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Abstract: Machine failure in modern industry leads to lost production and reduced competitiveness.
Maintenance costs represent between 15% and 60% of the manufacturing cost of the final product,
and in heavy industry, these costs can be as high as 50% of the total production cost. Predictive
maintenance is an efficient technique to avoid unexpected maintenance stops during production in
industry. Vibration measurement is the main non-invasive method for locating and predicting faults in
rotating machine components. This paper reviews the techniques and tools used to collect and analyze
vibration data, as well as the methods used to interpret and diagnose faults in rotating machinery.
The main steps of this technique are discussed, including data acquisition, data transmission, signal
processing, and fault detection. Predictive maintenance through vibration analysis is a key strategy
for cost reduction and a mandatory application in modern industry.
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1. Introduction

Rotating machinery is used in a variety of industries. They include equipment such
as motors, pumps, fans, generators, compressors, and more. Motors and generators are
essential to the operation of an industrial facility to maintain productivity, efficiency, and
safety of operations. Research on the reliability of electrical machines has identified that
failures can occur in all engine components [1]. Machine failures often occur due to contin-
uous operation and various cyclic loading situations. This process leads to gradual wear
of components, which increases the risk of failure [2]. This wear of machine components
can be considered normal and is a consequence of machine operation. What is not normal,
however, is the operation of these components under critical conditions, compromising the
integrity of components in good condition and exposing the machine to total failure.

Machine failure results in production losses and increased maintenance costs. Ac-
cording to the literature, maintenance costs account for between 15% and 60% of the
manufacturing cost of the final product, and in heavy industry, these costs can be as high
as 50% of the total production cost [3]. These costs can be avoided by choosing an efficient
maintenance strategy, which allows for detecting and correcting the problem in time. The
main objective of the maintenance techniques strategy is to increase the availability of
machines with lower maintenance costs [4].

Maintenance techniques can be basically divided into three types, breakdown main-
tenance, preventive maintenance, and predictive maintenance (PdM) [4,5]. Among the
techniques used for equipment maintenance, PdM has proven to be the most efficient in the
industrial environment. PdM is based on the analysis of data collected through monitoring
or inspections [6]. The data are collected from machines to determine the health status and
define the maintenance strategy. Various techniques are available for monitoring machine
health, such as acoustic emission, vibration monitoring, temperature monitoring, noise
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monitoring, current monitoring, oil and debris monitoring, and corrosion monitoring. Each
technique has its proper characteristic of application and use [2–4].

Faults can be detected by a variety of diagnostic methods. Among the various tech-
niques used in predictive maintenance, vibration analysis has emerged as a valuable tool.
By analyzing the vibration patterns of machines, it becomes possible to detect abnormalities
and early signs of faults. Vibration monitoring has proven to be an effective method for
locating faults in machine components [3,4,7]. Vibrations are oscillatory movements of
equipment around its equilibrium position. Any change in signal amplitude or frequency
indicates that machine performance is impaired [8].

Vibration analysis can be an effective tool for diagnosing faults of looseness, eccen-
tricity, imbalance, blade defects, misalignment, defective bearings, damaged gears, and
cracked or bent shafts [9,10]. As a result, this technique has emerged as a powerful and
well-established PdM technique for rotating machines [11]. Compared to other PdM tech-
niques, vibration analysis offers several advantages, such as high accuracy, sensitivity to
a wide range of defect types, and it is a noninvasive and nondestructive method [12,13].
However, this method also has some disadvantages, such as the difficulty of fault detection
in machines with low rotations [14], the need for continuous monitoring, and the need for
reliable sensors to collect machine data.

Figure 1 shows an example of a system installed in an electrical machine located in
an industry for continuously monitoring vibration. Figure 2 shows the detail of an IoT
vibration monitoring system that is able to measure four points simultaneously in the
same machine.

Figure 1. Example of vibration monitoring system installed in an electrical rotating machine for
predictive maintenance.
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Figure 2. A vibration monitoring system composed of 4 sensors for simultaneously measuring
4 points in the same rotating machine [15].

The process of fault diagnosis in machine monitoring by vibration analysis mainly
consists of four steps: data acquisition, data transmission, signal processing, and fault
detection. The main steps of fault diagnosis in rotating machinery by vibration analysis are
shown in Figure 3. Data acquisition can be performed using many vibration measurement
devices available on the market. These devices can use different types of transducers to
perform a measurement. Among the types of sensors used to acquire the vibration signal,
the accelerometer is the most commonly used [16]. Signal processing consists of manipulat-
ing, filtering, digitizing, and analyzing raw data to extract meaningful information. It is a
crucial aspect of vibration analysis because it allows the extraction of patterns and insights
from a large amount of vibration data that would otherwise be difficult to interpret [17,18].
Fault detection is the final step of the vibration analysis process. In this stage the vibration
signal is recorded in the time or frequency domain. Then, this signal is interpreted by an
expert to determine the type of fault and its location [19].

Data Acquisition
- sensor
- sensor mounting

Data Transmission
- wired
- wireless

Signal Processing

- time domain
- frequency domain
- time-frequency
   domain

Fault Recognition
- Manual
- AI-Based

Figure 3. Main steps for fault diagnosis in rotating machinery through vibration analysis.

Evaluating life prediction through vibration analysis is challenging in terms of cap-
turing the hidden nonlinear fault dynamics and adequately representing them with engi-
neering characteristics. Vibration signals in rotating machinery are non-stationary, which
complicates their analysis due to changing time–frequency characteristics. Bearing faults
present a particular challenge because traditional methods assume only rolling behavior,
while a combination of rolling and sliding causes dynamic frequency shifts. Non-stationary
early vibration signals dominated by external vibrations and the presence of multiple simul-
taneous faults further complicate accurate fault diagnosis. Disturbances from additional
vibration sources, such as bearing looseness, increase the complexity of the analysis. Over-
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coming these challenges requires advanced signal processing, feature extraction, and fault
diagnosis algorithms capable of handling nonlinear dynamics and extracting relevant
information from complex vibration signals [20].

To improve fault analysis, different types of signals can be acquired simultaneously,
such as vibration signals, acoustic emissions, temperature, etc. More system information
leads to a more accurate estimate of the machine’s condition. Compared to the scenario
where data from a single sensor are used, better predictive performance can be achieved by
fusing data from multiple sensors [21].

Artificial intelligence (AI) and machine learning (ML) have been used for detecting
faults. This method does not require an expert to perform the analysis and has been
the subject of much research in recent years [19,22]. One issue facing the adoption of
machine learning algorithms is the need for large data sets, which generally require access
to machine data from multiple companies and factories. Despite the potential benefits of
data sharing, this solution is not usually preferred due to the importance of data privacy
in real-world industries. To address this problem, the work of [23] proposes a federated
transfer learning method for machine fault diagnosis, where customer-invariant features
can be extracted for diagnosis while maintaining data privacy.

Given the importance of vibration analysis for the predictive maintenance of rotating
machines in order to reduce maintenance costs, as well as reduce machine downtime, this
work provides an overview of some techniques and tools used to collect and analyze vibra-
tion data, as well as methods of interpreting and diagnosing faults in rotating machinery
using this data. The rest of this article is organized as follows: Section 2 describes the types
of sensors and the techniques for mounting the sensor on the machine that are used to
collect vibration data; Section 3 discusses the main ways to transmit the acquired data,
namely conventional cable transmission and wireless transmission; Section 4 presents the
main techniques for processing vibration signals and methods for identifying faults in
rotating machinery; and Section 5 provides concluding remarks.

2. Data Acquisition

To measure machinery vibration, a transducer or a vibration pickup is used. A trans-
ducer is a device that converts changes in mechanical quantities into changes in other
physical quantities, usually an electrical signal proportional to a parameter of the experi-
enced motion. There are three commonly used transducers for vibration measurement:
displacement sensors, velocity sensors, and accelerometers [24]. Each sensor has some
advantages and disadvantages, depending on the application. The type of sensor used is
basically determined by the frequency range, sensitivity, and operating limits.

New approaches have been proposed, such as the use of vision data from the event-
based camera [25]. However, accelerometers are most commonly used because of their
greater accuracy, measurement range, ease of mounting, and cost. Moreover, it is relatively
simple to numerically integrate the acceleration signal and obtain the velocity and displace-
ment [26,27]. The next subsections discuss the main characteristics of these three types
of sensors.

2.1. Displacement Transducers

Displacement transducers use capacitive, optical, or ultrasonic principles to mea-
sure vibration displacement. They are suitable for measuring vibration frequencies below
10 Hz [28]. There are several types of displacement transducers, some of which are based
on variable resistance and others on induced currents. The most used for predictive main-
tenance in rotating machines are those based on induced currents [26]. These transducers,
also called eddy current sensors or gap current sensors, are installed a short distance
from the surface whose vibrations are to be measured. The eddy current sensor uses
a high-frequency current in a coil inside the sensor head to generate a high-frequency
magnetic field. When this magnetic field achieves a conductor in the measuring object,
an eddy current is generated on the surface of the measuring object, and the impedance
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of the sensor coil changes. This change in impedance is proportional to the gap between
the transducer and the vibrating surface [29]. The main advantage of this type of sensor
over others is its application in low-frequency measurements and its great temperature
stability [26]. Furthermore, it requires a simple processing circuit. This sensor can easily
identify problems such as imbalance and misalignment in electrical motors or generators.
On the other hand, the disadvantages are that this type of sensor is difficult to install, it is
susceptible to shocks, and the calibration depends on the type of surface material [30].

2.2. Velocity Transducer

Velocity transducers are electromechanical sensors designed to directly measure vi-
bratory movement. The velocity sensor is basically composed of three parts: a permanent
magnet, a coil of wire, and spring supports. The schematic of the velocity sensor is shown
in Figure 4. This type of sensor is based on the principle of electromagnetic induction. The
movement of a coil within the magnetic field results in the generation of an induced voltage
across the end wires of the coil. This voltage is produced by the transfer of energy from
the magnetic field of the magnet to the wire coil. When the coil is subjected to vibration, it
experiences relative movement with respect to the magnet, which leads to the induction of a
voltage signal. This voltage signal is directly proportional to the speed of vibration applied
to the sensor. An advantage is that this sensor does not need any external power supply for
its operation. The sensitivity of the velocity is constant over a specified frequency range,
usually between 10 Hz and 1000 Hz. The sensitivity decreases at low vibration frequencies,
which causes inaccurate readings at vibration frequencies below 10 Hz [24,28].

Connector

Spring

Coil

Magnet

Damping fluid

S

N

Figure 4. Velocity sensor schematic with the indication of main components.

Other advantages of velocity sensors are the ease of installation, strong signal in the
mid-frequency range, and low cost when compared to piezoelectric accelerometers. The dis-
advantages include the relative large size, weight, variable sensitivity to input frequencies,
narrow frequency response, moving parts, and sensitivity to magnetic interference [24,26].

2.3. Accelerometers

Accelerometers are electromechanical transducers designed for measuring linear accel-
eration and are the most popular transducers used for rotating machinery applications [24].
There are many types of accelerometers, however, for measuring the vibration of rotat-
ing machines, the most used are the piezoelectric and microelectromechanical system
(MEMS) accelerometers. These sensors can be uniaxial—detecting acceleration in only
one axis—or triaxial—when the accelerometer can identify movements in three dimen-
sions. Compared to the uniaxial accelerometer, the triaxial accelerometer demands a larger
memory capacity, resulting in a higher cost [30].

2.3.1. Piezoelectric Accelerometer

The piezoelectric accelerometer produces an electrical signal in the output proportional
to the incident acceleration. The working mechanism is based on the piezoelectric effect,
which converts mechanical motion to a voltage signal. When the piezoelectric crystal of the
sensor is deformed by an external force (acceleration), it generates a certain potential differ-
ence between its terminals that is proportional to the force to which it is subjected [26,31].
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A representation of the piezoelectric sensor and its components can be seen in Figure 5.
This type of accelerometer is one of the most used transducers for measuring vibrations,
as it presents the best general characteristics when compared to the other transducers. It has
a wide frequency range and presents a dynamic range with good linearity. It is relatively
robust and stable so its characteristics remain stable for a long period of time. Piezoelectric
accelerometers have greater reliability when compared to other types of sensors, being able
to operate in a frequency range of 1 Hz to 30 kHz; therefore, they are suitable for measuring
high-frequency vibrations [24,27].

Accelerometer 
housingmass

piezocristal

Vibrating
surface

damper

conductive
coating

Preload
spring

output

Mounting
stud

Figure 5. Schematic of a piezoelectric accelerometer.

2.3.2. MEMS Accelerometer

The rapid development of semiconductor microfabrication techniques made possible
the creation of devices composed of mechanical parts with dimensions of up to a few
micrometers [32]. It led to the development of micro-electro mechanical system (MEMS)
accelerometers. These devices are characterized by their small size and low cost compared
with the piezoelectric accelerometers [33]. As a result, MEMS accelerometers are particularly
attractive for vibration monitoring in rotating structures [34].

MEMS accelerometers can be implemented based on piezoresistive or capacitive
principles. Capacitive MEMS accelerometers are less sensitive to thermal excitation, which
enables capacitance sensing to provide a wider operating temperature range [33]. They
present three fundamental structures for their operation: the mobile test mass, the spring
region, and the fixed structures or capacitive fingers. Figure 6 depicts these elements. The
capacitive fingers are placed on both sides of the accelerometer. The accelerometer design
allows for lateral movement of the test mass. When the sensor is at rest, the capacitance is
equal on both sides of the test mass. When the device is under the effect of acceleration
in a given direction, the mass moves in the opposite direction, so the capacitances formed
between the fingers and the fixed structure on both sides are different. The acceleration is
measured by reading the changes in the differential capacitance [35].

Most of the MEMS accelerometers available in the market are capable of measur-
ing accelerations in three perpendicular directions simultaneously. Furthermore, MEMS
accelerometers allow the easy acquisition of analog or digital signals, even with cheap
microcontrollers. This can be considered the biggest advantage over traditional accelerome-
ters, which are more accurate and reliable but require wires to transmit the collected data
and still need a more robust signal conditioning circuit [34].

MEMS accelerometers have been implemented and tested for vibration measurement
in a wide variety of machines, primarily because of their ease of integration into IoT
systems. Rossi et al. [34] compared the use of a piezoelectric accelerometer with a MEMS
accelerometer connected to a Raspberry PI microcontroller to measure vibration in a
rotating machine. As a result, they found a difference of less than 5% between the data
measured by the MEMS accelerometer system and the piezoelectric accelerometer. In recent
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years, several publications and studies that use MEMS accelerometers to measure vibration
can be found. This is due to the evolution of fabrication technology that makes MEMS
accelerometers more accurate, with a wide operating frequency range and at a lower cost
compared to piezoelectric accelerometers.
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Figure 6. Diagram of an integrated MEMS accelerometer.

2.4. Sensor Mounting

Effective acquisition of vibration data is highly dependent on the proper technique
of sensor mounting on the machine. In continuous or online machine condition moni-
toring, vibration sensors are usually mounted at a specific location on the machine [30].
The mounting methods depend largely on the sensor to be used. However, there are four
main methods that can be used for both velocity and acceleration sensors: stud bolt mount,
adhesive mount, magnetic mount, and unmounted [24].

In stud mounting, the sensor is screwed into a stud to attach it to the machine. This
technique is extremely reliable and secure, making it ideal for permanently mounted
applications. It also provides the best frequency response compared to other methods.
It is important to ensure that the mounting surface is clean and free of paint to avoid
irregularities that could cause incorrect readings or damage to the sensor [24].

If the machine cannot be drilled for stud mounting, adhesive mounting is a good
alternative. This method involves applying epoxy, glue, or wax to the mounting surface. It
is easy to apply, but the dampening effect of the adhesive reduces measurement accuracy.
In addition, sensors mounted with adhesive are more difficult to remove compared to other
mounting methods [24].

The magnetic mount is typically used for temporary vibration measurements with
portable analyzers. It is not recommended for permanent monitoring because the sensor can
be inadvertently moved and the multiple surfaces and materials of the magnet can interfere
with the high-frequency vibrations [24]. This can be mitigated by using neodymium
magnets, the strongest type of permanent magnets commercially available. The magnetic
mount is the most flexible mounting method, as the sensor can be attached and removed
countless times without damaging the device or machine. Figure 7 illustrates magnetic
mounting in an electric motor.
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Magnetic mount sensors 

Figure 7. Magnetic mounting of two MEMS accelerometers on an electrical motor.

Finally, the unmounted method uses a probe tip with no external mechanism. It
is often used in hard-to-reach places. However, the length of the probe tip can affect
measurement accuracy, with longer probes leading to greater inaccuracies [30]. It is also
used in manual vibration measurements, where the probe tip is placed on the machine
surface at the point of interest for a few seconds and then removed.

In addition to the four methods described, there are other techniques for mounting
vibration sensors using clamps, brackets, and flexible cables. These methods provide
additional flexibility for mounting sensors on rotating machinery, but may introduce
harmonics into the measured signal.

Choosing the right method for mounting vibration sensors on rotating machinery
is critical to obtaining accurate and reliable data. Each method has its advantages and
limitations, and selection should be based on the application and the equipment to be used.
Proper installation and placement of the sensors is also critical for accurate measurements.

3. Data Transmission

Permanent or long-term measurement of vibration in rotating machinery requires a
reliable means of storing and transmitting measurement data. There are several ways to
establish communication between measuring devices to transmit vibration data. Commu-
nication can be direct from the device/sensor to the Internet, where the data are stored for
later analysis, or communication can be from sensor to sensor to the end device, which
must have access to the Internet. The fourth industry revolution (Industry 4.0) is based on
automation and digitalization. This includes the introduction of the Internet of Things (IoT),
machine-to-machine communication, improved data transmission and communication,
and condition monitoring [36–38].

With the evolution of technology and the insertion of IoT in industries, various forms
of communication and data transmission are available. Among them, the most widespread
are: wired, Bluetooth, Wi-Fi, and LoRa/LoraWAN [36,39–41].

Wired data transmission is a stable and secure method for connecting sensors to
the monitoring system [42–44]. The main advantage of data transmission via cables is
the high data transfer rates that can be achieved. Additionally, cables can transmit data
over long distances and provide a high level of security. Unlike wireless communication
methods, wired communication is not susceptible to interference or hacking, making
it a secure and reliable choice for transmitting confidential data. However, there are
some disadvantages. This method involves high costs, complicated cable installation and
maintenance, and is still not scalable [36,45]. In summary, wired connections provide a
stable and reliable means of data transmission that is less susceptible to interference than
wireless connections. However, wired connections are less practical in terms of mobility
and may require additional hardware and setup.
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Bluetooth is a widely used wireless communication technology for short-distance
data transmission that can be used to transmit vibration data from rotating machinery [46].
It is a simple and easy-to-use technology with low power consumption and relatively
low cost [47]. However, Bluetooth has some limitations, such as limited range and the
potential for interference from other wireless technologies operating on the same frequency
band [47,48]. To overcome these limitations, Bluetooth Mesh technology emerged. It is a
mesh networking protocol that allows large-scale networks of Bluetooth devices to be built,
providing greater coverage and flexibility. Bluetooth Mesh is more reliable than traditional
Bluetooth, with built-in error correction and redundancy features. However, the use of
multiple devices can create security vulnerabilities [49]. Despite these advantages and dis-
advantages, Bluetooth and Bluetooth Mesh remain popular choices for many applications
that require wireless data transmission, such as vibration monitoring of rotating machinery.
Using Bluetooth Mesh in large-scale networks can provide better coverage and flexibility,
while traditional Bluetooth can be a more cost-effective solution for small-scale applications
with limited range.

Wi-Fi is also widely used for wireless communication in IoT applications, including
vibration monitoring of rotating machinery in industry [37,50]. Wi-Fi is a widely used
wireless communication technology that can transmit data over longer distances than
Bluetooth [51]. Wi-Fi Mesh offers the advantage of scalability, allowing large networks of
Wi-Fi devices to be built to cover larger areas and support more devices because devices
can communicate with each other and create multiple paths for data transmission [52].
Wi-Fi devices can be easily connected to other Wi-Fi-enabled devices such as computers
and smartphones, making it easier to access and analyze vibration data [22]. However,
there are also some limitations to using Wi-Fi and Wi-Fi Mesh for vibration monitoring,
such as high power consumption, possible interference, and security concerns. The use
of Wi-Fi and Wi-Fi Mesh may also require additional infrastructure and installation costs
depending on the size and complexity of the network [37,51].

LoRa/LoraWAN technologies are wireless communication methods used to transmit
vibration data from rotating machinery [53,54]. These technologies offer long ranges, low
power consumption, and high network capacity [55]. LoRa technology, developed by
Semtech Corporation, is a physical layer technology, while LoRaWAN is a network protocol
built on top of LoRa [56]. They are suitable for monitoring machines in remote locations,
offering a large network capacity and interoperability between different devices and net-
works [57]. However, their relatively low data rates make them suitable for low-to-moderate
data rate applications, such as vibration monitoring. Overall, LoRa/LoraWAN technolo-
gies offer reliable and cost-effective methods for wireless transmission of vibration data,
especially for monitoring rotating machinery in remote and hard-to-reach locations [58].

In summary, several methods are available for transmitting the vibration data ac-
quired from rotating machinery, ranging from wired to wireless communication technolo-
gies. A summary of the characteristics of the main communication and data transmission
methods can be found in Table 1. Wired communications provide stable and reliable data
transmission with high security, but can be less convenient and more expensive. Bluetooth
and Wi-Fi offer wireless communication options with varying range, scalability, and po-
tential security concerns. LoRa/LoraWAN offers long range and high network capacity,
but with lower data transfer rates. The choice of communication method depends on
specific application requirements, such as the distance between sensors and the monitoring
system, the amount of data to be transmitted, and the level of security required. Overall,
the development of IoT and digitalization has greatly expanded the options for transmitting
vibration data and offers more efficient and cost-effective solutions for monitoring rotating
machinery in various industries.
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Table 1. Comparison between common communication methods [37,59–61].

Wired Bluetooth Wi-Fi LoRa

Frequency band - 2.4 GHz 2.4–5 GHz sub-GHz, 2.4 GHz
Typical range - 10 m 100 m 3–12 km
Range on factory floor - ≈5 m ≈25–50 m -

Max Data rate 1 Mb/s 35 Mb/s–1 Gb/s 00.18–37.5 kbps,
31.72–253.91 kbps

Latency Lowest Moderate Low -
Throughput High Low Moderate
Scalability Difficult Easy Easy Easy
Interference susceptibility Low High High
Power consumption - Moderate High Low

4. Techniques for Signal Processing

Obtaining information through signal processing is one of the main elements for the
analysis of vibration in machines. At the same time, signal processing can be considered
demanding, since it aims at highlighting the features of the collected vibration signals,
which are generally noisy and complex. Therefore, the data must be processed in such a
way that the features of interest can be extracted.

There are several vibration signal processing methods that can be applied in monitor-
ing rotating machinery to identify and diagnose defects or characteristic variations in the
measured signal that indicate possible failures. These techniques can be divided into time
domain analysis, frequency domain analysis, and time-frequency analysis. The choice of
technique depends heavily on the signal to be analyzed and the characteristics of the signal
to be evaluated to identify possible defects.

4.1. Time Domain Analysis

The technique of vibration analysis of rotating machinery in the time domain is the
simplest analysis that can be performed. Many features such as the presence of amplitude
modulation, shaft frequency components, shaft imbalance, transients, and higher frequency
components can be identified visually by analyzing portions of the waveform in the
function of time [62]. However, this is not sufficient to effectively detect changes in the
vibration signal caused by potential faults. More sophisticated parameters and approaches
should be used for time domain analysis, such as statistical parameter trends in the time
domain [63]. Several statistical parameters can be defined, such as root-mean-square (RMS),
peak, crest factor, and kurtosis [4]. These parameters are described hereafter.

4.1.1. Peak

The peak is the maximum value of signal x(t) in the measured time interval and is
defined as [62,64]:

Peak = max(|x(t)|) (1)

4.1.2. Root-Mean-Square (RMS)

Root-mean-square is related to the energy of the sampled signal, so it can contain
useful information about signal construction [64,65]. This parameter is defined as:

RMS =

√√√√ 1
N

N

∑
i=1

(xi)2 (2)

Here, N is the number of measured points and xi is the value of the ith sensor out-
put signal.
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4.1.3. Crest Factor (CRF)

Crest factor is the ratio of peak and RMS value of the signal, which shows the spikiness
of the vibration signal. A CRF near 1 represents a lower spiky signal [64,65]. Crest factor is
defined as:

CRF =
Peak
RMS

(3)

4.1.4. Kurtosis (KUR)

Kurtosis is the measure of the tailedness of the probability density function of a
time series. This number is related to the tails of the distribution. A high kurtosis value
corresponds to a greater extremity of deviations (or outliers). The kurtosis is defined as the
standardized fourth moment [64,65]:

KUR = µ̃4 =
µ4

σ4 , (4)

where µ4 is the unstandardized central fourth moment and σ is the standard deviation.
A summary of the advantages and disadvantages of the time domain vibration analysis

techniques can be seen in Table 2.

Table 2. Advantages and disadvantages of time domain methods.

Time Domain Methods Advantages Disadvantages

Peak Simple technique.
Considers only the maximum

value of x(t) because this
technique is sensitive to noise.

RMS
Easy technique, RMS values are
not affected by isolated peaks

in the signal.

It is not able to detect failures in
the early operating stages.

Crest factor Easy to estimate. Reliable only in the presence of
a spiky signal.

Kurtosis
High performance in detecting

faults; independent of
the signal amplitude.

Its effectiveness depends on the
presence of significant

impulsivity in the signal.

4.1.5. Application of Statistical Parameters for Vibration Analysis

The statistical parameters can be used individually or together with other parameters
to analyze vibration signals to detect failures in machines. A failed machine presents
an increase in the vibration peak value, and the type and severity of the failure can be
evaluated based on the characteristics of the corresponding peak. The severity of failures
can be evaluated by comparing features in a different derivation order. For example,
a vibration signal from a machine with a bearing failure may have a peak value seven
times higher than the peak value for the vibration signal collected from the same machine
without a failure [66]. Peak is a simple method, but it is very susceptible to noise.

The RMS value is very useful for detecting unbalance in rotating machinery. In the
time domain, the RMS value is the easiest way to identify faults in a rotating machine [67].
RMS values of a vibration signal are not affected by isolated peaks in the signal, which
reduces sensitivity to incipient gear failures. This method is also not significantly affected
by short bursts or low intensity vibration [30]. Therefore, the RMS method is not able to
detect failures when the problem is in its early stages.

Crest factor is commonly used in rotating machinery to detect tooth breakage or failure
of bearing outer rings. These faults generate pulse-like vibration signals so that the crest
factor increases, which helps in detecting gear or bearing faults [67]. The introduction of a
defect on any contact surface generates pulses, changing the distribution of the vibration
signal and increasing the kurtosis value [68,69]. The kurtosis method does not interfere
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with velocity or load changes, but its effectiveness depends on the presence of significant
impulsivity in the signal [70].

Figure 8 shows an example of time domain analysis applied to vibration data. The sce-
nario is an electric motor whose vibration was measured under two different conditions:
with the shaft aligned (healthy machine) and with the shaft misaligned (fault-prone ma-
chine). In the first graph (Figure 8a), the blue line represents the data collected for the
machine in a healthy condition (aligned shaft), and the red line represents the data collected
for the same machine but with the shaft in a misaligned state. Both lines were numerically
integrated to determine the vibration velocity, as shown in Figure 8b. From this figure,
the RMS and peak velocity can be calculated. The increase in RMS velocity in the mis-
aligned shaft is clearly seen, going from 2.01 mm/s to 6.98 mm/s. The same is true for the
peak velocity, which increased from 4.31 mm/s to 13.06 mm/s. These two parameters are
sufficient to determine that the machine with misaligned shaft needs maintenance.
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Figure 8. Vibration levels for a machine with aligned (blue) and misaligned (red) shaft. (a) Acquired
acceleration data; (b) calculated velocity of vibration.
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4.2. Frequency Domain Analysis

The characteristics of a signal in the frequency domain are often used for fault detection
in rotating machinery through vibration analysis. Frequency domain analysis is a powerful
tool for analyzing vibration signals in rotating machinery to diagnose faults. This method
helps in identifying the frequency components present in a signal and their amplitudes [67].
Many signal features that are not visible with time domain analysis can be observed with
frequency domain analysis. However, frequency analysis is not suitable for signals whose
frequency varies with time [30]. The main frequency domain methods for detecting faults
in rotating machinery are described below.

4.2.1. Fast Fourier Transform (FFT)

The Fast Fourier Transform is a computer algorithm that computes the discrete Fourier
transform (DFT) much faster than other algorithms [28,71]. Through the FFT, it is possible
to convert a signal from the time domain to the frequency domain. Using this signal
represented in the frequency domain, the intensity of the different frequency components
(the power spectrum) of a signal can be checked in the time domain. Vibration analysis in
rotating machinery benefits from this technique because each component of the machine
contributes a specific frequency component to the vibration signal. Therefore, one of the
ways to detect faults is to compare the frequency components and their amplitudes to
a signal from the same machine operating under perfect conditions. FFTs are used in
predictive maintenance to detect various types of faults in rotating machinery, such as
misalignment, imbalance, and bearing faults [72–77].

4.2.2. Cepstrum Analysis

Cepstrum analysis is the inverse Fourier transform of the logarithmic spectrum of the
signal and is defined as [78]:

C(x(t)) = F−1(log(X(ω))) (5)

Here, F is the inverse of the Fourier Transform, x(t) is the signal in the time domain,
and X(ω) is the signal in the frequency domain. Cepstrum analysis involves analyzing
the logarithm of the power spectrum to detect any periodic structure in the spectrum,
such as harmonics, side bands, or echoes [28]. It is useful in detecting faults such as
bearing and localized tooth faults that produce low harmonically-related frequencies.
There are four types of cepstrum, with power cepstrum being the most commonly used
in machine diagnostics and monitoring. Cepstrum analysis has been used in gearbox
diagnosis and monitoring, detection of friction in sliding bearings, and diagnosis of faults
in a universal lathe machine [79–83]. The Cepstrum analysis can be sensitive to noise
present in the vibration signals. This can lead to inaccurate or distorted results, especially
at lower frequencies.

4.2.3. Envelope Analysis

Envelope analysis is a technique used to separate low-frequency signals from back-
ground noise in rolling element bearings and in low-speed machine diagnostics [84].
The technique involves bandpass filtering and demodulation to extract the signal en-
velope, which can contain diagnostic information. Envelope analysis has the advantage
of early detection of bearing problems, but determining the best frequency band for this
technique is a challenge [28]. The introduction of quadratic envelope analysis solved the
problem of noise components in the signal. Envelope analysis has been applied in several
studies to detect faults in bearings and induction motors [85–88], but it has shown poor
performance compared to other techniques, such as acoustic emission analysis [28].
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4.2.4. Power Spectral Density (PSD)

Power spectral density (PSD) represents the power of a signal at different frequen-
cies. The PSD is calculated by taking the Fourier Transform of a signal and squaring
the magnitude spectrum [24]. The PSD is a powerful tool for analyzing the strength of
signal fluctuations as a function of frequency. It allows the detection and measurement of
oscillatory signals in time series data and indicates the frequencies at which the oscillations
are strong or weak. The PSD is a graphical representation of the energy distribution of the
signal over different frequencies and is commonly used for fault diagnosis in induction
machines [28]. Vibration analysis using PSD offers several advantages, such as a clear
frequency domain of the signal, which allows the identification of specific frequency com-
ponents associated with faults or anomalies in rotating machinery. Furthermore, it enables
quantitative comparisons between different signals or different operating conditions, facili-
tating trend analysis and condition monitoring [28,89]. However, it is important to consider
some limitations of PSD analysis. Often the assumption of stationarity is made, which
means that the statistical properties of the signal are assumed to be constant over time [90].

All presented vibration analysis methods in the frequency domain have advantages
and disadvantages, which are summarized in Table 3.

Table 3. Summary of main advantages and disadvantages of frequency domain analysis.

Frequency Domain Analysis Advantages Disadvantages

Fast Fourier Transform Easy to implement.

It is not efficient for
detecting failures if the

frequency and amplitude
signals of the machine in

normal operation
are unknown.

Cepstrum Analysis Easy technique, useful to detect
harmonics, side bands, or echoes.

Sensitive to noise present
in the vibration signals.

Envelope Analysis Early detection of bearing
problems.

Determining the best
frequency band for this
technique is a challenge.

Power Spectral Density

Clear frequency domain of the
signal, which allows identification
of specific frequency components

associated with faults or
anomalies in rotating machinery.

Specialist is required for
graphical interpretation

of the signal.

4.3. Time–Frequency Domain Analysis

In the real world, most signals are not stationary, i.e., the spectrum may change with
time. In the case of vibration in machines, it can vary during operation. The vibration
signal may contain different frequency components at different instants of time [28]. This
variation is a problem for frequency domain analysis [30]. To overcome this challenge,
time–frequency domain analysis techniques have been developed that can provide informa-
tion about the time-varying frequency content of vibration signals. Time–frequency analy-
sis allows not only the representation of the signal in three dimensions (time–frequency
amplitude), but also the detection and tracking of the evolution of defects that pro-
duce weak vibration performance [78]. Conventional vibration analysis methods rely
on stationary assumptions that are unsuitable for analyzing nonstationary signals. There-
fore, time–frequency domain analysis methods such as the short-time Fourier transform
(STFT), wavelet transform (WT), Hilbert–Huang transform (HHT), Wigner–Ville distribu-
tion (WVD), and power spectral density (PSD) are used to identify local features in the time
and frequency domains [30]. These techniques are discussed in more detail below and the
summary of the advantages and disadvantages can be seen in Table 4.
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Table 4. Main advantages and disadvantages of time–frequency domain analysis.

Time–Frequency Domain Analysis Advantages Disadvantages

STFT

More efficient than
conventional analysis

methods in the time and
frequency domain; low

computational complexity.

The resolution is
determined by the size of

the window.

WT

Ability to detect local
changes in vibration

signals; improved
time resolution.

Need a careful selection of
the wavelet function.

WVD

High time–frequency
resolution; ability to detect
and locate transient events

with high accuracy.

The presence of
interference can make it

difficult to interpret
the results.

HHT

Suitable for analyzing
stationary, non-stationary
and transient signals; high
time-frequency resolution;
ability to capture transient

phenomena; low
computation time.

Sensitivity to noise;
generation of undesirable
IMFs in the low-frequency

range; difficulty in
separating low-frequency

components.

4.3.1. Short-Time Fourier Transform (STFT)

This technique was developed to overcome the problems of FFT. It is basically an
addition to the FFT’s ability to analyze nonstationary or noisy signals. The STFT consists
of a method that divides the nonstationary vibration signal into many small segments
that can be assumed to be locally stationary, and applies the conventional FFT to these
segments [78]. The STFT is defined as:

St(ω) =
1

2π

∫ ∞

−∞
e−jωτS(τ)h(τ − t)dτ (6)

Here, a signal St(τ ) is obtained by multiplying the signal by a window function h(τ)
centered on (τ) to produce a modified signal that emphasizes the signal around time τ.
With that, the Fourier Transform reflects the frequency distribution at that time [30,78].
The main drawback of the STFT is the tradeoff between time and frequency. The resolution
is determined by the size of the window. A large window gives good resolution in the
frequency domain and poor resolution in the time domain and vice versa [78]. Despite
this drawback, the STFT method is more efficient than conventional analysis methods in
the time and frequency domains and is widely used in the analysis of vibration signals to
monitor machine conditions [91–95].

4.3.2. Wavelet Transform (WT)

The Wavelet Transform is a linear transformation in which a time signal is decom-
posed into wavelets, i.e., local functions of time endowed with a predetermined frequency
content [30]. Wavelet transforms are a powerful technique for analyzing vibration signals
in rotating machinery [96,97]. By decomposing a nonstationary signal into its individual
frequency components, WT can reveal time-varying features and identify transient events
that may be missed by conventional Fourier transform-based methods. The wavelet scalo-
gram provides a time–frequency representation that aids in visualization and analysis of
the signal [78,98]. The advantages of using WT for vibration analysis in rotating machinery
include the ability to detect local changes in vibration signals and improved time resolution.
However, there are limitations to its use, including careful selection of the wavelet function
and the possibility of cross terms in the wavelet scalogram [30,78]. Despite these limitations,
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WT is a valuable tool that is becoming increasingly popular in industry and academia for
the analysis of transient vibration signals [99].

4.3.3. Wigner–Ville Distribution (WVD)

The Wigner–Vielle distribution is based on the cross-correlation function between the
signal and a time-lagged version of itself [100]. It decomposes the signal into a series of
elementary waveforms, each of which has its own time and frequency characteristics. Thus,
the time–frequency representation is independent of the windowing function, allowing
simultaneous analysis of the signal in the time and frequency domains [78]. The advantages
of WVD for vibration analysis include its high time–frequency resolution and the ability to
detect and locate transient events with high accuracy [30,101]. However, WVD has some
limitations, such as the presence of interference terms, which can make interpretation of
the results difficult [102]. Despite its limitations, WVD is a valuable tool for analyzing
nonstationary signals in rotating machinery, especially for detecting and diagnosing faults
in bearings, broken rods in induction, and gears [103,104].

4.3.4. Hilbert—Huang Transform (HHT)

The Hilbert–Huang Transform is a method for analyzing stationary, non-stationary,
and transient signals. It combines empirical mode decomposition (EMD) and the Hilbert
transform to obtain a Hilbert spectrum that can be used for fault diagnosis in machines [30].
The HHT consists of two main steps. First, the EMD method decomposes the signal into
a series of intrinsic mode functions (IMFs), which are essentially vibration components
with well-defined instantaneous frequencies. Each IMF represents a specific frequency
component of the signal, which allows for a more detailed analysis of the time-varying
features. After obtaining the IMFs, the Hilbert transform is applied to each IMF to calculate
the instantaneous frequency as a function of time. In this way, a time-varying frequency
representation of the signal is obtained, which allows the detection of transient events and
the analysis of frequency fluctuations [105,106].

The advantages of HHT for vibration analysis in rotating machinery include its adapt-
ability to nonstationary and nonlinear signals, its high time-frequency resolution, its ability
to capture transient phenomena, and its low computation time. It is particularly effective
in identifying and analyzing fault signatures associated with bearings, gears, and other
rotating components. However, the HHT has certain limitations, such as sensitivity to noise,
generation of undesirable IMFs in the low-frequency range, and difficulty in separating
low-frequency components [28,30].

In summary, HHT is a valuable technique for vibration analysis in rotating machinery,
providing a detailed time–frequency representation of non-stationary signals and enabling
the detection and diagnosis of faults and transient events. Its application in conjunction
with other analysis methods can improve the understanding of vibration behavior and
contribute to effective condition monitoring and maintenance strategies [107–109].

5. Conclusions

This paper provides a comprehensive review of vibration monitoring techniques for
predictive maintenance of rotating machinery. We explore the main types of transducers
used to acquire vibration signals, as well as the options for transmitting and analyzing data.
We describe the key features and the advantages and disadvantages of each transducer.
Each component, whether in acquisition, transmission, or analysis, is very important for
accurate evaluation and thus for identifying potential faults in rotating machines before
they become serious problems.

In summary, the field of vibration monitoring for predictive maintenance of rotating
machinery is constantly evolving due to technological advances and the need for increased
reliability. As highlighted in this review, the selection of the appropriate vibration monitor-
ing technique is critical for effective machine condition assessment. Future research should
focus on further refining these techniques and exploring innovative approaches, such as
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integrating the Internet of Things (IoT) and cloud-based platforms to enable real-time
monitoring and analysis, as well as applying artificial intelligence and machine learning
techniques to automatically diagnose faults.
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