegradation processes based on nanoparticles to manage waste effectively.



	
Progress in heavy metal identification technology to enhance environmental surveillance.



	
Using catalysts made of nanoparticles to increase the generation of biofuels for sustainable energy.



	
Research how nanoparticles affect ecosystems and microbial communities.



	
Improving and extending the application of nanoparticles in herbicides and insecticides to manage pests.



	
Research on environmentally acceptable and sustainable substitutes for conventional chemical pesticides.



	
Using nanoparticles and catalytic reduction of CO2 to fight climate change.



	
Examining the possibility of using nanoparticles for carbon collection and usage.



	
Developing rules and policies for the safe and responsible use of nanoparticles.



	
Public awareness initiatives to inform people about the advantages of green nanoparticles as well as any possible hazards.



	
Cooperation to hasten the adoption of green nanoparticles for a greener economy among businesses, academic institutions, and governments.
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Figure 1. Exploring the transformative potential of green nanotechnology across various sectors. 
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Figure 2. Scheme for green synthesis of NPs. 
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Figure 3. Multiple application of nanoparticles. 
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Figure 4. Multiple applications of nanoparticles. 
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Figure 5. Multiple utilities of NPs [78]. 
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Figure 6. Nanoparticles’ intervention for heavy metal detection [92]. 
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Figure 7. Utilizing catalysts for the production of biofuel [112]. 
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Figure 8. Usability of nanoparticle [129]. 
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Table 1. Nanoparticles from plants and their applications.
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	Plant
	Nanoparticles
	Applications
	Reference





	Ficuscarica
	Fe3O4
	Antioxidant
	[16]



	Azadirachtaindica
	CuO
	Anticancer
	[16]



	Peltophorumpterocarpum
	Fe3O4
	Degradation of rhodomine
	[17]



	Terminalia chebula
	Fe3O4
	Degradation of MB
	[17]



	Punicagranatum
	ZnO
	Antibacterial
	[18]



	Lactucaserriols
	NiO
	Dye degradation
	[19]



	Vitisrotundifolia
	CoO
	Acid blue dye degradation
	[20]



	Ziziphus spina-christi
	ZnO-SeO
	Antimicrobial/antioxidant activity
	[21]



	Seriphidiumoliverianum
	CuO
	Photocatalytic dye degradation from water
	[22]



	Punicagranatum
	Ag2O
	Antibiotic removal from wastewater
	[23]



	Jacaranda mimosaefolia
	Cu
	Corrosion inhibition
	[24]



	Scallion’s peel
	ZnO
	Nanofertilizer
	[25]



	FicusBenjamina
	TiO2
	Heavy metal detection
	[26]



	watermelon
	CaO
	The catalyst for biofuel production
	[27]



	Cola nitida
	FeO
	Absorption of MB/MO dye from wastewater
	[28]










 





Table 2. Nanoparticles for green corrosion inhibitor.
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	Nanoparticle
	Plant
	Effect
	Efficacy
	Reference





	Glycogen NP
	Biogenic sources
	Controlled the corrosion of zinc in sulfamic acid (NH2SO3H)
	92% for 0.02 gL−1
	[23]



	CuO
	Moringa oleifera

leaf extract
	Improved overall anticorrosive activity
	56%
	[23]



	Manganese oxide
	Rose petal (RP) and lotus petal (LP)
	Overall anticorrosion behaviour of mild steel increased
	72.63%
	[23]



	Ag
	Citrus reticulata peels extract
	Inhibited steel corrosion from HCl
	93.9% at 303 K and 90.3% at 333 K
	[54]



	Ag
	Palm oil leaf extracts
	A protective film formed, which protected the steel from acid attack
	94.1%
	[55]



	Ag nanocomposite
	Red onion peels
	A surface protection layer formed against corrosion
	86%
	[56]



	Cellulose nanocrystal
	Organic product
	Protected AISI360-steel from corrosion in petroleum manufacturing
	85.3% at 300 mgL−1
	[57]



	CuO/melamine/cellulose nanocrystals nanocomposite
	Organic product
	Protected AISI360-steel from corrosion in petroleum manufacturing
	96.8% at 300 mgL−1
	[58]



	NiO/melamine/cellulose nanocrystals nanocomposite
	Organic product
	Protected AISI360 steel from corrosion in petroleum manufacturing
	98.3% at 300 mgL−1
	[59]










 





Table 3. Nanoparticles used as nanofertilizers.
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	Nanoparticle
	Plant Affected
	Effect
	Reference





	Hydroxylapatite (Ca5(PO4)3OH)
	Soybean (Glycine max)
	Increase of 33% growth rate and 20% seed yield
	[79]



	AgNPs
	Red ginseng shoot
	Ginsenoside content increased
	[80]



	TiO2
	Aged spinach seeds
	Increased germination rate due to increase in nitrogen assimilation
	[81]



	Iron oxide
	Soybean
	48% increase in grain yield
	[82]



	Ag
	Fusarium solani
	Reduced fungal infection
	[83]



	C nanoparticle
	Phaseolus vulgaris L.
	Improved the quality and constituents of leaves and seeds
	[84]



	K+, Fe, tryptophan, urea, amino acids
	Tomato,

fenugreek
	Increased germination percentage of tomato from 14% to 97% and fenugreek from 25% to 93.14%
	[85]



	Nano-NPK
	Capsicum annuum leaves
	Resulted in better fruit quality and increased the yield
	[85]










 





Table 4. Nanoparticles used for heavy metal detection.
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	Nanoparticles
	Heavy Metal Detected
	Limit of Detection
	Reference





	Multiwalled carbon nanotube
	Zn (II)
	0.3 μgL−1
	[93]



	Multiwalled carbon nanotube
	Pb (II)
	0.07 μgL−1
	[93]



	Multiwalled carbon nanotube
	Cd (II)
	0.1 μgL−1
	[93]



	CNT/Pt
	As (III)
	-
	[94]



	Au-decorated Te hybrids
	As (III)
	0.0026 ppb
	[95]



	AuNP
	Hg (II)
	-
	[96]



	AuNP
	As
	0.01 μM
	[97]



	Graphene
	Cd (II)
	10−7 M
	[98]



	Graphene oxide
	Cd (II)
	0.1–1.5 μM
	[99]



	Graphene oxide
	Hg (II)
	2.5 × 10−8 M
	[100]



	AuNP
	Cr
	0.01 μM
	[100]



	Carbon nanofibers
	Bi (III)
	16.8 μgL−1
	[101]



	Carbon nanofibers
	In (III)
	3 μgL−1
	[101]










 





Table 5. Nanoparticles used as the catalyst for biofuel.
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	Nanoparticles
	Effect
	Reference





	Carbon nanotubes
	Their use in biosensors and microbial fuel cell fabrication as well as a catalyst in biofuel production raise the overall concentration of enzymes in biofuel generation, as well as help in enzyme mobilization
	[114,115]



	Aniline incorporated with Fe3O4-NH2 and reduced graphene oxide nanocomposites
	Enhances the process of bio-electrocatalysis of glucose oxidase
	[116]



	Magnetic nanoferrites

doped with calcium
	Raises biodiesel production yield
	[117]



	MnO2 with sugarcane leaf
	Increases bioethanol synthesis
	[118]



	Nano zero-valent iron (nZVI) and Fe2O3
	Improves the production of biogas like methane
	[119]



	CeO2
	Improves the production of biogas
	[120]



	Pt and silica
	Raises methane production yield
	[121]



	Ni and silica
	Raises methane production yield
	[121]



	Co and silica
	Raises methane production yield
	[121]



	Fe and silica
	Raises methane production yield
	[121]










 





Table 6. Nanoparticles that serve to reduce CO2.
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	Nanoparticle
	Treated along with
	Period of Experiment
	Temperature
	Reference





	CoNP-treated cocoa shell
	Cocoa shell and 3-aminopropyltriethoxysilane
	
	25 °C
	[130]



	Magnetite nanocapsule nanocomposites
	Polyaniline
	90 min
	28 °C
	[130]



	Porous silica nanoparticles
	Polyethyleneimine
	30 min
	75 °C
	[131]



	La and Ce
	Zeolite
	-
	0, 30, 60 °C
	[131]



	CaO
	Egg shell waste
	23 min
	700–900 °C
	[132]



	MgO
	Graphene oxide
	-
	60–120 °C
	[132]










 





Table 7. Nanoparticles serving as insecticides and pesticides.
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	Nanoparticles
	Activity
	Pests Affected
	Reference





	ZnO
	Blocks the organism
	Fusarium graminearum, Penicillium expansum, Alternaria alternate, F. oxysporum, Rhizopus stolonifer, Mucorplumbeus, Pseudomonas aeruginosa and Aspergillus flavus
	[127,128,136]



	MO
	Stops fungal conidiophores and conidia growth on vegetative parts of fungi
	Conidia and conidiophores of fungi
	[137]



	C nanotubes
	Raises the nutrients and elemental uptake by plants and is also involved in ameliorating the development of plants
	
	[138,139]



	Ag
	Used to control agricultural pests and organisms
	Helicoverpaarmigera, Ariadne merione, Pediculushumanus, Aedesstephensi, Aedes aegypti, Culex quinquefasciatus, Lipaphiserysimiwas, Plutellaxylostella, Helicoverpaarmigera and Sitophilus oryzae.
	[140,141,142,143,144,145,146]



	Cd
	Causes larval death of 93.79% at 2400 ppm
	Spodopteralitura
	[147]



	TiO2
	Causes larval death of 73.79% at 2400 ppm
	Spodopteralitura
	[147]



	Pungam oil-based AuNPs
	Causes high mortality of pests
	Pericalliaricini larvae
	[148]



	Cu
	Causes toxicity against pests
	Triboliumcastaneum, Spodopteralittoralis larvae, Aedes aegypti larvae
	[149,150]



	Nanostructured alumina (Al2O3)
	Causes mortality when exposed to wheat pests
	Sitophilus oryzae, and Rhizopertha dominica
	[151]



	Al
	Kills the pest
	S. oryzae
	[152]



	TiO2
	Destroys the pest
	S. oryzae
	[152]



	Nanosilica
	Enters inside the pest from the cuticle, thus destroying the pest
	Different pests
	[153]



	Nanosphere of silica
	Helps bactericides to enter into plant cell sap
	-
	[154]



	Bioactive silver
	Lags the action of trypsin, hence, makes the pest harmless
	Different pests
	[155]



	AuNPs with protein
	Improves catalytic inhibition
	-
	[155]
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