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Abstract: We propose an unsupervised method for eigen tree hierarchies and quantisation group
association for segmentation of corrosion in marine vessel hull inspection via camera images. Our un-
supervised approach produces image segments that are examined to decide on defect recognition.
The method generates a binary decision tree, which, by means of bottom-up pruning, is revised, and
dominant leaf nodes predict the areas of interest. Our method is compared with other techniques,
and the results indicate that it achieves better performance for true- vs. false-positive area against
ideal (ground truth) coverage.
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1. Introduction

Corrosion on marine merchant vessels typically presents itself as rust on surfaces,
but when treated, it depends primarily on the area (and the extent thereof) it occupies.
In cases of extensive oxidation of steel surfaces on the hull, the vessel is ‘dry-docked’ in
order for rust to be removed, most commonly by means of water blasting. The most
widespread method for protecting against oxidation is that of cathodic protection with
sacrificial electrodes and antifouling pigment paint. Corrosion areas have to be measured
using a combination of ultrasound instrumentation (e.g., ultrasound images [1]) and visual
RGB images, operated by class surveyors/human operators. Even if protective coatings are
used, all merchant marine vessels must complete an inspection of the hull in a dry dock
at least three times in a five-year period, with intermediate surveys being performed within
36 months. This regulation [2] relates to dry-dock visual marine hull inspection (oil tankers
and bulk carriers) requirements due to the Convention for Safety of Life At Sea (SOLAS).

The automation of such a laborious measurement and visual inspection task would
save not only person hours but also the time required for a vessel to remain in dry dock.
As already mentioned, dry-dock inspection is performed by means of both ultrasonic [1,3]
and optical (RGB) imaging. The problem of corrosion surveying via visual inspection
in the optical space (RGB images) and its automation can be seen as an extension of
semantic segmentation in images and the association of pixels with a specific class/label
(corrosion) as a means to recognize (interpret) specific items in a visual scene (vessel hull).
Recent advances in deep learning models have spawned renewed interest in the domain of
machine vision for industrial inspection and diagnosis of defects, inclusive of cracks and
corrosion detection.

Visual inspection of corrosion has been investigated using classic techniques, such
as multilevel thresholding [4], k-means clustering [5], and histogram-based clustering [6],
as well as deep learning models, as is the case with convolutional neural networks [7,8]
and self-organising maps [9]. The availability of such methods in corrosion detection is
investigated as part of the general defect issue in industrial inspection, also known as
pitting and uniform corrosion. Corrosion is defined as isolated (corroded) area units on a
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structure’s surface that are difficult to both detect and predict, with a diverse geometrical
shape. It is difficult to postulate prior knowledge on the basis of a generalised geometry
and morphology in terms of visual inspection and image processing, although several
segmentation algorithms have been applied to the problem and assessed [10–12]. Corrosion
image processing techniques typically refer to:

• Chroma patterns of corroded (e.g., rusted) areas that present a foreground qualitatively
ranging from yellow to red (e.g., use of histograms in [13–15]);

• Texture and/or roughness of surface areas that increase with respect to the level of
corrosion (e.g., the fractal dimension index used in [16,17]);

• Features selected from preconditioned datasets of training examples that are fed to
convolution and feed-forward neural networks [18–23].

Using specific colour (chroma space) patterns as a priori corrosion knowledge for
the ‘foreground’ scene, i.e., the collection of pixels that should be separated to investigate
corrosion, can be instigated. However, in marine ship hulls, this is not an aid, since most
of the lower ship hull is of a red background colour, making it difficult to extract the
foreground. Texture can be taken as a means to fine tune in order to filter out artifacts, such
as shading or crack-like formations that generate irregularities in terms of neighbouring
pixels. However, these form compensating measures that do not factor in changes in
light and other environmental conditions, leading to said visual artifacts not being taken
into account.

Feature descriptors constructed from texture and colour spaces have been applied
as input to discriminant functions [14,15], and decision trees [24] have been used for
corrosion classifiers. Similar feature descriptors from datasets of training examples have
also been used as input for deep learning approaches (e.g., convolution and feed-forward
neural networks (CNNs/FFNNs)) [18–23]. These techniques seem to achieve substantial
performance with respect to detection/classification, with accuracy in the range of 75 to 90%
of the total area versus the ground truth. However, these methods are supervised in nature,
heavily depend on the size of the training datasets and how well the data-driven approach
is structured, and are prone to raising many false positives [23]. Additionally, in the absence
of widely available corrosion datasets, the complexity of the geometry/morphology of
corrosion areas [23,25–27] makes it difficult to generate semisynthetic training datasets, as
is the case in many other areas (e.g., in agriculture to determine a specific plant species [28]).
As a result, in the domain of image corrosion detection, several challenges still remain:

• Decreasing recognition accuracy in the presence of increased crack-like texture, leading
to increased local illumination variability;

• High false-positive detection rates in the presence of high ‘colour’ similarity between
groups of pixels, i.e., a decreasing ‘coverage’ percentage of correctly segmented regions
of interest, with fine tuning required to enhance specificity;

• Lack of specificity from available datasets with accompanying annotations and data
size, which is especially important for supervised/deep learning techniques.

• Lack of freely available deep learning models for corrosion detection.

We introduced an unsupervised approach in corrosion detection via pruned decision
tree hierarchies over raw (RGB) image inputs and interrogated binary splits for classification
of corrosion areas over significant clusters. Our method effectively produces substantially
increased defect area coverage (in comparison to the ground truth and other methods),
requiring none of the aforementioned assumptions or fine tuning to elicit a priori scene
knowledge. Furthermore, our pruning method (although it may not improve recognition
accuracy) substantially increases the recognition of the true-positive (TP) area of interest,
with smaller false-positive (FP) areas. Therefore, the application of our decision criteria
leads to better discrimination of true-positive versus false-positive segmented areas.
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2. Materials and Methods

In the absence of publicly available data, we devised the dataset used in this work [29]
by collecting images of the external hull over two different merchant vessels, i.e., oil tankers.
The marine vessel inspections correspond to a ship being under ‘dry-dock’ maintenance
conditions. The images have been collected in using two cameras to device high and
low pixel resolution examples: high pixel resolution 3799 × 2256 (72 dpi, at 24 bit depth),
and low pixel resolution 1920 × 1080 pixels (96 dpi at 24 bit depth). For performance
testing, we have maintained images labeled by an expert human operator to be used as
ground truth. The dataset incorporates several artifacts due to environmental conditions
(e.g., changing lighting conditions, surface artifacts) and objects in front of the hull (e.g.,
maintenance ladders) not associated with the marine vessel surface.

As a result, the dataset contains: (a) high-resolution RGB images of 3799 × 2256 pixels,
(b) low-resolution RGB images of 1920 × 1080 pixels, alongside (c) labelled (ground truth)
images that have RGB triplet values for each pixel that correspond to corrosion and zero
values elsewhere. The ground truth images are used only for performance evaluation
among different methods in Section 3. We present a revised segmentation decision tree
methodology for corrosion applied in this dataset. The decision criteria of this method are
based jointly on information entropy and eigen values of nodes, as opposed to the more
typical decision tree pruning criteria based on node information gain (e.g., in [30]).

2.1. Hierarchical Decision Tree Method

We have implemented an unsupervised methodology via pruned decision tree hierar-
chies over raw image inputs and interrogated binary splits for classification of corrosion
areas over significant clusters. This method is based on eigen features collected from image
areas, and tree-splits are performed based on the extent of similarity of new nodes. That is
to say, each node of the tree represents a subset of pixels (cluster) in the original image, as se-
rialised image pixels x` (with ` = i× j× 3) belonging to a cluster Cn. The children of any
node partition the members of the parent node into two new sets (clusters). The algorithm
constrains the partitioning of the binary-tree based on a set of pixel colours correspond-
ing to a node. The set of image pixels corresponding to nodes 2n, 2n + 1 is denoted by
C2n, C2n+1 and splits under certain criteria. The tree grows until either a node (or set of
nodes) reaches a dominant colour, or until a predefined number of nodes is reached.

An eigen tree decomposition [31] selects a candidate node and, under certain con-
ditions, produces a split into leaf nodes. In our case, this manifests as a binary split of
two leaf nodes, whereas two quantisation levels (Q2n, Q2n+1) are estimated and each
member of a cluster is associated with that of the closest quantisation level. The mean
intensity value of each colour channel is the histogram point with the least variance in
the eigen space, leading to a specific quantisation level Qn [32]. The quantization level of
each colour channel, and for each node, is defined as Qn = Mn/Nn, where N(n) is the
number of clusters for the group of pixels indices. In effect, we revise the tree generation
algorithm to

• Perform calculations: utilise the smallest eigen value over current node branch candidates;
• Decide binary split: nodes of a local cluster are split by using the largest eigen value

over current iteration clusters.

These methodological insertions introduce a more natural generation of nodes/clusters
and reduce the computations otherwise required over all nodes (as was the case, for exam-
ple, in [18,22]). We introduce a formal representation of decision trees with binary splits that
is such that we select an appropriate hyperplane h(w) that hierarchically separates data
into clusters in a sequence. Inasmuch, current iteration clusters are not re-evaluated in their
totality but only in the sequence of a current branch. For a binary decision tree, this means
that the average of square distances of all data points (image pixel quantisation levels)
from a hyperplane hn sequentially generates leaf nodes of new clusters C2n, C2n+1 [31].
The parameters of the new nodes C2n, C2n+1 in the n-th leaf with hyperplane hn and param-
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eters vector wn can be estimated by finding the minimum and maximum values, as per
Equation (1). The optimisation problem of Equation (1) can be solved using the generalised
eigenvalue problem [33].

w2n = arg max
w 6=0

wT
nR2n+1wn

wT
nR2nwn

w2n+1 = arg min
w 6=0

wT
nR2n+1wn

wT
nR2nwn

(1)

In contrast with standard decision tree approaches using chroma quantisation, we use
the eigen vector that corresponds to the smallest eigen value magnitude. Ergo, a binary
split decision at each parent node is taken within the tree decomposition algorithm based
on either max{λn} or min{λn}, since the two hyperplanes generate two new child nodes.
In effect, we perform calculations by utilising the smallest eigen value, but for node binary
splits of a local cluster into two new clusters, we use the largest eigen value (Equation (3))
over all (current iteration) clusters. The order and direction in which the node is split are
determined by selecting that eigenvector en which corresponds to the largest eigenvalue
λn stored from all previous node eigenvalues of covariance. However, in this step, a
normalised covariance form is used R̂n, whereas each node covariance is calculated by:

R̂n = Rn −
1

Nn
MnMT

n (2)

In effect, a node split is determined by its eigenvector being that of the largest eigen-
value over all previous nodes, which in turn determines the pixel indices in cluster Cn that
will be assigned into the new clusters C2n, C2n+1. The binary split for node image indices `
associated in cluster Cn → {C2n, C2n+1} is performed using the schema:

C2n = {` ∈ Cn : eT
n x` ≥ eT

n Qn}
C2n+1 = {` ∈ Cn : eT

n x` < eT
n Qn} (3)

The procedure has been summarised in pseudo-code as per Algorithm 1.

Algorithm 1 Generate decision tree

1: Set image as root node
2: Calculate R1, M1, N1 and w0, λ0
3: for all n nodes (cluster) do
4: Find leaf n that λn is max
5: Form node n by Equation (3)
6: Calculate Rn, Mn, Nn, wn for new nodes where λn is min
7: end for
8: for each node do
9: Find leaf where wnλn is max

10: Form new nodes 2n, 2n + 1 by Equation (3)
11: Calculate {R2n, M2n, N2n, w2n} and {R2n+1, M2n+1, N2n+1, w2n+1}
12: end for

2.2. Pruning and Defect Prediction

In addition to our revised tree generation process, we introduce pruning based on
entropy calculation (bottom-up setup). Given the preserved intermediate (parent) Cn nodes
or edges of the tree, we calculate the entropy vector H corresponding to each node’s entropy.
The information entropy is calculated by means of

H(x`) = −∑
n

pn(x`) log2(pn(x`)) (4)
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where H(x`) is the entropy considered as a random variable of x`, and the probability pn(·)
is that of outcome x` occurring, with (n, ` representing all possible outcomes). The proba-
bility density pn is calculated by approximating over the channel-level histograms, where
histogram bins represent possible states.

We use the cluster information entropy as a measure of information content; i.e., an
interpretation of the uncertainty of the parent node. The corresponding states of quantisa-
tion levels that an individual pixel can adopt are evaluated and it is determined whether
the image information of a specific node is sufficient for the node to be pruned, or not.
The procedure is such that, initially, the corresponding leaf nodes C2n, C2n+1 of some
intermediate node Cn are identified. Based on entropy value comparison, a decision is
made for selected leaf nodes C2n+k, C2n+k+1 with Cn+k as follows:

• Suppress the leaf nodes, if {H2n+k, H2n+k+1} ≤ Hn+k and move upward to n + k− 1
node set;

• Preserve the leaf nodes, if {H2n+k, H2n+k+1} ≥ Hn+k and proceed to a neighbouring
branch n + k node set.

In order to predict the leaf node that best captures the corroded regions within the
input frame, decision criteria have been implemented. The procedure requires iteration
over the leaf nodes Cn, Cn+k, where k is the pruning invariant depth, identifying the nodes
that correspond to the maximum eigenvalue λn and maximum entropy Hn. In the event
that max{λn}, max{Hn} point to different leaf nodes, the node of max{Hn} is eliminated
from the candidate pool. Conversely, if both max values refer to the same node, we assume
said node to be the maximum of all entropy values. Since the predicted leaf node contains
only pixel indices, it reconstructs a predicted frame based on the preserved cluster indices.

3. Results

We compare our method with standard deep-learning image segmentation meth-
ods, with performance results illustrated in Figure 1. Considering the deep-learning
techniques, we have applied a supervised learning fully Convolutional Neural Network
implementation known as U-Net [34], using the library, framework and models available at
SegmentationModels github (last accessed on 18 July 2023 ), and an unsupervised learning
Self Organising Maps algorithm [35] using the library, framework and examples available
at MiniSOM github (last accessed on 18 July 2023). In general, and for the unsupervised
case, it has been noted that decision trees with pruning are of complexityO(n log n), whilst
SOM is of complexity O(n2); hence, decision trees can, in principle, achieve better com-
putational times than SOMs. The CNN method is supervised, and thus its complexity is
linear, since it depends on the input vector size (n) and the total number of layer nodes in
the supervised network.

The CNN (unet) implementation was trained and tested under a 60:40 split of the
dataset using the ‘seresnet34’ backbone with a sigmoid activation function and the Adam
optimiser, with binary loss cross-entropy function enabled for training, whereas the learn-
ing rate is 10× 10−3 for 50 epochs. We used the U-Net neural network which performs
semantic segmentation that more closely matched our revised method. As a result, a com-
parison between U-Net and other techniques in this application domain allows for better
comparison between true-positive/positive and false-positive/negative areas. The self-
organising map (miniSOM implementation) was tested in such a way as to mimic the
maximum number of allowed clusters in the Eigen tree method (i.e., orthogonal lattice
topology of 3× 2, 4× 2, 5× 2).

The dataset we used is a set of two image folder collections [29]. The collected raw
data were gathered from the hull areas that are likely (but not necessarily) deemed to
be problematic. To produce the labelled images (ground truth) that were later used for
methods’ performance evaluation, a trained human inspector highlighted the regions of
interest by manually labeling areas identified as corroded. It is important to note that areas
in the image manually annotated by human inspectors are labelled as regions of interest

https://github.com/qubvel/segmentation_models
https://github.com/JustGlowing/minisom
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characterised by rust. However, this includes areas that are deemed to be corroded and
could produce rust on the surface of the hull in the near future.

Figure 1. Performance metric comparison between CNN (unet-seresnet34), SOM (4× 2 ortho-lattice),
and Pruned Eigen tree (tree depth from seven to six nodes). The corresponding lines illustrate a linear fit
over the methods’ performance.

To assess the performance of corrosion detection, the pixel coordinates of corrosion in
an image under investigation are found through comparison to the ground truth annotated
images. This is performed by applying on the input image, the labelled image mask on the
dominant cluster result. The pixels defined as ‘True Positive’ pixels (TP) of a cluster are
those that match the labelled mask, and ‘False Positive’ pixels (FP) are those that do not fall
within the labelled mask.

We define as ‘Recognition Accuracy’ the percentage of correctly classified images as
containing some corroded area. In the case of our method, this means an image whose
predicted dominant cluster contains some arbitrary percentage of captured corroded region
above a threshold of 10% of true positive pixels. For example, Figure 2 illustrates the case
of a confusion matrix for tree nodes k = 7. It is evident that recognition accuracy remains
the same at 94% for pruned and unpruned Eigen tree. Similarly produced confusion
matrices for k = 5, 10 result in an accuracy of 93% and 95%, respectively, (as they appear in
Table 1). As will become evident later, recognition accuracy does not necessarily depend
on our pruning method, but rather on the implemented decision criteria as evidenced in
Table 1. We note that there is no direct representation of true coverage versus ground truth
in this metric.

We refer to ‘Ideal Coverage’ as the number of labelled pixels over total image pix-
els, i.e., percentage of maximum coverage that could be achieved by any given method.
This aids the comparison to Ideal Coverage as a reference value. The number of TP pixels
over the total number of image pixels is the True ‘Area Coverage’ (TAC), with the number of
FP pixels over total number of image pixels being False ‘Area Coverage’ (FAC). The closer
TAC is to Ideal Coverage, the higher the expected accuracy in terms of capturing defective
pixels. However, FAC can be any given percentage outside of the label region, and as such
should be used to ‘penalise’ a method’s performance measure. The ‘Performance’ metric is
defined as per the metric:

Performance =
TAC

TAC + FAC
(5)

The metric of Equation (5) is an indication of the algorithms’ performance, since FAC
is not related to ideal coverage and it penalises the method behaviour. The CNN and SOM
versus Pruned Eigen tree method comparison is summarised in Figure 1, with example
results provided visually in Figure 3.
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(a) Full Tree (unpruned) with seven nodes (b) Pruned node tree from seven to six nodes
Figure 2. Pruned versus unpruned eigen tree confusion matrices. A light to dark blue colour map has
been applied for correctly classified images, and a light to dark orange colour map for erroneously
classified images.

(a) Input Image (b) Ground Truth (c) CNN (d) SOM (e) Pruned Tree

Figure 3. Representative examples of the application of methods in Figure 1 (CNN, SOM, Pruned
Eigen) on our compiled dataset.



Eng 2023, 4 2097

Table 1. Comparison to other methods; the Area Coverage metric reported value TP relates to
‘true positive’ pixels and FP to ‘false positive’ pixels. All reported values are mean values over the
entire dataset.

Eigen Tree Pruned Tree SOM CNN
Recognition
Accuracy (%) k = 5 95% 94% 94%

k = 7 94% 94% 95% 96%
k = 10 93% 93% 94%

Area Coverage
TP, FP (%) k = 5 9.7%, 10% 15.8%, 13.1% 10%, 16%

k = 7 7%, 4% 13.4%, 5.9% 9%, 10% 15%, 20%
k = 10 6%, 3.5% 12.7%, 5% 8%, 9%

Performance
(%) k = 5 50% 52% 44%

k = 7 55% 56% 47% 44%
k = 10 54% 54% 48%

4. Discussion

We provided evidence that our pruned Eigen tree exhibits better performance than
CNN and SOM architectures, by means of Figures 1 and 3. We further substantiate this by
means of accumulated results in Table 1, whereas the mean values of the defined metrics
over the totality of the dataset instances are reported. It is evident that the implemented
CNN architecture (inspired by U-Net) outperforms other techniques under investigation
in recognition accuracy. However, and at least for our dataset and annotations, CNN and
SOM do not outperform the Eigen tree methods (pruned/unpruned), with respect to Area
Coverage ratios and, thus, performance. In fact, on average, the CNN architecture has a
better true positive (TP) coverage at the expense of increased false positive (FP) coverage,
whilst the remainder of the reported methods seem to be more balanced in the sense of
TP/FP area coverage ratios.

Furthermore in Table 1 the pruned Eigen tree has a significantly higher TP coverage
without sacrificing FP coverage, as opposed to the unpruned Eigen tree. The same applies
for the CNN and SOM methods, although the number of clusters maximum depth seems
to have a minor effect on dominant cluster selection, and thus average performance. Con-
versely, the pruned Eigen tree has a better TP to FP area coverage, although on aggregate,
performances between pruned and unpruned versions of the tree seem to be comparable.
For example, in Table 1 and for our method (Eigen Tree/Pruned Tree) at k = 5, it is evident
that the true positive (TP) area detected is higher than the false positive (FP); i.e., 15.8 versus
13.1%, leading to a performance of 52%. The performance of 52% is higher than the 44%
achieved in SOM (4× 2 ortho-lattice) and CNN methods, since both of these methods have
an FP % higher than the TP % (i.e., in SOM the FP to TP area coverage of 16 versus 10%,
and for CNN 20 versus 15%).

We note that the applied CNN model has an increased false-positive area coverage
(20% in Table 1) which is higher than that of pruned eigen tree (for tree depth of seven
nodes, FP area 5.9%) and SOM (FP area 10%). This leads to the inferior (as defined) CNN
performance, similar to SOM implementations, but to a much smaller extent. This should
not come as a surprise since, as previously mentioned (see Section 1), neural networks,
and similar deep learning techniques, seem to suffer from crack-like pixel groups and
changing light conditions, both of which are extensively present in our dataset. For the
pruned eigen tree, this can be said to lead to significantly better performance than CNN
and SOM, particularly in the case of low ideal coverage. However, it should be noted that
SOM seems to outperform CNN and be very close to the pruned Eigen tree in terms of
performance at high coverage (Figure 1).



Eng 2023, 4 2098

We recognise that sample size in the used dataset is an issue for CNN training. It re-
mains to be seen whether increasing the data size would lead to better CNN and possibly
SOM performance; albeit that the TP to FP ratio examined herein, and the identified CNN,
SOM vs. pruned Eigen tree trends, does not seem to support the data size issue. At present,
we can postulate that at least for this dataset, the pruned Eigen tree leads to better overall
area coverage and performance.

5. Conclusions

We have presented a revised eigen tree decomposition method alongside a pruning
methodology/dominant node selection criteria. We have tested and validated these along-
side other methods in a domain-specific dataset. The pruning method does not improve
recognition accuracy, but substantially increases true positive (TP) area coverage with
smaller false positive (FP) areas. The decision criteria, in conjunction with the pruning
method, lead to much better FP to TP ratios.

Our method seems to outperform similar unsupervised segmentation (clustering)
techniques, which is even more evident in the pruned Eigen tree case. Furthermore,
the pruned Eigen Tree method achieves comparable recognition accuracy and better average
area coverage in the domain of corrosion detection to neural network architectures; namely
the supervised CNN (U-Net-like) model, and the unsupervised SOM model. This is
particularly prominent when low ideal coverage images are expected and high TP area
coverage is to be desired.

Future work is required to establish whether a data size increase for CNN model
training would lead to better performance. We shall further investigate this route by taking
a data-driven model and examining the dataset equal distribution of raw and annotated
images in predefined low, medium, and high ideal coverage cases.
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