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Abstract: In the present study, the concept of utilizing two circular cam-track disks, of the same
central angle, in combination with one circular roller is presented. The roller is restrained to move
within a vertical groove, and at the same time it rotates with rolling-contact on both cam tracks.
When the upper cam is fully travelled by the roller, the same occurs with the lower one, despite
their different lengths. Therefore, during the rolling contact, the two cams always sweep the same
central angle. The aforementioned configuration of the two circular arcs may be considered as a
unit cell, which can be repeated an even number of times, and when folded forms a closed circular
groove between two cam-track disks. For better understanding, a manufactured prototype and 3D
CAD-models have been developed. The operation of this setup as a gearless automotive differential
is demonstrated by performing two bench experiments, which are then explained by a simplified
mechanical model. The latter focuses on the implementation of the principle of the inclined plane, in
which an upper limit of the inclination angle is imposed in accordance with the coefficient of friction
at the friction disks. Previous patents on gearless differentials are discussed and other possible
applications in mechanical engineering are outlined.

Keywords: cam-track disks; differential mechanism; gearless transmission; kinematics;
rolling-contact

1. Introduction

Power transmission is usually performed using gears; the current research is mainly
concerned with the modification of tooth profiles and the use of alternative materials in
order to increase the lifetime, radiated noise, etc. (for example, see [1–3]). One of the disad-
vantages of using gears is the friction that appears at the contact point between the teeth of
the conjugate bodies due to the sliding velocity [4], as well as backlash, which in turn give
rise to other undesired dynamic phenomena (i.e., rattling) [5]. Furthermore, conventional
planetary systems based on gears, such as mechanical differential gear devices, deliver very
little (if any at all) torque when one of the steering wheels loses traction (i.e., “spins out” on
loose substrates such as snow, mud, sand or gravel). In addition, gearboxes are widely used
in industrial and military applications, for example in helicopters, where many crashes
have occurred due to ruptured gears [6].

All these reasons have motivated researchers and inventors to look for better solutions
and/or alternative power-transmission means without gears (gearless), some of which have
also been adopted by the industry (see review in [7]). For particular spherical cams applied
to robotic devices and automotive differentials, the reader is referred to [8,9]. In general,
there is a great interest in replacing the gear-boxes in several drives at present [10–13].

As reported by others [7], historical evidence for the existence of an early differential
device includes the Antikythera mechanism that contained a differential gear, which is
interpreted as a mechanism with two degrees of freedom [14]. The conventional automobile
differential was invented in 1827 by a Frenchman named Onésiphore Pecqueur. It was used
first on steam-driven vehicles and was a well-known device when internal-combustion
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engines appeared at the end of the 19th century. If we restrict the discussion to automotive
differential devices, an important patent describing a construction wherein all the working
parts are encased in such a way that all parts may be disconnected from the driving-wheels,
and removed from the casing for the purpose of repair or readjustment, was granted in
1906 to Mooers [15], while the first patent regarding a gearless device (using sliding blocks)
was granted in 1918 to Patch [16]. Among several others, the idea of introducing rolling
elements was proposed within the years 1920–1933 by Ford, who used conical cams [17],
while a superior idea using wavy cam-track disks was developed in 1943 by Beucher [18]
and continued by others (Randall [19], Altman [20], Tsiriggakis [21,22], etc.). The common
characteristics of the latter concepts [17–22], developed within the period 1943–1985, are
the following:

(i) The usual side gears, which are attached to the shafts of the steering wheels, are
replaced by conical or wavy cam-track disks;

(ii) The usual spiders (gears orbiting around the abovementioned side gears), which are
also attached to the ring gear (crown wheel), are replaced by sliding elements, which
interfere (slide or roll) with the cam tracks and also slide in several patented ways
within a cage fixed to the aforementioned crown wheel.

The question that arises is whether the abovementioned sliding elements are fully
sliding (in both their contact with the cam tracks and their support in the cage) or may
operate by rolling contact with the opposite cam tracks. If the latter (i.e., the rolling contact)
is possible, then we could generalize the simple concept of the “rolling-element bearing”
by using wavy bearing rings in differential devices by modifying the cylindrical or conical
races that are mass-produced at present. Then, all known technology in the rolling bearings
industry could possibly be transferred to the automotive differential mechanism.

A recent study has shown that sinusoidal- and circular-shaped cam-track disks can
achieve rolling contact, while a finite element analysis has indicated that service life in the
order of 200,000 km is feasible [23]. Despite this fact, since the commercial software that was
used, RecurDyn® V9R3, is based on spline representation, there are doubts as to whether
the circular track was accurately represented. Moreover, the large-scale finite element
model could not efficiently reveal the parameters that influence the stress concentration.

Therefore, the aim of this paper is:

(i) To explain the process followed to conceive the innovative idea.
(ii) To conduct a thorough theoretical study on the kinematics regarding rolling contact

to certify previous findings.
(iii) To perform an elementary force analysis and compare this with the previous finite

element analysis.
(iv) To use the abovementioned elementary force analysis to reveal and roughly optimize

the most critical dimensional parameters that affect the magnitude of the maximum
stress affecting the fatigue life.

(v) To use the elementary force analysis and reveal the essence of the differential mechanism.
(vi) To provide additional evidence for a better understanding of the operation of this

differential mechanism.

The structure of this paper is as follows. Section 2 presents the development of the
new concept. Section 3 is the theoretical study of kinematics, which proves the ideal rolling
contact of the rollers between the circular segments associated with the meshed cam-track
disks. Section 4 is a continuation of Section 3, and shows the way in which the circular
segments can be repeated in so that they eventually form a closed track of 360 degrees.
Section 5 is an enhancement of the elementary kinematical study of Section 3, now pre-
senting the parametric equations of all the meshed moving bodies and their centrodes.
Section 6 is the implementation of the new kinematical concept to the design of automotive
differentials based on circular arcs. Section 7 is concerned with the force analysis of a sim-
plified mechanical model. Section 8 presents results obtained from two bench experiments
and manual computations regarding the mechanics of the gearless differential device based
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on circular arcs. Section 9 discusses the disadvantages of three previous patents on gearless
automotive differentials, as well as details regarding the proposed design. Section 10
summarizes the conclusions. Appendix A explains the principle of the inclined plane.

2. Development of the New Concept

Power transmission is usually performed using gears in several configurations, one
of which concerns two racks and a pinion. When the two racks are equally displaced so
that the upper rack moves to the right (by distance +δ at velocity V) and the lower rack
to the left (by distance −δ at velocity −V), the pinion rotates in the clockwise direction
while its center remains at rest (as shown in Figure 1). Regarding the induced normal and
shear (friction) forces at the contact points between the teeth in the pinion and the racks,
the well-known sliding velocity appears on the teeth surface (see [4,24]).
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Figure 1. Double rack and a pinion.

Similar kinematics could be achieved when the pinion of Figure 1 is replaced by a
circular disk or a sphere which covers its pitch circle, thus becoming a roller, while the
profiles of the racks become straight plates, similar to those in the usual rolling bearings [25],
as shown in Figure 2. However, then we need to impose sufficient normal pressure (i.e., a
set of distributed forces, F) to allow for the development of proper friction forces (Tf ≤ µF,
where µ is the friction coefficient) to transmit the available power through the contact
points between the roller and the plates. The kinematics of a very similar case with a set of
two identical spheres in rolling contact with two planes (so-called ‘cage-plane motion’) has
been studied by Freudenstein and Soylemez [26].
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3. Theoretical Study of Profiled Cams in Power Transmission

Now, the question is whether there is a standard shape to replace the plates in Figure 2,
which ensures rolling contact, and thus has a high fatigue life, and does not require pre-
compression by the illustrated distributed forces F.

The general problem of the kinematic synthesis of conjugate profiles has been treated
extensively (e.g., [27–30] and papers therein). Applications are restricted to overrunning
clutches [31], gearless reducers [32] and small gear-boxes [33]. Older patents discuss
asymmetric [18–20] or symmetric [21,22] gearless differentials using curved cam track
disks (in the place of the aforementioned plates). Mostly, the sinusoidal shape has been
studied [34]. Moreover, undulating face gears, which combine wavy tracks with geared
surfaces, appeared a few years ago [35].

In this paper, the central issue is how to replace the abovementioned straight and
conical plates with profiled ones; thus, the force F shown in Figure 2 is no longer needed.

It will be shown that two circular cams in conjunction with a circular roller, as schemat-
ically shown in Figure 3, provide a working solution. After the forthcoming definitions, a
new theorem of kinematics will be formulated and its proof will be derived. We start with
an elementary proof based on Euclidian geometry and kinematics, and then we apply the
concept of fixed and moving centrodes (polodes or polhodes) [36,37].

Definition 1. Following Figure 3, let us consider two concentric circular cam tracks (D̂AE and
F̂BG) of the same central angle (αc = D̂OE, in degrees), which initially have the same vertical
bisecting line (v = OACB). Based on the mean radius OH = OC = OI = Rm, the radius of
the upper cam will be (OA = Rm − r), while the radius of the lower cam will be (OB = Rm + r).
Clearly, the gap between these two cam track disks is covered by a circular roller of center C and
radius CA = CB = r, which has the freedom to move along the vertical bisecting line (v) toward the
y-direction and to rotate about its oscillating center. Technical solutions will be discussed in Section 5.
Starting from this configuration, when the upper cam track is forced to translate horizontally at a
velocity +V = δ/t to the right, we consider that the lower cam track will translate horizontally at
a velocity −V = −δ/t to the left. After a certain amount of time t, the aforementioned opposite
velocity components (±V = δ/t) will lead to equal and opposite horizontal cam displacements ±δ,
as shown in Figure 3.

One may observe that, in the initial position of the cams shown in Figure 3, the contact
points are (A, B) and the corresponding tangent lines between the roller and the cams are
horizontal lines. Later, we shall see that there is always a specific relationship between
these two tangent lines.

Theorem 1. Given two cam tracks and a roller, according to the above definitions, for corresponding
horizontal displacements where±δ perpendicularly to the bisecting line of the common central angle(

̂FDO, OEG
)

(as illustrated in Figures 3–5), we shall show that:

1. The center of mass of the roller (point C) moves along the vertical guide (v) in such a way
that rolling contact appears at two points (A, B), which, after the displacement ±δ, occur
(A1, B1) between the roller and the two meshed cam tracks, as shown in Figure 4 (for the sake
of clear visualization, point B1 is shown later in Figure 5). Obviously, the points (A1 and B1
of Figure 4) belong to the upper and lower cams, respectively.

2. The slopes (λ1 = tanα1, λ2 = tanα2) of the two tangents at the abovementioned contact
points (A1, B1) are equal in measure and opposite in sign (i.e., λ1 = −λ2, and |α1| = |α2|).

3. The abovementioned two contact points (A1, B1) are always symmetric with respect to the
variable horizontal line passing through the center of the roller.

4. In Figure 3, the initial position of the contact points (A, B) is the middle of the arcs D̂E
and F̂G. After the displacement ±δ, the new contact points will be (A1, B1), as shown in
Figures 4 and 5, and form the angles: ÂOA1 = α1 < 0 and ˆBOB1 = α2 > 0. The points
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(A1, B1) split the arcs in the same ratio measured from the displaced ends D and G; that is,
D̂1 A1/D̂E = Ĝ1B1/F̂G. Always, we have |α1| = |α2| ≤ αc/2.

5. Points (A and B) constitute the first, whereas the extreme points (D and G) shown in Figure 3
constitute the last contact pair in the mesh between the two cams and the roller.
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Proof of Theorem 1. First, let us assume that the rotating axis of the roller (perpendicular
to the plane of the image shown in Figure 3) is pushed from the bottom to the top by a
spring; thus, when the upper cam track translates horizontally to the right at a velocity (so
the curve DE is displaced to D1E1 by δ, and the center moves similarly, from O to O1, as
illustrated in Figure 4), the roller will be in rolling-contact. Therefore, point A1 will possess
two velocity components, i.e., the tangential ωr due to the instantaneous angular velocity
ω of roller’s rotation about the center C1 and the vertical component Vb due to sliding
along the vertical guide (v), as shown in Figure 4. Since the vector sum equals +V, for the
vertical direction, we can obtain:

Vb = V tan α1, (1)

with
sin α1 = δ/Rm. (2)

Velocity compatibility in the horizontal direction can be denoted as V = ωr cos α1,
with ω denoting the abovementioned instantaneous angular velocity of the roller, whence:

ω =
V

r cos α1
. (3)

Similarly, if we focus on the lower cam track considering a spring to push the roller
downwards (Figure 5), and the curve ˆFG is displaced to ˆF1G1 by δ to the left, the condition
of rolling-contact in the vertical direction will lead to:

Vb = V tan α2, (4)

with
sin α2 = δ/Rm. (5)
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Velocity compatibility in the horizontal direction means that −V = −ωr cos α2,
whence:

ω =
V

r cos α2
. (6)
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Since Equations (2) and (5) share the same right-hand side, i.e., sin α1 = sin α2 = δ/Rm,
we have α1 = α2. At the same time, Equations (1) and (4) provide a unique value for the
vertical velocity Vb of the roller. Finally, since cos α1 = cos α2, Equations (3) and (6)
determine a unique angular velocity ω, which fulfills the conditions of rolling contact
(velocity compatibility). In other words, we have shown that there is always a unique
downward velocity Vb of the center C of the roller, and a unique angular velocity ω in
the condition of rolling-contact with the two cams, i.e., the upper and the lower one. This
completes the proof of part 1 and part 2 of the Theorem.

Let us now deal with the position of the two contact points of the roller, i.e., at point
A1 on the upper and point B1 on the lower cam track disk. We recall that, generally, when
two circles are in contact, their unique contact point is collinear to the two centers, i.e., it
belongs to the unique line, which is determined by the two centers of the circles. This trivial
theorem of Euclidian Geometry is applied twice: once for the upper cam, where we deduce

xA1

δ
=

r
Rm

, (7)

and once more for the lower cam, whence

xB1

δ
=

r
Rm

. (8)

Comparing the above Equations (7) and (8), we obtain:

xA1 = xB1 . (9)

Therefore, the normal projections of both contact points on the horizontal plane
coincide (this completes the proof of part 3 of the Theorem), while the slopes of the tangents
are equal in measure (|α1| = |α2|) but of the opposite sign (i.e., α1 = −α2).

At the displaced position shown in Figure 4, we see that the angle formed by the
middle point M of the straight segment D1E1, as well as the displaced center O1 and the
displaced point A1, equals M̂O1 A1 = α1. In other words, the circular arc D1 A1 corresponds
to a central angle equal to

( αc
2 − |α1|

)
. Similarly, Figure 5 shows that the circular arc B1G1

corresponds to a central angle equal to
( αc

2 − |α2|
)
. Since |α1| = |α2|, we deduce that the

circular arcs D1 A1 and B1G1 correspond to equal central angles; thus, they split the total

arcs to which they belong (DE and FG, respectively) to the same ratio: D̂Ai
D̂E

= ĜBi
F̂G

. This
completes the proof of part 4 of the Theorem.

Part 5 of the Theorem is a corollary of Part 4, with |α1| = |α2| = αc
2 , and this completes

the proof of the Theorem. �

Interestingly, if we combine Figure 4 with Figure 5, then Figure 6 shows the simulta-
neous contacts points (A1, B1) which are found to the right of the vertical sliding guide
(v). Moreover, one may observe the wedge formed by the displaced curves D1E1 and
F1G1. In this situation, the initial position of the three meshed surfaces are illustrated in
dashed lines, the roller (of center C1) is pulled upwards in compression and rotates in the
clockwise direction. Both the normal forces at (A1, B1) pass through the displaced center
C1. Therefore, if power is transmitted to the vertical guide (v), it further flows to the cams
by rolling contact.
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Figure 6. A wedge made by the roller and the two cam-track disks (α < αc/2).

4. Repetition of the Initial (Reference) Circular Segment

From the above Theorem 1, we recall that when the horizontal displacement OO2 of
the center in the lower cam-track disk takes its maximum value, δmax = Rm sin(αc/2), the
initial points (D, G) are then meshed at (D2, G2), with the points O2, D2, C2 being collinear,
as shown in Figure 7.
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Figure 7. Extreme arrangement with rolling contact (α = αc/2).

Therefore, to continue the rolling contact between the two cam surfaces and the roller,
we can merely reverse the curvature of the circular arcs, as indicated in Figure 8. Note
that each of the four rollers is restrained to move in the horizontal direction due to vertical
grooves (guides), which do not affect the rolling-contact between the rollers and the tracks.
Therefore, in this setup, the centers of mass of the rollers move only in the vertical direction.
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5. Parametric Equations

For the sake of completeness, we also present parametric equations in terms of the
past time t for all three bodies in motion.

We select the axis origin of the coordinate system to occur at the initial position of the
center O of the two circular arcs (see, Figures 3–5). Starting from point O (at time t = 0)

and terminating at the extreme point O2,upper (with δmax =

∣∣∣∣−−−−−→OOupper

∣∣∣∣, shown in Figure 7)

at time tmax = δmax/V, we have the following equations for the trajectory of the center of
mass of the roller, as well as for the instantaneous position of the two contact points.

5.1. Center of Mass C of the Roller

By construction, the center of mass C of the roller moves along a vertical slide guide,
which is here assumed to be fixed in space (note that in an open differential, the sliding
guide is fixed to the usually geared retainer (cage)). Therefore, by definition, the center C
does not move toward the x-direction. As the upper cam moves to the right, it leaves space
for the caged point C to cover the gap moving upward. Therefore, the equations of motion
of point C are: {

xC(t) = 0

yC(t) = −Rm

√
1− (V/Rm)

2t2
. (10)

5.2. Contact Point A1 between Upper Cam and Roller{
xA1(t) = (rV/Rm)t

yA1(t) = (−Rm + r)
√

1− (V/Rm)
2t2

. (11)

During the time period in which the cam tracks ( ˆDAE and ˆFBG) are meshed, the
application of Equation (11) to the locus of contact point A1 results in the cyan-colored line
shown in Figure 9.
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the roller.

5.3. Contact Point B1 between Lower Cam and Roller{
xB1(t) = (rV/Rm)t

yB1(t) = −(Rm + r)
√

1− (V/Rm)
2t2

. (12)

During the time period in which the cam tracks ( ˆDAE and ˆFBG) are meshed, the
application of Equation (12) to the locus of the contact point B1 results in the magenta-
colored line shown in Figure 9.

From Equations (10)–(12), we can obtain the following relationships:
xA1(t) = xB1(t)

yA1(t) = yC(t) + r
√

1− (V/Rm)
2t2

yB1(t) = yC(t)− r
√

1− (V/Rm)
2t2

. (13)

Equation (13) reflects the proposed Theorem 1, according to which the contact points
(A1, B1) have the same x-coordinate, while they lie at the same distance from a line passing
through the moving center of mass C and are parallel to the horizontal x-axis.

5.4. Locus of Instantaneous Pole (Centrode)

With respect to the fixed space system Oxy, the pole of the roller lies along a horizontal
line passing through the instantaneous center of mass of the roller, and thus has the
following parametric equations:{

xp(t) = r sin α1 = r(V/Rm)t

yp(t) = yO − Rm cos α1 = −Rm

√
1− (V/Rm)

2t2
. (14)

Taking the origin of the Cartesian co-ordinate system at the initial point O (see Figure 3),
a trivial manipulation of Equation (14) leads to(

xp/r
)2

+
(
yp/Rm

)2
= 1. (15)
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Equation (15) depicts that the locus of the instantaneous pole of the roller (centrode),
for as far as the circular arcs D̂E and F̂G are meshed with the roller, moves along a part of an
ellipse centered at O with horizontal and vertical semi-axes equal to r and Rm, respectively.
This is shown by the black-coloured curve in Figure 9, which is obviously tangent with the
circular arc ĤI at initial point C.

6. Implementation of the New Concept to Automotive Differentials
6.1. General Remark

The advantage of the rolling contact between the rollers and the two cams is compen-
sated by the friction induced at the vertical sliding guides. From the other point of view, the
technology required in the proposed concept is closer to the rolling bearings than the gears.

6.2. Application to Automotive Differentials

One of the possible applications of the proposed curves is the gearless differential, of
which a full study, including sinusoidal curves as well as stress (finite element) and fatigue
analyses, may be found in [23].

In the case of the gearless differential, the extreme points Kle f t and Kright (shown in
Figure 8) are coincident, as in Figure 10. Clearly, the outer roller of Figure 10 represents
the sketch element (1) of Figure 8, while the developable line Kle f t ÷ Kright becomes a
whole circumference.
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Figure 10. Retainer (cage) with one (out of the four pairs) of outer and inner rollers within
vertical grooves.

The reason for using two rollers per vertical groove is due that when all the rollers
hit the top of the cam profiles, uncertainty will arise; thus, the mechanism will work
intermittently. Therefore, it is necessary to install two parallel rows of rollers at the distance
of one row relative to the other, as shown in Figure 11. One may observe that, between the
maxima of the outer ring and the maxima of the inner ring, there is a phase-difference of
exactly 45◦ degrees.
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Clearly, the rollers are encaged in the retainer and can move on V-shaped vertical
grooves by sliding (Figure 10). The rolling contact with which this paper deals refers to
the contact of the two rolling members (shown in Figure 10) with the two cam-track disks
(the lower one is shown in Figure 11), one upper and one lower, forming the differential
mechanism. If we perform a horizontal cut in the middle, and the retainer is left out to
increase our visibility, in Figure 12 we obtain the 3D shape of an entire cam-track disk, with
two rows at a phase difference of 45◦ degrees, four vertical grooves and four pairs of rolling
members (one pair per vertical groove). An almost horizontal cut of the rolling members
was performed to increase our understanding of the relative motion between the rolling
members and the vertical grooves.
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In the design of two rows shown above, we avoid the case where all rollers are
found at the extreme points (maxima and minima), thus ensuring at least one working
roller per track under pressure, as illustrated in Figure 6. It is also worth mentioning that
both cam-track disks, upper and lower, are identical in shape and size. thus minimizing
manufacturing and storage costs.

The advantage of the proposed circular cams is the supposed self-regulation of the
differential device to variable road conditions without additional means (i.e., those used
in locking and limited slip ones). Note that if the central angle αc is relatively small with
respect to the coefficient of friction between the outer support of the cam-track disks in the
housing (for design details, see [21]), i.e., when tan(αc/2) < µ, the wedge shown in Figure 6
obeys the rule of the inclined plane, a self-blocking performance has been noticed [23]. In
other words, the entire mechanism operates as an equivalent one-dimensional inclined
plane in the circumferential direction.

The upper cam-track disk of the abovementioned graphs is actually connected to the
(say) left driving wheel of the automobile vehicle. Similarly, the lower cam-track disk is
connected to the right driving wheel.

7. Force Analysis in a Simplified Model
7.1. Mechanical Model

Figure 13a represents any of the four active rollers operating between the two cam-
track disks. Under certain conditions, the totality of the aforementioned four active rollers
constitutes an equivalent roller. Thus, Figure 13a shows that the circumferential force Fu,
which is transmitted to the roller through the vertical grooves of the retainer, is cancelled by
two contact forces Fn; these should be almost vertical to the inclined plane of the averaged
angle αm (as the rolling friction is very small). Of course, the frictional force along the
vertical groove at which the rollers slide changes the situation; thus, the normal forces Fn
are not exactly equal to one another. Again, the truth is that the circumferential force Fu
is cancelled by the sum of the two normal forces Fn plus the unknown frictional force, a
matter which will be discussed later.
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Below we present an elementary mechanical analysis for the determination of forces
and contact pressures.

In an automotive differential, the engine power is transmitted from the geared crown
to the attached retainer (cage), and then through V-shaped supporting grooves to the rollers.
Thus, circumferential forces, Fout

u and Fin
u are induced in the outer and the inner tracks,

respectively. The identification of the working elements is as follows. Only those elements
of which the horizontal components of the outward unit vector are directed toward the
circumferential velocity of the crown (as shown in Figure 14) are actually working and
transmitting power. As previously mentioned, this occurs for only half of them in each
track (i.e., two in the outer track and another two in the inner track), which can be easily
identified in Figure 15, as denoted by arrows (→).
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Figure 14. Analysis of circumferential force Fu (a) at a wedge (b) in two components Fn normal to the
upper and lower track. The projection of Fn is the axial force Fax.

In each track, the serial numbering of the rollers ranges from 1 to 4, as shown in
Figure 8. Rollers in contact but in different tracks have the same serial number. Since, at
each time instance, only half of the rollers push each track, either No. (1,3) or No. (2,4), at a
phase difference of 180 degrees (in anti-diametrical positions), we can safely consider that
the exerted moment in the outer track is due to one pair of forces (for example, those exerted
on No. (1,3), shown in Figure 15f–i), thus forming a moment of force couple Fout

u Dout
cam.

Similarly, another pair of forces in the inner track with a corresponding moment of force
couple Fin

u Din
cam is exerted in the inner track. Therefore, the total moment Mt,crown, which is

transmitted from the geared crown to the cage of the differential device, will be:

Mt,crown = Fout
u Dout

cam + Fin
u Din

cam (16)

Assuming that the friction between the rollers and the cam tracks is negligible (rolling-
contact), and also neglecting the friction at the V-shaped grooves, each of the above circum-
ferential forces Fu is analyzed into two equal force components Fn of equal size, both normal
to the surface of the surrounding tracks. Then, each of the Fn forces is further analyzed into
one axial to the cam-track disk (Pax) and another circumferential/radial component (Pu)
according to Figure 16a.
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be: 

,
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Assuming that the friction between the rollers and the cam tracks is negligible 
(rolling-contact), and also neglecting the friction at the V-shaped grooves, each of the 
above circumferential forces 

uF  is analyzed into two equal force components 
nF  of 

equal size, both normal to the surface of the surrounding tracks. Then, each of the 
nF  

forces is further analyzed into one axial to the cam-track disk ( )a xP  and another cir-
cumferential/radial component (

uP ) according to Figure 16a. 

Figure 15. Several phases of the cam tracks, for relative rotation θ every π/8, for the outer track and
the inner track (uniform scale). (a) θ = 0. (b) θ = π/8. (c) θ = 2π/8. (d) θ = 3π/8. (e) θ = 4π/8.
(f) θ = 5π/8. (g) θ = 6π/8. (h) θ = 7π/8. (i) θ = π.
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Ignoring the dynamic effect as well as the significant frictional force at the V-shaped
grooves, the static equilibrium of the roller overestimates the force components as follows:

Outer track : Pout
u =

Fout
u
2

, Pout
ax =

Fout
u

2 tan αout
(17)

and

Inner track : Pin
u =

Fin
u
2

, Pin
ax =

Fin
u

2 tan αin
(18)

Although the system is not statically determined (redundant) and the relationship
between Fout

u and Fin
u is a matter of elasticity, to obtain a closed-form analytical solution we

further assume rigid-body conditions; thus, the circumferential forces are proportional to
their distance from the center:

Fin
u

Fout
u

=
Din

cam
Dout

cam
= ξ (19)

Then, solving in Fin
u from Equation (19), and substituting into Equation (16), we obtain:

Mt,crown = Fout
u Dout

cam

(
1 + ξ2

)
(20)

It should become clear that only half of the moment given by Equation (20) is trans-
mitted to each cam-track disk. Since each cam-track disk undertakes the moment:

Mt,cam = Pout
u Dout

cam + Pin
u Din

cam, (21)

the total transmitted moment will be:

Mt,crown = 2Mt,cam = 2
(

Pout
u Dout

cam + Pin
u Din

cam

)
(22)

By virtue of Equation (20), Equation (22) becomes:

Mt,crown = Fout
u Dout

cam

(
1 + ξ2

)
(23)

Therefore, if the transmitted moment Mt,crown is known, the circumferential force in
the outer track is given by:

Fout
u =

Mt,crown

Dout
cam(1 + ξ2)

(24)

Combining Equation (19) with Equation (24), we can obtain the circumferential force
in the inner track:

Fin
u =

ξMt,crown

Dout
cam(1 + ξ2)

(25)

7.2. Normal Forces

Based on the above circumferential forces, Fout
u and Fin

u , we can calculate the normal
forces in both tracks.

Therefore, the normal force in the outer track is given by:

Fout
n =

Fout
u

2 sin αout
=

Mt,crown

2Dout
cam(1 + ξ2) sin αout

(26)

Also, the normal force in the inner track is given by:

Fin
n =

Fin
u

2 sin αin
=

ξFout
u

2 sin αin
=

ξMt,crown

2Dout
cam(1 + ξ2) sin αin

(27)
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Each active spherical roller presses, by the normal force Fn (either Fout
n or Fin

n ), the
corresponding track, which has two curvatures in space. According to the generalized
Hertz theory, which refers to the contact of two ellipsoidal surfaces [38], at the contact point
of each track, the equivalent curvatures in the two perpendicular x- and y-directions are
given by:

1
Rex

=
−R1x + R2x

R1xR2x
,

1
Rey

=
−R1y + R2y

R1yR2y
, (28)

and the radius Re of an equivalent sphere is:

Re =
√

RexRey, (29)

Based on the normal contact force Fn and the abovementioned equivalent radius Re,
the maximum contact pressure becomes:

p0 =

[
6Fn(E∗)2

π3(Re)
2

] 1
3

. (30)

In Equation (30), Fn refers to either (Fout
n , Fin

n ), Re to either (Rout
e , Rin

e ), while the equiva-
lent elastic modulus E∗ is determined by:

1
E∗

=
1− ν2

1
E1

+
1− ν2

2
E2

, (31)

where (E1, ν1) and (E2, ν2) are the elastic moduli and the Poisson’s ratios of the rollers and
the tracks, respectively.

7.3. Axial Forces

The abovementioned moment Mt,crown is equally transmitted from the rolling members
to both the cam-track disks by the two working normal forces Fout

ax and Fin
ax (the same per

track for each cam-track disk, directed to the wheels) of total magnitude

Fax,tot = 2(Fout
ax + Fin

ax). (32)

The above sum includes two equal forces per track (which shows the involved factor
“2” in Equation (32)) and is cancelled by the friction on the friction disk.

It should become clear that only half of the moment given by Equation (23) is trans-
mitted to each cam-track disk. Actually, each cam-track disk undertakes the moment given
by Equation (21).

Combining Equations (22) and (23), we have:

Mt,cam =
1
2

Fout
u Dout

cam(1 + ξ2) (33)

Since the friction should not exceed the maximum static value, we may set a desired
threshold for the maximum moment at each cam for which full blocking is ensured; thus,
we can write:

Mt,cam ≤
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Then, substituting Equations (33) and (36) into Equation (34), after a reduction in the 
common factor out

uF , we obtain: 

2(1 )1

tan tan

out
cam

out in R

D

D


  

  
  

 
,  (37)

In order to make further analysis easy, we assume that the angles are small and that 
similarity conditions between the outer and inner track are assumed; thus, according to 
[23], the sum of the two contact angles is constant: 

out in m    , (38)

where 

2m cen tra l   (39)

Under these circumstances, the function at the left part of Equation (37) may be ap-
proximated in terms of only 

ou t , as follows: 

DR
2

, (34)

where µ is the coefficient of friction and DR is the equivalent diameter of friction. From
standard machine elements and design books, we know that the latter variable depends
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on the assumptions imposed in clutch theory, either uniform-pressure or uniform-wear
conditions. Following the uniform-pressure condition, we have (see, [39,40]):

DR =
2
3

d3
out − d3

in
d2

out − d2
in

, (35)

where dout and din is the outer and the inner diameters of the friction disk, respectively.
Substituting Equation (17) to Equation (19) into Equation (32), we can see that each

cam-track disk undertakes the total axial force:

Fax,tot = Fout
u

(
1

tan αout
+

ξ

tan αin

)
, (36)

Then, substituting Equations (33) and (36) into Equation (34), after a reduction in the
common factor Fout

u , we obtain:(
1

tan αout
+

ξ

tan αin

)
≥ Dout

cam(1 + ξ2)

µDR
, (37)

In order to make further analysis easy, we assume that the angles are small and that
similarity conditions between the outer and inner track are assumed; thus, according to [23],
the sum of the two contact angles is constant:

αout + αin = αm, (38)

where
αm = αcentral/2 (39)

Under these circumstances, the function at the left part of Equation (37) may be
approximated in terms of only αout, as follows:

f (αout) =

(
1

αout
+

ξ

αm − αout

)
, (40)

Since the right-hand side of Equation (37) is a constant, we are seeking a condition that
will ensure that this equation will be valid even for the minimum value of the left-hand
side. Actually, the function f (αout) may obtain close-to-infinite values when αin → αm ;
thus, Equation (37) will be fulfilled for small values of αout (where αin → αm ), but it is easy
to see that it also possesses a minimum value. Equating the first derivative of f (αout) to
zero, the only acceptable solution for the optimality condition (less than αm) is:

(αout)opt =
αm

1 +
√

ξ
(41)

Thus, for the particular value of the outer contact angle given by Equation (41) and the
associated inner contact angle given by Equation (38), i.e., αin = αm − αout, Equation (37)
finally implies the following critical threshold:

αm ≤ αm,CR =
DR

Dout
cam

(
1 +
√

ξ
)2

(1 + ξ2)
µ. (42)

In conclusion, Equation (30) is the most important formula regarding the maximum
induced stress between the rollers and the cam-track disks, while Equation (42) is a good
estimation of the maximum inclination angle, which equals half the central angle of the
meshed circular arcs.

Typical data of the model are given in Table 1 and will be used in Section 8.
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Table 1. Parameters of the model.

Parameter Value

Input torque (applied to the crown attached to the
cage/retainer) 260 Nm

Number of rolling elements at each cam track 4
Phase-difference between outer and inner cam track 45◦

Diameter of outer cam track: Dout
cam 85 mm

Diameter of inner cam track: Din
cam 50 mm

Radius of rolling element in the outer track: rout 15 mm
Radius of rolling element in the inner track: rin 12 mm
Outer diameter of friction disk: dout 95 mm
Inner diameter of friction disk: din 45 mm
Coefficient of friction: µ 0.066
Inclination angle (half the central angle) of outer track: αout 15◦

Inclination angle (half the central angle) of inner track: αin 27.25◦

8. Results

The results concern (a) experiments and (b), with manual calculations based on
previous sections.

8.1. Experiments

Using a prototype that was manufactured according to [21], two simple experiments
were conducted as follows:

Bench experiment No.1: We put the right shaft (i.e., the extension of the lower cam-
track disk) into a mechanical clamp, while the other shaft (extension of the upper cam-track
disk) is left free. Then, a torque is progressively exerted on the retainer (between the
two shafts). It was observed that the rotation of the retainer is impossible even if a very high
torque is applied. Nevertheless, by applying even a small torque to the left shaft, the latter
can easily rotate twice as fast as the retainer.

Bench experiment No.2: We carefully put the retainer into a mechanical clamp. We
observe that it is impossible to turn only one shaft, regardless of the magnitude of the
applied torque. If, however, a small torque is applied to the other shaft in the opposite
direction, then both shafts rotate (in opposite directions) at the same angular velocity.

The above two experiments are very enlightening and support the theory of the
previous Section 7.3.

8.2. Rough Estimation of the Inclination

According to Table 1, the following data were adopted.
Diameters of cam-track disks: Din

cam = 50 mm, Dout
cam = 85 mm.

Rolling members: rout = 15 mm, rin = 12 mm.
Friction disks: dout = 95 mm, din = 45 mm, and µ = 0.066.
Substituting the above figures in Equation (35), the equivalent diameter DR in the

friction disks is estimated as:

DR =
2
3

d3
out − d3

in
d2

out − d2
in

=
2
3
× 953 − 453

952 − 452 = 72.9762 mm. (43)

We assume that the force-to-force and diameter-to-diameter ratios are equal to each
other, as in the pivoted connections; thus, Equation (19) implies:

ξ =
Din

cam
Dout

cam
=

50
85
∼= 0.5882 (44)
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Substituting the above numerical values of Equations (43) and (44) into Equation (42),
we obtain:

αm ≤

72.9762
85

×

(
1 +
√

0.5882
)2(

1 + (0.5882)2
) × 0.066

× 180
π
∼= 7.53◦ (45)

Therefore, using the numerical result given by Equation (45), for similar tracks, the
maximum allowable central angle will be twice the value shown by Equation (45); thus, its
upper limit will be:

αcentral ≤ 15.1◦ (46)

8.3. Calculated Stresses

The basic parameters of the model were obtained according to Table 1. The stresses
were calculated according to Equation (30), in which the normal force Fn depends only
on the standard inclination angles of the two tracks and the standard input torque (all
found in Table 1). In contrast, the radius Re of the equivalent sphere in the denominator of
Equation (30) is a very crucial design parameter, which (by virtue of Equation (28)) highly
depends on the double curvature of each track.

Based on the above data, in conjunction with a typical input torque Mt,crown = 260 Nm
applied to the crown attached on the cage, for the above inclination angle we apply
Equations (26) and (27) to derive the normal forces on the outer (Fout

n ) and the inner track
(Fin

n ), respectively.
Furthermore, regarding the derivation of a large value for Re, after many trials, which

all resulted in high stress values, acceptable stresses were obtained for at least the following
design details (these reference values are close to those of the prototype, for which a finite
element analysis has been documented in [23]):

Roller in the outer track : Rout
1x = Rout

1y = rout = 15 mm = 0.015 m
Roller in the inner track : Rin

1x = Rin
1y = rin = 12 mm = 0.012 m

Outer track : Rout
2x = 0.220 m and Rout

2y = 1.1rout

Inner track : Rin
2x = 0.058 m and Rin

2y = 1.1rin

(47)

The substitution of Equation (47) into Equations (28)–(30) leads to contact pressures
equal to 1.6 MPa and 1.2 GPa for the outer and the inner track, respectively.

It is worth mentioning that, as also shown in Table 2, an accurate three-dimensional
finite element analysis (FEA) for the same dimensional parameters and input torque
resulted in smaller values, i.e., 1.3 GPa and 0.8 GPa, respectively [23]. The deviation
between the above simplified mechanical model and FEA is mainly attributed to the
existence of frictional forces at the V-shaped groves; thus, the assumed synthesis of forces
in Figure 14b is not absolutely correct because—eventually—the friction cannot be ignored.

Table 2. Calculated stresses (in GPa).

Simplified Model Finite Element Analysis (Ref. [23])

Outer Track Inner Track Outer Track Inner Track

1.6 1.2 1.3 0.8

Despite the above differences in the two models, the simplified mechanical model was
of major significance, because Equations (28)–(30) could quickly consider and elucidate
the influence of the curvatures in the tracks. Clearly, for each candidate combination of
detailed parameters determined by Equations (28)–(30), a corresponding FEM model has
to be developed afterwards.

Note that when the design includes spherical rollers, the first two equalities of
Equation (47) remain untouched because both radii of the roller are equal to the radius of
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the corresponding sphere. In contrast, we shall show that the induced stresses are sensitive
to the chosen curvatures on each track. Between the many combinations, let us preserve
the same inclination angles as previously used (according to Table 1), and then let us
standardize the radius Rout

2x = 0.22 m for the outer track, and the radius Rin
2x = 0.058 m

for the inner track. Considering Equation (30) from the simplified model of Section 7.2,
Table 3 shows the effect of the chosen radii Rout

2y and Rin
2y in the outer and the inner track,

respectively (note that equal factors were imposed for rin and rout).

Table 3. Calculated stresses (in GPa) for varying curvatures of the tracks.

Simplified Model: Equation (30)

Outer Track Inner Track Outer Track Inner Track

Rout
2y = 1.10rout Rin

2y = 1.10rin 1.57 1.20

Rout
2y = 1.09rout Rin

2y = 1.09rin 1.52 1.16

Rout
2y = 1.08rout Rin

2y = 1.08rin 1.46 1.12

Rout
2y = 1.07rout Rin

2y = 1.07rin 1.40 1.07

Rout
2y = 1.06rout Rin

2y = 1.06rin 1.34 1.02

Rout
2y = 1.05rout Rin

2y = 1.05rin 1.26 0.96

Rout
2y = 1.04rout Rin

2y = 1.04rin 1.18 0.90

Another result for this sub-section refers to the sensitivity of the inclination angles. As
a reference, we can consider the initial case (according to Table 1) in which the inclination
angles are αout = 15◦ and αin = 27.25◦, respectively. Then, by imposing a uniform ±10%
change around the reference values, Equation (30) leads to the results shown in Table 4
(change of about 3%).

Table 4. Calculated stresses (in GPa) for varying inclination angles of the tracks.

Simplified Model: Equation (30)

Outer Track Inner Track Outer Track Inner Track

αout = 1.1× 15◦ αin = 1.1× 27.25◦ 1.5211 1.1611

αout = 1.0× 15◦ αin = 1.0× 27.25◦ 1.5690 1.1953

αout = 0.9× 15◦ αin = 0.9× 27.25◦ 1.6239 1.2351

As a last note, a uniform variation of Rout
2x and Rin

2x by ±10% influences the contact
stresses by less than ±1%.

8.4. Interpretation of the Experiments

The contents of Section 7.3 and the numerical results of Section 8.3 suggest that the
main design philosophy of this gearless differential is concerned with an adequately small
central angle αc, so that the averaged inclination angle fulfills the condition tan αm < µ,
where µ is the coefficient of friction between the outer ‘side boundary’ of the cam-track
disks and the housing. The conditions of Experiment No.1 are illustrated in Figure 13a.
The equilibrium of the upper cam-track disk is shown in Figure 13b, in which the normal
force Fn is analyzed into two components, which are cancelled by the frictional force Ff r
and the normal reaction R. According to the well-known rule of the inclined plane (for the
sake of completeness, as repeated in Appendix A), for such a small angle αm, no matter the
size of the normal force Fn, the static friction Ff r does not exceed its maximum static value;
thus, no sliding occurs in this position.
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Moreover, if we exert a force Fext,upper (in the same direction as the Fu) on the upper
cam-track disk to overcome the side friction Ff r,upper in the housing (see, Figure 13a), due
to this net force, the horizontal motion of this part becomes possible. If the right driving
wheel of a vehicle is blocked, it is possible to operate the differential mechanism even by
exerting a small force on the free left driving wheel, a fact that justifies the abovementioned
blocking behaviour of this mechanism.

8.5. Typical Screenshots during the Operation of the Gearless Mechanism

The initial position of the two tracks (θ = 0◦) is that shown in Figure 8. It is also
repeated in Figure 15a for the outer and the inner track (parallel in the form of circumfer-
ences/rows separated by a distance). In Figure 15i one may observe that the same picture,
as the top (Figure 15a), appears after half a turn of each cam-track disk (rotational angle
θ = 180◦). In general, when the upper cam-track disk (left shaft) rotates by θ, the lower
one (right shaft) will rotate by −θ; thus, their phase-difference will be ∆θ = 2θ. Therefore,
the angle that appears in the middle column of Figure 15 refers to the aforementioned
rotational angle θ of each cam-track disk (shaft). Obviously, within each cam-track disk
(upper or lower), the outer and inner tracks (rows) rotate by the same amount as a rigid
body. In more detail, from Figure 15, we can obtain the following results:

• At the angle θ = 0◦, all four rollers of the outer track hit the tops of the cam profiles
(see also Figure 8), while those of the inner track do not.

• At the angle θ =45◦, all four rollers of the inner track hit the tops of the cam profiles,
while those of the outer track do not.

• At the angle θ =90◦, all four rollers of the outer track hit the tops of the cam profiles,
while those of the inner track do not.

• At the angle θ =135◦, all four rollers of the inner track hit the tops of the cam profiles,
while those of the outer track do not.

• At the angle θ = 180◦, all four rollers of the outer track hit the tops of the cam profiles
(see also Figure 8), while those of the inner track do not.

From the above discussion, it is clear that every half a turn of each shaft (θ = 180◦),
we take exactly the same picture of the eight rollers. This happens because, by construction
(according to Figure 8), we can obtain two complete periods (360◦/2 = 180◦).

Furthermore, in Figure 15b, which corresponds to θ = 22.5◦ (i.e., each shaft has
performed 1/16 of a full revolution), one may observe that two rollers in the outer track
and another two in the inner track press the profiled cams (in the direction of the arrows),
thus transmitting power. Interestingly, as the outer track rotates by θ = 22.5◦, it sweeps
an angle equal to 1/4 of the central angle αout = 15◦, and at the same time the inner track
rotates in the same direction by the same amount (∆θ = 22.5◦), now sweeping an angle
equal to 1/4 of the central angle αin = 27.25◦.

Concentrating on Figure 15, one may observe that, at (θ = π/8, 3π/8, 5π/8, 7π/8),
four out of the eight rollers, depicted by arrows (→), transmit power:

• Two out of the four rollers in the outer tracks are active, pushing them in the circum-
ferential direction (thus transferring part of the power).

• Two out of the four rollers in the inner tracks are active, pushing them in the circum-
ferential direction (thus transferring the rest part of the power).

In contrast, in the remaining five cases (θ = 0, π/4, π/2, 3π/4, π), only two rollers
are active. In other words, there at least two rollers are engaged in a wedge formed at the
contact points with the cam-tracks.

9. Discussion
9.1. Other Patents on Gearless Differentials

Clearly, although repeated (sinusoidal like) curves have been used for many years [18–22],
to date, the property of fully rolling contact cam track surfaces has neither been re-



Eng 2023, 4 2331

vealed nor studied. Readers who have experience in evaluating patents may refer to
the originals [18–20] and could find the following comments to be useful:

In Beucher’s patent Nr. 741,812 (granted in 1943) [18], there is an outer and an inner
groove. In each groove, the curves of the cam-track disks are repeated cylindrical arcs of
interrupted shape with sharp edges; thus, high-contact stresses are induced and fatigue
phenomena are anticipated. There is substantial sliding between the sliding plate-like
elements (in pairs) and the cam track disks. This mechanism works as a clutch, with the
result of a low coefficient of efficiency. The wear is high due to friction and high temperature,
and thus its operation is very problematic. Power transmission is circumferential. The
shape of driving elements is different than that proposed (rectangular with smooth sliding
surfaces). The inventor himself states that his invention is for the back shaft only.

In Randall’s patent No. 2,651,214 (applied in 1950, granted in 1953) [19], there is
again an outer and an inner groove. The curves of cam-track disks have sharp edges; thus,
high-stress concentration is anticipated. Power transmission is circumferential. During
differentialization, high friction and a high temperature develop, which wears rolling
members at points that then rolls them on the driven cam-track disks, leading to the
destruction of rolling. Rolling members have a frusto-conical shape. This works as a clutch.

In Altmann’s patent No. 2,967,438 (filled in 1958, granted in 1961) [20], there is only
one groove, in contrast to the abovementioned patents [18,19]. The curves in cam-track
disks are sinusoids, but this fact does not result in the full rolling of driving elements
without sliding. In more detail, the curves are unsymmetrical with each other (one cam
track has 5 maxima and 5 minima, whereas the other has 6 maxima and 6 minima), thus
leading to unequal inclination angles. The asymmetry between two driven cam-track
disks results in unequal action on the wheels. Equalizing means are provided at both
driven sides.

9.2. Overall Advantages of the Proposed Concept

From the above discussion in around Figure 13, it becomes obvious that the proposed
concept is against the operation of the open differential. Clearly, experiments reveal that
when one of the drive wheels meets mud or snow, even a minor resistance to the other
drive wheel offers motion. However, this is not a limited slip differential in the classical
sense, since no additional means exist, except for two bronze disks in the outer part of the
cam-track disks (for construction details, see [21,22]). Clearly, the particular shape of the
cam tracks, which leads to an interchangeable shape for both of them, can be efficiently
manufactured through CNC machining centers, thus reducing overall costs. This shape
ensures rolling contact and a kind of ‘self-regulation’, meaning that the power transmission
obtained through this differential is somehow adjusted to road conditions.

In the particular case of helicopters in which the gearbox suffers from possible frac-
tured gear teeth, it is obvious that the adoption of the proposed concept, in conjunction
with a small inclination angle α, would not lead to full destruction because the small angle
and the associated static friction (inclination rule) would prevent this.

9.3. Design Aspects of the Present Concept

In contrast to the above relevant patents [18–20], the use of the proposed circular curves
(indicated in Figure 3) allows for the transmission of power through a radial arrangement
of the rolling members. The support of the rolling members is achieved by sliding grooves
(guides) into the retainer, but this does not affect the rolling contact between them and the
cam-track disks. Rolling members are either in couples or independent. Rolling members
are drum-shaped (spherical, conical, etc.), i.e., of an axisymmetric form. The same concept
works with any even number on each curve: 2, 4, 6, 8, and so on. Then, the total number of
rolling members is 4, 8, 12, 16, or any other multiple of 4. Rolling members are arranged
in two concentric circumferences (one outer and one inner). The particular case of n = 4
rollers per circumference is shown in Figure 16: (a) for the initial state of parallel tracks
and (b) after a rotation of the upper cam-track disk by 90◦ degrees in the counter-clockwise
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direction. Note that when the outer curves are parallel (Figure 16a), the inner ones form
the maximum wedge angle. In contrast, when the outer curves form the maximum wedge
angle (Figure 16b), the inner ones become parallel. In addition, details of the prototype at a
regular size, including the rollers as well as stress and fatigue analysis, may also be found
in [23]. Although this has been previously noted, it is instructive to repeat that, in cases
where the prototype of Figure 16 is used as a gearless automotive differential, the upper
cam-track disk is firmly linked to the left half-shaft of the drive wheel, while the lower one
is linked to the right half-shaft.

By neglecting the friction at the V-shaped grooves, in the simplified model of Section 7.2,
we used Equation (17) to determine the total axial force Pax directed toward the half-shafts
and pressed the friction disk on the housing of the gearbox. For a given coefficient of
friction µ, the obvious condition is that the maximum torque transmitted between a friction
disk and the housing of the gearbox should not exceed the value imposed by the maximum
static friction. This inequality was used to analytically determine the maximum allowable
average inclination angle for the whole mechanism. This model somehow suffers due to
the hard assumption of frictionless operation at the V-shaped grooves. Of course, since
the relative velocities

.
u are analytically known everywhere in the power-train, one could

introduce an assumption for the friction (e.g., Ff = −c
.
u), but this issue is beyond the scope

of this paper.

9.4. Other Applications

Although the motivation for developing the concept of the two conjugate wavy cam-
track disks was primarily the differential gear (useful for tractors as well as for military
and passenger vehicles), the theory covers a lot of other power transmission applications
in mechanical engineering. For example, the same concept could be applied to replace
gearboxes in several drives, such as wind-turbines, mills, conveyors, mixers, pitch controls
in aeronautical engineering, high-safety transmissions for helicopters, multi-step marine-
type gearboxes, robotic devices such as pitch–roll wrists, electric cars, etc.

The wavy form of the cam tracks may also be useful for other applications where
controlled oscillations are needed, such as the replacement of the camshaft (obvious) and/or
the crankshaft (giving it a circular shape) in (single- or double-stroke) internal combustion
engines, as well as for piston pumps and compressors, among others.

As a last note, if we wish to categorize the proposed new concept, it might be consid-
ered a practical contribution to power transmission through kinematic contact (in German,
Formschluss [41]).

10. Conclusions

The findings of this paper suggest that:

(1) Ideal (pure) rolling (without sliding) of a roller on the two surfaces of cams (profiled
plates) is achieved when the center of mass of the roller moves along a circular arc
bounded by a given central angle.

(2) If this design concept is applied to an automotive differential for an even number of
repetitions, it leads to two identical cam-track disks (i.e., symmetrical differential),
thereby saving manufacturing and storage costs.

(3) If the central angle is small, self-regulation and blocking are achieved through the
principle of the inclined plane.

(4) The proper selection of particular dimensional parameters, such as double curvature,
leads to mechanical stresses, which are within the usual allowable limits.

(5) A weakness of this study is that elastic deformation of the cam-track disks has not
been considered.
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Nomenclature

Quantity Explanation
Dout

cam = 2Rout
cam, Din

cam = Rin
cam Diameter and radius of cam-track disks (outer and inner).

ξ Diameter ratio Din
cam/Dout

cam.
rout, rin Radius of rollers (outer and inner track).
dout, din Diameters of friction disks (outer and inner).
DR Equivalent diameter of frictions disks (with uniform pressure).
µ Coefficient of friction on friction disks.
αout

central , αin
central Central angle (outer and inner track).

αout, αin Contact angle (outer and inner track).
Mt,crown Torque transmitted from the geared crown to the totality

of two cam-track disks.
Mt,cam Torque transmitted to each cam-track disk.
Fout

u , Fin
u Circumferential force at each active roller (outer and inner track).

Fout
n , Fin

n Normal force on cam-track disk transmitted by active roller
(outer and inner track).

Pout
u , Pin

u Circumferential force on cam-track disk transmitted by active
roller (outer and inner track).

Pout
ax , Pin

ax Axial force on cam-track disk transmitted by active roller
(outer and inner track).

Appendix A

We consider a particular groove (external or internal). The corresponding reaction
force R (see Figure 13b) cancels the horizontal projection of the normal force Fn; thus,

R = Fn cos α (A1)

Also, the friction T cancels the vertical component of force Fn; thus,

T = Fn sin α (A2)

Dividing (A1) and (A2) by parts, we receive:

T = R tan α (A3)

Considering that no sliding occurs, the static friction is smaller than the maximum one:

T ≤ µR (A4)

From (A3) and (A4), one can obtain the well-known inequality:

tan α ≤ µ (A5)

In other words, when the inclination angle of a cam surface is smaller than a critical
limit, there is no sliding between the planar surface of the corresponding cam-track disk
and the surrounding housing (for a possible practical implementation, see [18]); thus, it
works as a ‘blocking’ differential mechanism. Otherwise, if tan α > µ, it works as a usual
differential mechanism.
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