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Abstract: The renovation or the functional transformation of existing stock to meet the new comfort
standards and energy demand reduction often requires comparing alternative technological options
and designing solutions especially when it involves historical buildings where the main goal is
usually to preserve the original image and value of the building. The paper reports a study regarding
the potential covering of the inner courtyard of Palazzo Poggi in Bologna with a roof to create
an intermediate new space between outdoors and indoors to be used all year long. The study is
particularly focused on the definition of a simplified algorithm to predict and evaluate the annual
temperature trend of the court, once it has been covered, assuming some geometrical and thermal
characteristics of the roof. The paper describes the calculation algorithm and its application on
the Palazzo Poggi case study where a covering in EFTE (ethylen-tetrafluorethylen) membrane is
supposed to be created.

Keywords: courtyard cover; heat solar gain; historic heritage building; plastic membrane;
Ethylen-Tetrafluorethylen ETFE membrane

1. Introduction

The renovation and the conversion of historic buildings to host new functions or to update
the existing ones may often lead to relevant architectural challenges: the need to rethink internal
distribution due to use and privacy reasons without significantly altering the original typological layout,
the request to improve the building response in terms of indoor comfort and energy savings without
compromising the aesthetic and cultural value of its surfaces (i.e., frescos, decorated walls or ceilings,
paving, or other relevant features), the need to obtain additional spaces without introducing extensions
that may alter the overall configuration. The level of complexity and of constraints clearly depends on
the case-specific conditions, however some common design strategies adopted to provide adequate
answers can be identified. Among them, a frequently adopted solution is that based on covering inner
courtyard spaces. This choice is often related to the need to reshape internal circulation as happens in
the case of Santa Marta’s military building in Verona which has been converted by Massimo Carmassi
into the headquarters of the local university concentrating the main vertical circulation elements in the
three inner courtyards. Courtyards are often the core element of the building layout and, for this reason,
they often offer the opportunity to be transformed into a free circulation space distributing the users to
the different wings of the building as happens in the renowned example of British Museum by Norman
Foster or into a new hall as happens in the renovation of the Maritime Museum in Amsterdam by Ney
and Partners, Dok Architecten, and Rappange and Partners. The courtyards can be also transformed
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into exhibition spaces as David Chipperfield carried out with his intervention at Neus Museum in
Berlin. Appendix A provides some examples where renowned examples are associated with the
new courtyard function and the related adopted technological solution for covering them. The most
recurrent solution is a glazed surface—that may assume very different forms and shapes—supported
by steel elements directly connected to the surrounding walls (i.e., Museum De Lakenhal by Happel
Cornelisse Verhoeven, Julian Harrap Architects) or to new columns of different forms and sections
(i.e., Jewish Museum in Berlin by Daniel Libeskind). Few examples explore other construction options
such as the use of translucent or transparent membranes (i.e., Beyazit State Library by Tabanlioglu
Architects).

It can be noted that in most of the cases the main driver in the decision to cover the courtyard is
strictly connected to architectural issues and the effects on the derived indoor environment are often
simply assumed as consequences of this process. Despite the quality of the obtained spaces in terms of
microclimate and light control having to be considered as a major issue, it is frequently more dependent
on heating/cooling systems rather than the architectural and technological concept. Furthermore,
architectural design choices may often underestimate the different impacts of the glazed surface during
summer and winter when the space is supposed to be adequate in its response to opposite climatic
stimuli. The act of covering courtyards or atria produces a new “volume”, enclosed by the building
façades and the new added roof, with a related variation of indoor microclimate.

The history of architecture provides some relevant examples of covered courtyards where extensive
glass layers were introduced without properly considering the risk of overheating when appropriate
ventilation was not provided. An exemplary case of this phenomenon is Villa Medici La Petraia
(Florence, Italy) [1] where the covering of the inner courtyard realized during the XIX century altered
the original microclimate, increasing temperature over 38 ◦C during summer.

The most recurrent technical solutions to cover courtyards and atria can be classified as follows:

• Roof based on metal structure (steel, iron, cast iron, etc.) with glass layer;
• Roof based on steel structure and cables stiffening with glass layer;
• Roof based on glass layer suspended by steel cables;
• Roof based on textile membrane;
• Roof based on translucent/transparent membrane.

The new covering can be a traditional roof anchored to the surrounding walls (in most of cases a
steel and glass structure) or a mobile system (frequently a textile membrane supported by cables) or a
fixed system with mobile elements for ventilation purposes.

During the last decade the use of textile membrane, that recalls Frei Otto’s tensile works and connote
large structures, has been also adopted in smaller spaces due to the specific material properties able to
satisfy a number of different requirements, such as the structural (tensile strength, wind solicitation,
fireproofing, etc.), the physical (acoustic, thermal, lighting, etc.) and aesthetic (shape, colour, geometry,
etc.) requirements, while having an extremely limited weight compared to conventional glass surfaces.
If the average weight of a double paned surface is approximately 20 kg/m2 (increasing to 30 kg/m2

in the case of triple paned surface), a three layer ethylen-tetrafluorethylen (ETFE) membrane is only
1.05 kg/m2 [2]. This significantly increases the opportunity to adopt a movable system, while reducing
the sections of the supporting elements.

The definition of an appropriate configuration is a main design concern not simply in terms of
architectural impacts (which are often the most evident outcome) but also in terms of microclimate
variation on the space becoming an interior, impacting on air temperature and relative humidity.
During the winter season, the greenhouse effect produced by the covering leads to the increase of air
temperature due to the solar gain and the reduction of thermal dispersions. During the summer season,
when the outdoor temperature may rise over 30 ◦C (especially in southern European countries such as
Spain, Italy and Greece), the same effect generates an unsuitable overheating effect that produces very
uncomfortable living conditions.
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For this reason, most coverings are provided with mobile elements to ensure natural ventilation or
are designed as mobile structures to change their configuration during the different conditions. This can
be planned seasonally or driven by sensors detecting external climatic/meteorological conditions or set
according to specific indoor conditions suitable for courtyard use.

The study reported in this paper has been carried out to support the definition of a protocol
to manage the actuation of the mobile covering which is supposed to be installed in a case study
building courtyard. The study adopts the algorithm of technical standard EN ISO 13790 to assess the
impact of different technological solutions and geometrical configuration for driving both design and
management processes. It must be remarked that the proposed algorithm is intended as a speedy
evaluation methodology to explore the effects of alternative design and construction options during a
preliminary design phase and it is not intended as a substitutive tool for a detailed design process at
all levels.

The literature on the microclimatic characteristics of (open and covered) courtyards, on the related
modelling, and analysis includes several studies addressing the issue from different perspectives
and at different scales. Yang and Lin’s study [3] on “an integrated outdoor space design procedure”
reports different configurations of urban courtyards, relating geometric characteristics to climatic
(air temperature) and physiological equivalent temperature (PET). At the scale of the individual
courtyard, Taleghani et al. [4] similarly reports a research considering different proportions and
orientations to which the amount of energy from solar radiation and the related operating temperatures
are associated. As courtyards are assumed to be open spaces, the operating temperature depends
exclusively on the orientation and solar radiation. The theoretical study by Martinelli and Matzarakis [5],
focussing on the relationship between court geometry and climatic data, confirms the influence of
height/width proportion with relation to solar radiation gain (and to the effect of direct/indirect
shadowing). Forouzandeh [6] uses ENVI-met simulation software (https://www.envi-met.com/)
to evaluate semi-covered courtyards, while Chatzidimitrious and Yanna [7] focus on the shape
and materials properties. At the same scale, the work by Almhafdy et al. [8] investigates the
relation between courtyard design configurations and microclimate performances, using the dynamic
calculation software IES.VE (https://www.iesve.com/), comparing simulated data and on site measured
data. Dynamic calculation software is also used in the aforementioned study on Villa La Petraia [1].
Taleghani et al. [4] and Karakounos et al. [9] report the outcomes of the evaluation performed with
ENVI-met simulation software at block scale on open courtyards and a similar approach is adopted by
Almhafdy et al. [8] in their studies.

At individual courtyard level, several studies focus on the thermal function of internal courtyards
in different climatic contexts, as in Soflaei et al. [10] and Ghaffarianhoseini et al. [11] in Malaysia,
Berkovic et al. [12] in Israel, Sharples and Bensalem [13] in Iran, Sadafi et al. [14] in tropical areas and
Taleghani et al. [4] in The Netherlands. Other studies are, instead, referred to the impacts of wind and
passive cooling effects [15,16], as well as air pollution [17].

The aforementioned studies focus on open and uncovered courtyards, through the use of two
modelling tools: ENVI-met to evaluate the outdoor microclimate—and, consequently, the relationship
between courtyard and the surrounding buildings of the block in which the courtyard is located—and
IES.VE that adopts the energy plus calculation engine. Except for Fabbri et al. [1,18], the cited works
are not directly addressed to explore the modelling of covered, semi-covered or movable roofs and
generally a quite limited experience in this field is reported in the specific literature. Therefore,
the investigation of modelling approaches capable of considering the microclimatic conditions and,
in particular, air temperature inside covered, semi-covered and mobile roofed courtyards, is an open
and interesting field of action.

2. Goals

The aim of the research is to adopt the calculation algorithm of the technical standard EN ISO
13790 to provide a simplified and speedy evaluation of the air temperature within a covered courtyard,

https://www.envi-met.com/
https://www.iesve.com/
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having conditions comparable to those of an enclosed space. The proposed approach can support
early stage design activities to compare different and alternative roof configurations (open, semi-open,
closed, shielding only). The simplified algorithm is able to verify, in steady-state conditions, the air
temperature inside the courtyard starting from the external climatic data of air temperature and solar
radiation. The algorithm can be used in a predictive way to support the decision making process about
the actuation of a movable roof solution starting from the weather forecast.

The steady-state condition represents a limitation which is considered an acceptable approximation
at early design stage, however the proposed methodology includes a validation stage through advanced
dynamic modelling in order to compare and critically evaluate the outcomes.

3. Research Methodology: The Simplified Algorithm

3.1. Preliminary Considerations

The research method considers that energy exchanges take place according to a steady-state
regime, in accordance with ISO 13790 [19] indications, with hourly input data. In particular, Annex E
“Heat transfer and solar heat gains of special elements” of ISO 13790 was used for this scope.
In this way, the algorithm is consistent with the calculation standards of the energy performance of
buildings. Compared to the use of dynamic models such as Energyplus (https://energyplus.net/),
Trynsys (http://www.trnsys.com/), etc. or ISO 52016 [20], which are usually very time consuming,
the adopted algorithm provides a rapid evaluation criterion aimed at ensuring adequate decisional
support for managing the spaces within the covered courtyard. The study also intends to evaluate
the variation of the air-temperature inside the covered courtyard, comparing the typical situation
(open courtyard) and that generated in the case that the court is covered.

The methodology adapts the calculation criterion described by ISO 13790 [19] Annex E to the
covered courtyards. Chapter E.2.3 “Solar heat gains” specifically reports the calculation method of
“The solar heat gains entering the conditioned space from the sunspace are the sum of direct solar
heat gains, via the sunspace through the partition wall and indirect heat gains through the partition
wall from the sunspace heated by the sun”. The model proposed by the standard (Figure 1) has been
applied to the specific case of the covered courtyard considering it as an “attached sunspace” with a
single element irradiated by the sun, namely the roofing (Figure 2).

Figure 1. Attached sunspace with solar heat gains and heat transfer coefficients, and electrical equivalent
network—Detailed method, following ISO 13790.

https://energyplus.net/
http://www.trnsys.com/
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Figure 2. Model of Attached space in case of courtyard cover (Te = outdoor temperature; Ti = indoor
temperature; Tc = courtyard temperature).

The model allows assessment of the amount of energy stored due to solar radiation (solar heat
gains) within the space of the covered courtyard. Following the process described in the subsequent
paragraphs, the air-temperature values and trends inside the covered courtyard can be obtained.

Table 1 summarises the nomenclature of data to be collected for the transparent part of the
partition wall (Subscript w), and for the sunspace external envelope (Subscript e).

Table 1. Nomenclature.

Fsh,e shading correction factor

(1-FF,e) frame area correction factor (roof)

(1-FF,w) frame area correction factor (windows)

g effective total solar energy transmittance of glazing

Aw area of windows and glazed door in the partition wall

Ae area of glazed surface in the roof

Ap area of the opaque surface in the partition wall

αp average solar absorption factor of absorbing surface of opaque surfaces

Hp,tot
heat transfer coefficient by transmission from the internal environment, through the
opaque part of the partition wall and the sunspace to the external environment

Ip solar irradiance on surface p during calculation step(s)

T period (hours)

3.2. Case Study Description

The study was developed as a complementary activity of the University research regarding the
possible alternative uses of Corte d’Ercole (Hercules’ courtyard) (Figure 3) of Palazzo Poggi (Bologna,
in northern Italy), the main building of the University of Bologna hosting the rectorate and most of the
institutional offices. The name of the courtyard is due to the statue of Hercules placed at its centre.
This space is closed on the four sides by masonry walls, 0.70 m thick (U = 0.71 W/m2K) with 10 variable
wooden-framed windows (Uw = 5.8 W/m2K, Uf = 2 W/m2K, g = 0.85) for each of the façades.

The building’s functions and several administrative offices are spread over two floors while
around the court the most representative spaces are dedicated to the university museum, the lecture
halls of the Department of History, Culture and Civilization. Additionally, the historic Aula Magna
of the University Library stands along the north-east side of the court, overlooking the opposite side
which faces a second courtyard on Via San Giacomo.

All these surrounding spaces (Figure 4) play a relevant role in the proposed evaluation.
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Figure 3. Internal view of Hercules’ courtyard (Ferretti, Indio).

Figure 4. Plan of the second floor of Palazzo Poggi in Bologna.

In order to obtain a large representative additional space for public use or exhibition purposes,
a design solution to cover the courtyard has been explored several times without really achieving a
convincing configuration. Despite the advantages offered by a completely reshaped circulation and by
the additional activities (especially those involving the student population during institutional events)
that may be hosted in the obtained space, the main concern was connected with the uncertainty about its
environmental quality considering that no heating or cooling system would be installed. The variable
climate condition on a daily and seasonal basis suggested carefully considering a permanent covered
space. A movable system, based on a glazed surface supported by a metal structure, capable of adapting
the space configuration over the year, was explored, however the structural loads on the surrounding
walls were considered too relevant and the impact of the supporting elements not compliant with
preservation requirements.

Thus, an alternative design option based on a lightweight metal structure with cables stiffening
and a translucent/transparent membrane has been explored for the purpose of the present study.
This innovative and lightweight solution allowed reduction of the impact on the surrounding walls
and the adoption of a movable system to be envisaged for changing the configuration of the space
during the warm summer period while benefitting from the greenhouse effect during winter.
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Accordingly, three main use scenario are exanimated with the purpose of supporting the
decision-making process and better address the design phase at early stage.

To evaluate the annual trend of the internal temperature in the courtyard, real data referred to
internal and external temperature as well as solar irradiation were used. Input data on climatic
conditions (Te and Ip) were obtained from the Regional Agency for Environmental Protection
(ARPAE Emilia-Romagna) with reference to the year 2016. The probe HOBO RH/Temp (from ONSET
COMPUTER) installed inside the historical library was not directly used for measuring the
courtyard temperature, but to double check the reliability of input data regarding the building
internal temperature.

3.3. Model Application

Figure 2 shows the theoretical model from ISO 13790 applied to the specific case study of Corte
d’Ercole (Hercules’ courtyard) in Palazzo Poggi including the adjacent environments.

The external area is defined by the courtyard wing facing on via San Giacomo and Piazza Puntoni,
which is characterized by four masonry façades (of different heights) 0.70 m thick. Related input data
are: external air temperature (Te, ◦C) and solar radiation (Ip, W/m2).

The internal area (inside the buildings), includes some complementary spaces and the Aula Magna
of the University Library of Bologna, whose temperature varies between 18 and 26 ◦C throughout the
year. The main related input data is indoor air temperature (Ti, K).

The courtyard area is characterized by three classic façades with 10 openings and a fourth one
with more openings. Related input data are: external air temperature (Te, ◦C) and solar radiation
(Ip, W/m2).

The assumption is that the amount of heat transferred from inside to outside (Q) is equal to the
amount of heat exchanged between the inside and the courtyard (Q’), as reported in Formula (1):

Q = Q′ [MJ] (1)

The covered courtyard is assimilated to a solar greenhouse, that’s why the solar thermal input (Qss)
entering through the hypothetical roof and reaching the interior of the building follow ISO 13790 [19],
which provides Formula (2) to determine the solar heat gains in the case of attached sunspace.

Qss = Qsd + Qsi [MJ] (2)

where

• Qss is solar heat gains entering the conditioned space from the sunspace, measured in (MJ);
• Qsd is the sum of direct heat gains through the partition wall, measured in (MJ);
• Qsi is indirect heat gains, measured in (MJ).

In the case of Hercules’ courtyard, the Qsi value is equal to 0 (zero), given that the indirect
contributions during the summer regime do not significantly affect the energy exchanges due to solar
radiation. For this reason, it is possible to rewrite Formula (2) as:

Qss � Qsd [MJ] (3)

The direct solar heat gains Qsd is defined as the sum of the thermal contributions transferred
through the transparent (Subscript w) and opaque (Subscript p) surfaces of the wall partition.

Qsd = Fsh,e (1− FF,e)ge

[
(1− FF,w)gw Aw + αp Ap

Hp,tot

Hp,e

]
Ip t [MJ] (4)
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Some terms of the formula (4) are variable and linked to the climatic data and/or the configuration
choices of the roof, while others depend on the geometry and physical characteristics of Hercules’
courtyard and of the building.

Table 2 summarises Hercules’ courtyard specific data. The heat-transfer coefficients Hp,tot and
Hp,e, calculated according to ISO 13789 [21] are reported in Tables 3–5.

Table 2. Hercules’ courtyard specific data.

Symbol Hercules’ Court Case Study Values Measure Units

(1-FF,w) 0.8 dimensionless
gw 0.85 dimensionless
Aw 121.50 [m2]
αp 0.63 dimensionless
Ap 1088.78 [m2]

Fsh,e 1 dimensionless
(1-FF,e) 0.96 dimensionless

Ge 0.80 dimensionless

Table 3. Heat-transfer coefficient between indoor space (inside the building) and Hercules’ courtyard
(Hi, W/K).

Symbol Definition Hercules’ Court Study Values Measure Units

Ag Glass surface 97.20 [m2]
Ug Glass transmittance 5.8 [W/(m2K)]
Af Frame surface 24.30 [m2]
Uf Frame transmittance 2 [W/(m2K)]
Ap Opaque surface 1088.78 [m2]
Up Opaque transmittance 0.71 [W/(m2K)]

Table 4. Heat-transfer coefficient between Hercules’ courtyard and outdoor space (outside) (He,
measure in W/K).

Symbol Definition Hercules’ Court Study Values Measure Units

Aw Windows area (total) 500 m2

Ag Glass area (total) 480 m2

Ug
Roof glass

transmittance 1.18 W/(m2K)

Af Frame surface (total) 20 m2

Uf Frame transmittance 3 W/(m2K)

Table 5. Calculation of the total heat-transfer coefficient.

Symbol Definition Case Study Values Measure Units

Hi
Heat transfer coefficient between indoor space

(inside) and Hercules’ courtyard 1390.06 W/K

He
Heat transfer coefficient between Hercules’

courtyard and outdoor space (outside) 632.40 W/K

Hp,tot Hi + He 2022.46 W/K

Ip and t depend on the selected analysis to be performed: if the scope is to study the heat input
variation in the different months, t will be worth considering and consequently the values of the
average monthly solar radiation must be entered.

t = 30× 24× 3600× 10−6 = 2.592 [Ms]
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If a more in-depth analysis is to be carried out on hourly basis, t would become:

t = 3600× 10−6 = 0.0036 [Ms]

In accordance, hourly solar radiation values must be entered. To complete the calculation and
obtain the Qsd value, F(sh,e), (1-F(F,e)) and ge referred to the roofing envelope and its shading must
be entered. In the case a three-layer ETFE membrane cover is adopted, the outcome obtained on
01/01/2016 at 12.00, without any shading device is:

Q_sd = 1× (0.96) × 0.8× [(0.8) × 0.85× 121.5 + 0.63× 1089× 2022/632]266×
0.0036 = 1668.62 [MJ]

3.4. The System of Thermal Contributions

Formula (1) sets the amount of heat transferred from inside to outside (Q) equal to the amount
of heat exchanged inside the courtyard (Q ‘). Developing the formula with relation to the geometric
configuration of the covered courtyard, the following can be obtained:

Q = H × t× (Ti − Te) [MJ] (5)

Q′ = [H′ × t× (Ti − Tc)] + Qss [MJ] (6)

By using Equations (5) and (6) in formula (1),

H t (Ti − Te) = [H′ t (Ti − Tc)] + Qss

−H t (Ti − Te) + H′t (Ti − Tc) = −Qss

H′t Ti −H′t Tc = −Qss + H t (Ti − Te)

−H′t Tc = −Qss + H t (Ti − Te) −H′t Ti

The temperature of the courtyard (Tc) is then explicitly obtained:

Tc =
Qss −H t (Ti − Te) + H′t Ti

H′t

That is, by rearranging the terms of the equation:

Tc =
Qss

H′t
+

H
H′

(Te − Ti) + Ti [
◦

C] (7)

Formula (7) allows us to obtain the internal temperature of the courtyard on hourly basis according
to the steady-state model assumptions.

4. Results

The heat-transfer coefficients of Appendix B and the climatic input data of Appendix C are
introduced in formula (7) to obtain indoor (Ti), outdoor (Te) and courtyard (Tc) temperatures referred
to the case study according to the considered configurations.

4.1. Configuration A

Configuration A assumes a covered courtyard with no shading devices. The covering is obtained
using a single three-layer ETFE membrane. Thus, for calculation purposes, the parameters reported in
Table 6 should be included within the evaluation process.
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Table 6. Three-layer ethylen-tetrafluorethylen (ETFE) membrane-specific data.

Ug 1.18 W/(m2K)

Fsh,e 1 adim.
ge 0.8 adim.

4.2. Configuration B

Configuration B assumes the use of a polystyrene-based composite membrane as shading system
in the courtyard. Thus, for calculation purposes, the parameters reported in Table 7 (data are referred
to the commercial product Soltis 86 provided by the Serge Ferrari company) should be included within
the evaluation process.

Table 7. Polystyrene-based composite membrane specific data.

Ug 4 W/(m2K)

Fsh,e 0.20 adim.
ge 0.30 adim.

5. Dynamic Simulations and Validation

In order to assess the reliability of the simplified method’s application, the outcomes of the
calculation process, based on the EN ISO 13790 algorithm and steady state assumptions, have to be
compared with those obtained through a dynamic simulation. The simulation has been performed
using DesignBuilder, which is a modelling environment commonly used to assess a range of
environmental performances such as: energy consumption, carbon emissions, comfort conditions,
daylight illuminance, maximum summertime temperatures and HVAC (Heating, Ventilation and Air
Conditioning) component sizes. The software adopts EnergyPlus as calculation engine. According to
the purpose of the present study, it was used to assess the temperature distribution in the Hercules’s
courtyard and the effects produced by the design options.

5.1. Model and Results

The case study has been directly modelled within the software. A simplified geometry consistent
with that adopted during the whole process was created and the characteristics of materials, components
and windows were customised, avoiding use of the libraries integrated in the software, with the
specific goal to use the same transmittance values of the simplified calculation. The software offers the
chance to download and use local climate files and, coherently, data referred to Bologna (Bologna/Borgo
Panig files) were used.

The model consists essentially of a number of thermal zones, including a specific thermal zone
corresponding to Hercules’ courtyard. No type of plant was assigned to the court’s thermal zone and,
as a consequence, the simulation was conducted in free-run mode.

The simulations were carried out by selecting the results regarding environmental comfort and
therefore the distribution of internal and external temperatures as main output according to the
proposed technological options as Figures 5 and 6 shows. Figure 7 represents the temperature graph
with reference to the thermal zone of the courtyard.
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Figure 5. Provides a comparative graphical representation of the calculated temperature trends.
Comparative graphical representation between internal, external and courtyard temperature trends by
adopting an ETFE membrane covering.

Figure 6. A comparative graphical representation of the calculated temperature trends. Comparative
graphical representation between internal, external and courtyard temperature trends by adopting a
polystyrene-based membrane shading.
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Figure 7. Hercules’ courtyard indoor and outdoor temperature trends obtained by the dynamic
simulation with DesignBuilder.

5.2. Comparative Discussion of Results

Examining Figures 5 and 6, it clearly emerges that the design solution based on the use of the ETFE
membrane ensures interesting results in terms of microclimate conditions supporting the ambition
to convert the courtyards for additional functions. The daily thermal gradient ranges between 7 ◦C
and 20 ◦C which can be considered quite a large variation; however, if observations are limited to
the working hours it can be noted easily that this variation will significantly decrease. This means
acceptable (when not suitable) conditions can be achieved without any cooling or heating system
during spring, autumn and favourable winter days. In both cases, the algorithm reports an increase in
the temperature of the court during the whole year that produces positive effects in terms of possible
uses of the courtyard during the mentioned periods but suggests to install a movable covering in
order to avoid unsuitable overheating effects during summer or to integrate the system with a shading
device. As can be noted in Figure 6, this option would provide quite good results.

The results of the simplified process based on EN ISO 13790 algorithm can be compared with
those obtained by the dynamic simulations.

Figure 8 provides a comparative graphical representation between the temperature values of
Hercules’s courtyard obtained from the two methods. Analysing the graph, it is possible to note that
the daily temperature range obtained by DesignBuilder is slightly higher than that obtained by the
simplified calculation based on ISO 13790. This is possibly due to the fact that the software uses actual
climate data (instead of the 2016 dataset used for the simplified approach) and may overestimate solar
radiation. Despite these differences, the dynamic simulations almost confirm the temperature trends.

5.3. Calibration and Validation of the Model

In order to determine the degree of confidence in the true value when using measurement
procedures and/or calculations, the model validation followed the ASHRAE Guideline 14-2014 [22–24],
according to the hourly calibration method, and then comparing the main uncertainty indexes: mean
bias error (MBE), root-mean-square deviation (CV(RMSE)) Pearson coefficient, normal mean bias error
(NMBE).

Table 8 reports the outcomes of the process with reference to each index and the calibration
ranges defined by the guideline which states the acceptable limits with which to consider the model
calibrated. Accordingly, a strong correlation is found with the resulting values. The proposed method
can, therefore, be considered well calibrated, although Figure 9 shows a scattered graph of the R2 value
for the regression mode.

The results of the calibration and validation process indicate that the simplified method enables
to obtain accurate and acceptable results.
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Figure 8. Comparative graphical representation between temperature trends obtained with
DesignBuilder and with ISO 13790 simplified calculation method.

Figure 9. Visual representation of R-squared values for the regression model during calibration process.
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Table 8. Statistical indicators from the calibration process.

R2 (i) MBE (ii) CV (RMSE) (iii) Pearson (iv) NMBE (v)

0.7718 0.06% 14.21% 0.88 0.34%

Calibration Criteria

>0.75 fall if >10% fall if >30% strong if >0.7 fall if >10%

(i) Linear regression (R2)(ii) Mean Bias Error (MBE); (iii) Root-mean-square deviation (CV(RMSE); (iv) Pearson
Coefficient; (v) Normal Mean Bias Error (NMBE).

6. Conclusions

The results show that the calculation algorithm allows us to support the decision making process
regarding both the choice of whether to install a covering on the courtyard and the selection of the most
appropriate material to be used for the new roof. It can also support the definition of a management
plan regarding the actuation of the movable covering according to the climate conditions of the use
period. The effectiveness of the simplified approach is confirmed by the fact that changing the variables
related to the correction factor due to the shading (Fsh,e) or to the solar factor (g) of the transparent
covering element, the impacts on the temperature trends in the court (Tc) can be observed easily.
This allows us to compare alternative materials and design options at early stage in a quite short time
without investing the efforts and resources usually required to carry out the dynamic simulations of
multiple configurations including shielding devices and/or movable roof options.

The described methodology tries to offer a quick and relatively easy to use tool for including
the generated microclimate conditions when the opportunity to cover a courtyard is considered.
Considering the state of the art, most of the cases this decision is driven by functional issues and
the main technical concerns usually deal with structural configuration and calculation. Despite their
relevance, these components do not fully represent the complexity of the design challenge in terms of
creating comfortable spaces especially considering the evolving environmental conditions in dense
urban fabric due to the effects of climate change.

The proposed algorithm allows us to evaluate and compare multiple technological solutions
and several materials according to some pre-defined scenarios. Once the range of options has been
reduced, the selected solutions require further exploration through a more detailed assessment
process that carefully evaluates the dynamic behaviour with relation to the final architectural and
technological configuration.

Considering the complex and interrelated phenomena frequently involving confined spaces like
courtyards or atria, the constraints that often affect interventions on historical buildings, the risk
of underestimating the effects of design decisions driven by architectural priorities on indoor
environmental conditions, the chance to explore how different concepts may impact the efforts
through formula (7) to undertake a simplified approach can be considered a valuable alternative to
more complex and time-consuming detailed methods.

The proposed methodology has been developed within the wider research activity carried out at
the Department of Architecture of the University of Bologna concerning optimised design strategies as
tools to foster sustainability in architecture and to deliver energy efficient solutions also in the context
of historical building stock. Within this framework, the capacity to quickly compare alternatives
according to reliable and responsive methods for supporting the decision-making process is considered
a priority for facing the complex challenges of the near future.
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Appendix A

Table A1. Reference cases of covered courtyards after the renovation.

Reference Case Location Designer Use Typology

Santa Marta’s
military building Verona, Italy Massimo Carmassi

Architects Vertical circulation glass layer and
metal structure

British Museum London, United
Kingdom Foster and Partners

Circulation,
additional
functions

glass layer and
metal structure

Maritime Museum Amsterdam, The
Netherlands

Ney and Partners,
Dok Arch.

Rappange and
Partners

New hall glass layer and
metal structure

Glasdach Staatliche
Bibliothek Passau, Germany Awwscz-Westner

Schührer Zöhrer New library hall glass layer and
metal structure

Museum De
Lakenhal

Leiden, The
Netherlands

Happel Verhoeven,
Julian Harrap

Architects
Circulation glass layer and

metal structure

Neus Museum Berlin, Germany David Chipperfield
Architects

Additional space,
exhibition space

glass layer and
metal structure

Jewish Museum Berlin, Germany Daniel Libeskind Additional space,
Hall

glass layer and
metal structure

Museum of
Hamburg History

Hamburg,
Germany

Von Gerkan, Marg
and Partners (gmp)

Additional space,
Hall

glass layer and
metal structure and

cables

Maximilian
Museum

Augsburg,
Germany

Hochbauamt der
Stadt Augsburg,

Ludwig and Weiler
Ingenieure

Additional space,
Hall

glass layer
suspended by steel

cables

Beyazit State
Library Istanbul, Turkey Tabanlioglu

Architects
Additional space,

Hall

transparent
inflatable

membrane
structure
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Appendix B Heat Transfer Coefficient Hi and He

Table A2. Wall trasmittance (bricks).

Description Symbol Values Units

Brick thermal conductivity λ 0.5 W/mK
Wall thickness s 0.7 m

Thermal resistance R = s/λ 1.4 (m2K)/W
Thermal transmittance U = 1/R 0.71 W/(m2K)

Table A3. Heat-transfer coefficient.

Layer Description Symbol Hi Indoor Space (Inside)
and Hercules’ Court Values

He between Hercules’
Court and Outdoor Space

(Outside) Values
Units

Windows glass surface Aw 121.50 78.16 m2

Windows glass surface thermal transmittance Uw 5.8 5.8 W/(m2K)
Frame surface Af 40.50 19.54 m2

Frame thermal transmittance Uf 2 2 W/(m2K)
Opaque surface Ap 1088.78 817.31 m2

Opaque thermal transmittance Up 0.71 0.71 W/(m2K)
Heat transfer coefficient glass surface Aw·Uw 704.70 453.33 W/K

Heat transfer coefficient frame Af·Uf 81 39.08 W/K
Heat transfer coefficient opaque surface Ap·Up 777.70 583.79 W/K

H 1563.40 1076.21 W/K
Heat transfer coefficient (total)

Htot = Hi + He = 2639.61 W/K

Appendix C

Table A4. Input Data: Average Hourly Indoor and Outdoor Air Temperature (◦C) and Average Hourly
Solar Radiation (W/m2) Bologna 1 January 2016.

Hourly Average Hourly Outdoor Air
Temperature (◦C) (*)

Average Hourly Indoor Air
Temperature (◦C) (**)

Average Hourly Solar
Radiation (W/m2) (*)

00:00:00 3.3 21.71 −3.109
01:00:00 2.8 22.09 −0.311
02:00:00 3.1 22.48 −7.617
03:00:00 3.3 22.48 −9.949
04:00:00 2.5 22.86 −8.861
05:00:00 2.1 22.86 −9.016
06:00:00 1.6 22.86 −3.731
07:00:00 1.4 22.86 −0.155
08:00:00 1.5 22.86 50.833
09:00:00 2.5 22.86 165.713
10:00:00 4.4 22.86 266.135
11:00:00 5.5 22.86 312.927
12:00:00 6.1 22.86 318.368
13:00:00 6.5 22.48 259.606
14:00:00 6.8 22.86 186.233
15:00:00 6.1 22.86 83.478
16:00:00 4.5 22.86 10.415
17:00:00 3 22.48 −1.865
18:00:00 1.6 22.48 −0.933
19:00:00 1 22.48 1.865
20:00:00 0.9 22.09 1.244
21:00:00 0.7 22.09 −1.71
22:00:00 0.7 22.09 1.71
23:00:00 0.6 21.71 −2.643

Note: (*) Weather data by ARPAE Emilia-Romagna; (**) Indoor data by probe located inside building of University
of Bologna Library.
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