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Abstract: The use of assistive technologies, such as a non-invasive interface for neuroelectrical
signal and functional electrical stimulation (NESs-FESs), can mitigate the effects of spinal cord injury
(SCI), including impairment of motor, sensory, and autonomic functions. However, it requires an
adaptation process to enhance the user’s performance by tuning the learning curve to a point of
extreme relevance. Therefore, in this pilot study, the learning curves of two people with complete SCI
(PA: paraplegic-T6, and PB: quadriplegic-C4) were analyzed, with results obtained on the accuracy
of the classifier (AcCSP−LDA), repetitions of intra-day training, and number of hits and misses in
the activation of FESs for sixteen interventions using the NESs-FESs interface. We assumed that
the data were non-parametric and performed the Spearman’s ρ test (and p-value) for correlations
between the data. There was variation between the learning curves resulting from the training of
the NESs-FESs interface for the two participants, and the variation was influenced by factors both
related and unrelated to the individual users. Regardless of these factors, PA improved significantly
in its learning curve, as it presented lower values in all variables in the first interventions compared
to the PB, although only PA showed statistical correlation (on AcCSP−LDA values in RLL). It was
concluded that despite the variations according to factors intrinsic to the user and the functioning of
the equipment used, sixteen interventions were sufficient to achieve a good learning effect to control
the NESs-FESs interface.

Keywords: paraplegia; electrical stimulation; brain–computer interface

1. Introduction

Spinal cord injury (SCI) is a highly disabling condition that can result in severe impair-
ment of sensory, motor, and autonomic functions. This can lead to several complications
that can make it difficult for patients to perform basic activities of daily living, such as
sexual and bladder dysfunction, gastrointestinal and respiratory problems, and urinary
tract infections [1,2].

In these cases, specific therapies that aim to stimulate or not stimulate neuroplasticity
to promote axonal growth have been utilized. While this process is time-consuming, it can
increase pre-existing connections and promote the formation of new neuronal circuits [2].
In the presence of a compromised pathway, one form of intervention is through functional
neurorecovery, in which training capitalizes on the intrinsic mechanisms of the nervous
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system (NS) to generate rhythmic movements through sensorimotor pathways [3]. Accord-
ing to Musselman and colleagues [4], this pattern currently used in neurorehabilitation is
performed through assistive technologies (AT).

An example of AT in evidence is brain–machine interfaces (BCIs) which link cortical
control and electrical stimulation of muscles. Through this mechanism, these interfaces
engage part of the spinal cord function, making it possible to restore basic functions such
as gripping or muscle stretching [5]. According to Yang et al. [2], such BCIs must contain
a mechanism to record the neuroelectric signal (NESs), such as electroencephalography
(EEG), to send signals to a computer, which in turn decodes the expected movement
and activates auxiliary devices to perform the expected movement. This stimulus can be
performed through functional electrical stimulation devices (FESs) [6].

In order for the NES from the EEG to be more consistent with the desired task, it
is extremely important to use motor imagery (MI) for the desired action, which causes
oscillations in sensorimotor rhythms in the motor regions of the brain [7]. In addition,
according to Bobrova et al. [8], it has been suggested that BCI systems based on FESs
operate on the Hebbian learning principle, where the simultaneous excitation of the motor
zones of the cortex during MI and the spinal cord structure stimulated by FESs leads to
an improvement in the ability to control the movements of the paralyzed limb. With this
association between the computer and the effector systems, better secondary functions
are observed in intestinal, urinary, and sexual functions in addition to improvements in
flexibility and control of fine motor skills using the limbs [2].

However, as BCIs depend on full concentration to perform activities correctly, they
can be influenced by situations of anxiety, fatigue, or frustration. Therefore, strategies have
emerged to try to mitigate these limitations, which include mindfulness meditation and
music training. Of these, there has been greater emphasis on mindfulness for stimulating
self-regulation of cognitive and emotional processes [9].

In the use of BCIs, a point of extreme relevance is the learning curve that the user goes
through to adapt to the use of the interface and eventually enhance its performance. There
is a trend towards gradual improvement in the results as relevant therapies are maintained.
However, direct or indirect factors in the execution of neurorehabilitation, alternating between
user-specific elements and ways of implementing the methodologies and functioning of the
BCI, hinder the development of learning [3,10,11]. This pilot study aims to investigate the
learning curves of two people with complete spinal cord injury using the NESs-FESs interface
in the sitting position. As a hypothesis, it is expected that throughout the interventions the
users of the NESs-FESs interface will increase the accuracy of the NESs classifier and reduce
the false positive rate during the motor imagery to FESs activation process.

2. Materials and Methods

This was an uncontrolled longitudinal pilot study with a convenience sample com-
posed of people with motor deficits resulting from spinal cord injury. The research was
approved by the Ethics Committee in Research Involving Human Beings of the State Univer-
sity of Londrina (CEP-UEL), with opinion n◦ 4,060,700. Participants/users were recruited
through advertising in physiotherapy clinics in Londrina. The initial contact with the
participants took place through a brief interview via a telephone call to collect information
about the injury. In addition, the objectives of the project and how the interventions are
carried out were briefly explained. Subsequently, the participants were invited to visit the
Laboratório de Engenharia Neural e de Reabilitação (LENeR) and sign the form indicating
free and informed consent, allowing initiation of the research protocols. The research lasted
sixteen weeks for each participant, with one intervention per week (sixteen in total). The
transport costs of the participants were paid for by the laboratory’s administration section.

2.1. Inclusion Criteria

• Eighteen years of age or older;
• A spinal cord injury between the C4 and T10 levels;
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• An injury time greater than twelve months.

2.2. Exclusion Criteria

• Intolerance to discomfort caused by electrical stimulation;
• Presence of neoplastic tissue near or in the lower limbs (electrically stimulated area);
• Metallic implant in regions close to or between electrical stimulation electrodes;
• Any cognitive alteration that might prevent experimental intervention;
• Presence of other neurological or orthopedic disorders that might preclude experimen-

tal intervention;
• Presence of infectious disease;
• Presence of a cardiac pacemaker;
• Three consecutive absences without prior warning.

2.3. NESs

The participant was positioned seated in their wheelchair or an adapted chair in the
LENeR facilities. In the interventions, non-woven fabric meshes were used to cover the
chair and hide the lower limbs (LL), preventing their visualization by the participant during
the BCI calibration. During installation of the equipment care was taken to respect the
integrity of the participant in order to ensure their greater comfort.

2.3.1. NESs Acquisition

EEGs data were acquired using commercial equipment (Cyton OpenBCI Board®,
Brooklyn, NY, USA ). OpenVibe® (version 3.0) software was used to acquire the signals;
this software is an open-source C++ tool that can be customized for different purposes.
The acquisition frequency of the NESs was 250 Hz.

EEGs Channels

In all sessions, brain activity was recorded using gold electrodes (Maxxi Gold®, Rome,
Italy) distributed in a 10–10 system pattern over the scalp with conductive paste (Carbofix®,
Herzliya, Israel) and conductive gel (Ultra-gel Eletro®). The channels (unipolar) were
positioned in the Cz, C1 (or C2), FCz, and CPz regions and fixed with the aid of a customized
EEGs cap. Reference channels A1 and A2 were fixed bilaterally using Ag/AgCl electrodes
on the mastoid processes of the temporal bones.

NESs Preprocessing

The NESs was preprocessed using a 5th-order bandpass digital Butterworth filter
(8–25 Hz) with an analysis window duration of 500 ms and a passband ripple equal to 1 dB.
These settings were necessary to ensure the integrity of events related to desynchronization
and synchronization (ERD/ERS) during MI related to the lower limbs [12].

2.3.2. Step I—NESs Check

In the NESs checking phase, the feasibility of the signals recorded by the EEG electrodes
was investigated. Such signals are composed of a set of local and noise field potentials. In
the case of local field potentials, their measurement occurs from the depolarization of a
population of superficial neurons. Because it is very weak, this signal is subject to noise,
such as the noise caused by the electrical network.

After the signals were obtained, their demonstration was performed graphically under
the temporal domain. Afterwards, the data were subjected to Fourier transform in order to
decompose the deterministic signals into the frequency components [13] in order to permit
graphic demonstration within the spectral domain. This allowed for analysis of noise that
might interfere with the signal and the frequency bands that were present according to the
brain activity. The absence of wave patterns or cases of recording in rhythmic form indicate
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errors in capturing the signals in the region by the corresponding channel which need to be
corrected before proceeding.

2.3.3. Step II—Calibration of Motor Imagery

The assay methodology was adapted from Yusoff [12], in which participants looked at
a reference while simultaneously receiving instruction to perform the MI. An instructor
used mirrored and verbal movement to reproduce to the participant the instructions
(classes) that were indicated on the monitor, namely, (i) motor imagery and (ii) rest. At
these moments, the participant (1) imagined the knee extension movement, or (2) remained
inactive. Between 5 and 10 trials were performed, with an average duration of 8 s for the
two classes. The sequence of IM classes presented to the individual was random, and
the NESs was recorded by the system. The LL in which the classes started was random
in all interventions. MI training was performed at the beginning of every session, and
was performed individually for the left leg and right leg. Step II was performed up to
three times (lasting approximately 5–7 min in this Step) to achieve a better response before
proceeding to Step III.

2.3.4. Step III—Spatial Filtering

Feature extraction was performed using the Common Spatial Pattern (CSP) filter.
The equation of this filter is based on the work of Broniera-Junior et al. [14], where the
CSP maximizes the variance of the spatially filtered NESs under one condition (MI) while
minimizing it for the other condition (rest). The seventh-order spatial filter was considered
ideal for the present work.

2.3.5. Step IV—Motor Imagery Classifier

In this step, the Linear Discriminant Analysis (LDA) classifier was used to classify the
results obtained by the CSP filter by reducing the resources to a space of lower dimension
and maximizing the separation between the classes (MI and rest) [15]. The result of
the (AcCSP−LDA) classifier accuracy is expressed in percentage units (%). The choice of
the number of EEG channels and selection of the classifier were based on our previous
study [16], which indicated that for LDA four EEG channels presents more satisfactory
results compared to multi-layer perceptron and support vector machine approaches.

2.3.6. Step V—Application of the NESs-FESs Interface

In this step, the participant was again instructed to imagine the movement indicated
by the instructor. When MI activity was requested, the AcCSP−LDA value was automatically
calculated at 1 s. After calculation, if the AcCSP−LDA value was equal to or above 72% a
computational instruction was transferred from the OpenVibe® software to the Virtual-
Reality Peripheral Network (VRPN)-based interface developed in C++ in the Microsoft
Visual Studio® [17] environment. The signal received by the VRPN was then processed
and sent in binary form to the electrical stimulator via Bluetooth to activate it.

FESs

For artificial nerve activation [18], an electrical stimulator was customized exclusively
for this work following the criteria proposed in the IEC standard 60601-2-10 [19]. Two self-
adhesive electrodes were positioned in the anterior region of the volunteer’s thigh according
to the methodology of Krueger et al. [20], measuring 5 × 9 cm. One of the electrodes was
positioned with the lower edge 3 cm from the base of the patella and the other over the
femoral triangle [21] to stimulate the quadriceps muscle through the femoral nerve [22].
According to Krueger et al. [20], after fixing the electrodes, an interval of 10 min is respected
to stabilize the electrode–skin impedance. The biphasic electrical stimulation frequency
parameters were: carrier frequency of 1 kHz (positive: 200 µ + negative: 200 µ + off: 600 µ,
negative: 200 µ + positive: 200 µ + off: 600 µ). The modulated frequency was 20–40 Hz
(active period of 24 ms) to increase and decrease the pulse trains. The amplitude was
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modulated according to the instant of maximum electrically stimulated extension [20].
During step V, the activation condition of FESs occurred when the probability of similarity
of the classifier output signal is equal to or greater than 72%. The assembly of the equipment
on the participant is illustrated in Figure 1.

EEG NESS

VRPN

FESs

Figure 1. Illustration of participant during intervention. NESs: Surface neuroelectric signal, FESs:
Surface functional electrical stimulation.

2.3.7. Mindfulness Training

The audio used was developed by instructor Katya Stübing. It was suggested to both
participants that they listen to the audio daily at the period of the day that they felt the most
comfortable. Each mindfulness training session lasted 149 s. According to Linehan [23],
this training has been shown to improve emotional regulation. This daily task aimed to
improve the performance of the participant during the sessions when carrying out the
training and interventions.

2.4. Learning Curve Assessment

The participants’ assessment of the NESs-FESs interface learning curve included the
following items:

• Repetition of training;
• AcCSP−LDA values;
• Success percentage of FESs activation.

2.5. Data Analysis, Presentation, and Statistics

The present study analyzed the learning curves in the application of the NESs-FESs
interface in two people with complete spinal cord injuries. The participants were PA,
with lesion level T6 for eight years, and PB, with lesion level C4 for fourteen years. The
graphics were developed in a customized routine through the Plotly Open Source Graphing
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Library for Python®. (version 3.8.2-0ubuntu2) The image’s final editing was performed
in Inkscape® version 1.2.2. A customized routine of the open-source software Octave®

version 5.2.0 was used for statistical tests. Due to the small sample, we assumed that our
data were non-parametric and performed the Spearman’s ρ correlation (and p-value) test
for the sixteen sessions with AcCSP−LDA and the success percentage of FESs activation for
each participant and each leg.

3. Results and Discussion
3.1. Learning Curve

As the sessions were carried out, an increase in the efficiency of the interventions
was observed, with the participants gradually adapting to the interface and the indexes
presenting the number of training repetitions (AcCSP−LDA and success percentage for FESs
activation) improving .

3.1.1. User’s Repetition of MI Training

The repetition of user MI training was performed in different situations, such as
changes in FESs or when AcCSP−LDA values were insufficient for a correct intervention.
These repetitions proved to be efficient when the calibration was performed improperly,
allowing for better AcCSP−LDA values for the application of the NESs-FESs interface. How-
ever, as mentioned by Apicella et al. [11], when the calibrations are performed properly the
participants reported mental fatigue despite the benefits of repeating the exercise, which
may have reduced their performance.

Therefore, it was essential to look for ways to enhance the performance of the partici-
pants in order to minimize repetitions. Removing distractions may have positively affected
the learning curve with the interface, as it provided greater comfort for participants during
the interventions. Any individuals from the laboratory except the researcher and partici-
pant were removed during MI calibration, and any sound sources that could compromise
concentration were minimized. These actions are supported by the work of Tianhang
Liu [6], who has addressed the importance of mindfulness during such interventions.

However, several factors that interfered with the results persisted, such as the partici-
pant’s mood and self-reported mental fatigue before and during the calibrations [3,6,11].
Hernandez-Rojas et al. [10] have pointed out that this interference occurs due to the imple-
mentation of a two-class classification paradigm in which the classifier aims to discriminate
between two highly related and antagonistic conditions, such as “stretch the leg” and “relax
the leg”. For this reason, interfaces such as the one used in this research require broad
user engagement in the completion of the requested tasks, as other cognitive tasks can be
potentially interpreted within the pre-established paradigms even if they are not related to
movement, ultimately affecting the activation of the NESs-FESs interface.

3.1.2. Classifier Accuracy

The Figure 2 shows the AcCSP−LDA values (0–100%) of both participants during the
sixteen-week period, including the left lower limb (LLL) and right lower limb (RLL). A trend
towards improvement in AcCSP−LDA values was observed during the study period; it can
be seen in Figure 2 that as better values are obtained, more accurate activation signals
are sent to the NESs-FESs interface. Nonetheless, high values do not entirely avoid the
occurrence of errors during the activation of the FESs, and may not necessarily represent
better performance during the intervention.

PA showed gradual development in the ease of obtaining AcCSP−LDA values. At first,
the best AcCSP−LDA results obtained in the first intervention were 61.5% in the LLL and 50%
in the RLL. Comparatively, their best results consisted of AcCSP−LDA values of 91% in LLL
and 88% in RLL. However, the AcCSP−LDA correlation tests for PA among all interventions
were RLL = ρ = 0.59 (p = 0.02) and LLL = ρ = 0.47 (p = 0.07). The significant moderated
correlation output to RLL indicates a learning curve along the interventions that does not
statistically occur with LLL.
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PB presented high results from the first intervention that remained high and close for
the remainder of the study. He showed an initial AcCSP−LDA of 99% in LLL and 94% in RLL.
The best values obtained during the interventions were an AcCSP−LDA of 99% in both lower
limbs. However, the AcCSP−LDA correlation tests for PB among all interventions were RLL
= [ρ = 0.06 (p = 0.80) and LLL = ρ = −0.21 (p = 0.40). These insignificant correlation outputs
indicate that the learning curve for PB did not increase over the interventions. This may be
due to the PB presenting high AcCSP−LDA values beginning with the first intervention.
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Figure 2. AcCSP−LDA outputs by participants during interventions.

In the work of Hernandez-Rojas et al. [10], it was established through several studies
on BCIs that AcCSP−LDA in the range of 60% to 70% represents acceptable performance.
Based on these parameters, it is possible to analyze the development presented by the users
of the NESs-FESs interface more efficiently by comparing the performance of PA and PB
throughout the course of this study.

3.1.3. Success Percentage of FESs Activation

Figure 3 shows the success percentage of FESs activation throughout the interventions,
with larger circles indicating a greater number of attempts. The image shows the improved
adaptation of the participants to the methodology with each new session held. In the first
interventions, when the participants were adapting to the routine and the instructions,
there was a tendency for lower AcCSP−LDA values to occur, leading to greater errors in the
activation of the FESs due to the necessity of repeating the training. Performance gradually
improved until reaching a more typical result for each of the participants. In Nenadic’s
study [24] it was found that participants take an average of four to five sessions to achieve
their best performance. This suggests that performance may improve over time due to
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human–computer co-adaptation, and perhaps to other factors such as MI reactivation of
dormant cortical areas.
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Figure 3. Percentage of correct FESs activation for PA and PB during interventions. Motor imagery
trials from 5 (smaller circle) to 38 (greater circle).

Notably, individual performance varied from time to time due to isolated factors on
certain days, such as problems with equipment, concentration, or quality in AcCSP−LDA
capture. Therefore, even in instances where several sessions had been performed and there
was a full understanding of the researcher’s instructions, there were interventions in which
the participants’ performance was lower than on previous ones. This is corroborated by
Liu’s work [6], in which it was found that the best performance in NESs-FESs interfaces
requires long training and a high degree of concentration on the part of participants.

For both participants, it was noticed that a sequence of false positives or omissions
in the same period of application of the NESs-FESs interface exponentially affected the
performance on that day. In these situations, the participants (especially PA) started to
show greater anxiety about seeking to improve their results, even when external factors
were interfering. The work of Hernandez-Rojas et al. [10] has a strong relationship with this
point, as it highlights the need for the BCI system to be able to minimize the rate of false
negatives to avoid frustration on the part of patients when they cannot control the activation
of the system. Furthermore, the same study found that the time spent by the BCI system to
activate the FESs device varied between 8.43 s and 13.91 s among participants with SCI.
This is compatible with situations in which the participants in the present study presented
a lower AcCSP−LDA than usual, which contrasted with the more common situation where
the activation of the interface occurred almost instantly. Similar findings were reported by
Nenadic [24] and Liu [6].

Individually, PA underwent a gradual improvement, improving from hit percentages
of 40% (LLL) and 26% (RLL) in the first intervention to a peak of 84% (LLL) and 100%
(RLL). The percentage of successful FESs activation correlation tests for PA among all the in-
terventions were RLL = ρ = 0.40 (p = 0.11) and LLL = ρ = 0.12 (p = 0.65). These insignificant
correlation outputs represent that the learning curve does not increase along the inter-
ventions compared to the percentage of successful FESs activation. PB, on the other hand,
maintained high results, obtaining percentages of 83% (LLL) and 95% (RLL) in the first inter-
vention and reaching a peak of 100% in both lower limbs. The percentage of successful FESs
activation correlation tests for PB among all interventions was RLL = ρ = −0.04 (p = 0.88)
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and LLL = ρ = 0.26 (p = 0.32). These insignificant correlation outputs represent that the learning
curve does not increase along the interventions to success percentage of FESs activation. It
should be noted that for certain interventions shown in the images data collection could
not be included due to equipment failure.

3.1.4. Inter-Subject Variability

The differences in performance among the participants illustrate the different elements
that can affect the learning curve with this interface. PB presented high performance
values much more quickly than PA, obtaining AcCSP−LDA greater than 90% in the first
interventions, while PA needed more than half of the sixteen planned interventions to
maintain consistent results above 75%. When questioned, PB claimed to know about and
use audio related to mindfulness, including the content indicated when beginning the study.
Furthermore, compared to PA, PB could be said to have a more restrained and carefree
personality; this may be related to greater focus on instructions and less self-pressure
related to better performance [6].

Our results are consistent with the findings of Behrman et al. [3] for groups with
incomplete SCI, where they found that, in addition to differences in protocol execution,
variability in the results may reflect the intrinsic heterogeneity between participants. These
individual aspects may be associated with direct consequences of the injury (for example,
severity, location, and time of injury, as well as the presence of correlated medications) and
personal factors (including personal motivation and family support).

It is possible to notice differences in the methods adopted by the participants in terms of
the way they performed the MI. PB tried to maintain mindfulness with respect to the lower
limbs, while PA typically directed vision to a neutral location. This element is related to the
work of Rimbert et al. [25], where it is stated that there is considerable inter-subject and intra-
subject variability in the ERD/ERS patterns generated during MI tasks and in interface
performances. Considering this, factors such as the nature of the movement or force or the
opening and closing of the eyes may influence the modulation of ERD/ERS. Therefore, in
the context in which PA had an MI pattern that does not include the full visualization of
the lower limbs in moments of non-execution of movement, a brief observation of the legs
could induce the activation of the NESs-FESs interface [10].

3.2. Study Limitations

Certain situations observed during the study interfered negatively with the achieve-
ment of results during the interventions. Occasional problems with the equipment deserve
to be highlighted, such as in the capture of EEG by the OpenVibe software and the ac-
tivation of the FESs. In this regard, problems in the batteries of the devices involved in
the NESs-FESs interface were present more frequently. The efficiency of EEG itself has
limitations in the implementation of the interface, as discussed by Nenadic [24]; although
the possibility of highly accurate control in EEG-based BCIs has been demonstrated, the
implementation of these systems outside the experimental environment may require very
high levels of performance. This is due to possible reading errors, such as omissions or
false positives, which were consistent in certain interventions. It is evident that even with
greater adaptation to the equipment by the participants, the capture of signals by the EEG
is susceptible to both biological and non-biological artifacts due to the low field potential
produced by neuronal depolarization and the limitations of the electrodes [6].

Another important limitation is that this was a pilot study to investigate the use of the
NESs-FESs interface and the learning curve in individuals with complete SCI; we used a
limited sample of two participants, which may not reflect all cases. Furthermore, the results
obtained in this study were limited to activating the interface only for the selected specific
task (MI), and it was not applied to any other tasks.

One of the possible artifacts that can compromise the performance of an EEG-based
BCI is the electrical network, which can cause noise in the capture of signals. Therefore, the
use of electronic devices with Bluetooth connection and an internet network close to the
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equipment involved in the intervention was avoided due to risk of reducing the efficiency of
MI calibration. The participant’s emotional state at the time of the intervention is another factor
that can interfere with the results, either for reasons due to events prior to the intervention or
due to frustration at not being able to complete a requested task [3,6,11]. In this aspect, it is
important to properly calibrate the system in order to avoid false positive results and prevent
frustration on the part of the user [10].

An final point worth mentioning is the uncertainty regarding the reliability of the
data, as there is a possibility of the participants contracting the preserved musculature
above the injury level during motor imagery training. However, this would lead to a bias
in the capture of signals where the activation of FESs would be triggered by the voluntary
contraction of this musculature, resulting in inconsistent data values during integration
with the interface, as the command needs to come directly from the brain. A possible
correction would be the collection of data involved with this accessory movement, which
could be correlated with the results to verify the level of interference.

4. Conclusions

Relevant variability was observed between individuals, with differences in the values
of AcCSP−LDA, hit rates, and repetition of training. These differences can be explained
by both individual factors and factors directly related to the NESs-FESs interface, with
the individual factors being more determinative of the variation in the results for each
participant. Among the participants, PA showed gradual development, presenting initial
AcCSP−LDA values of 61.5% (LLL) and 50% (RLL) and reaching high values of 91% (LLL)
and 88% (RLL), with statistical correlation only for the RLL. Comparatively, PB started with
good results that remained high, presenting initial AcCSP−LDA of 99% (LLL) and 94% (RLL)
and reaching 99% bilaterally, with no statistical correlation. This may be due PB presenting
high AcCSP−LDA values from the first intervention. Regarding the percentage of hits, there
was variation over the course of the study, although neither participant showed statistical
correlation. PA had initial values of 40% and 26%, respectively, and reached values of 84%
and 100%, while PB initially presented hit rates of 83% and 95%, and eventually reached 100%
bilaterally.

Thus, despite the variations between users, sixteen interventions were sufficient to
achieve a good learning effect to control the NESs-FESs interface for quadriceps femoris
muscle activation in the sitting position.

For subsequent studies, our research team is developing a Python® framework in
which will make possible:

• Integration with other sensors;
• Use of accelerometer metrics to avoid movement artifacts from head movement;
• Accurate measurement of time spent on FESs activation;
• Better recognition of false positive FESs activations;
• Accurate real-time identification of the computational cost of a user performing the

most proximal MI task;
• Correlation of obtained data with the neuroanatomical autonomous system through

cardiac frequency and electrodermal activity.
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Abbreviations

SCI Spinal Cord Injury
AT Assistive Technologies
BCI Brain–Computer Interface
BCIs Brain–Computer Interfaces
EEG Electroencephalography
MI Motor Imagery
LL Lower Limb
RLL Right Lower Limb
LLL Left Lower Limb
CSP Common Spatial Pattern
LDA Linear Discriminant Analysis
VRPN Virtual Reality Peripheral Network
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