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Abstract: This article addresses the challenges of selecting robust classifiers with increasing noise
levels in real-world scenarios. We propose the WB Score methodology, which enables the identifica-
tion of reliable classifiers for deployment in noisy environments. The methodology addresses four
significant challenges that are commonly encountered: (i) Ensuring classifiers possess robustness
to noise; (ii) Overcoming the difficulty of obtaining representative data that captures real-world
noise; (iii) Addressing the complexity of detecting noise, making it challenging to differentiate it from
natural variations in the data; and (iv) Meeting the requirement for classifiers capable of efficiently
handling noise, allowing prompt responses for decision-making. WB Score provides a comprehensive
approach for classifier assessment and selection to address these challenges. We analyze five classic
datasets and one customized flooding dataset in São Paulo. The results demonstrate the practical
effect of using the WB Score methodology is the enhanced ability to select robust classifiers for
datasets in noisy real-world scenarios. Compared with similar techniques, the improvement centers
around providing a visual and intuitive output, enhancing the understanding of classifier resilience
against noise, and streamlining the decision-making process.

Keywords: computational classification; machine learning; noise robustness; classifier selection;
visual decision-making

1. Introduction

Computational classification methods utilizing machine learning algorithms have
gained significant popularity due to their ability to learn patterns and make accurate
predictions automatically [1,2]. However, real-world scenarios often present challenges in
the form of uncertainties and noise inherent in the datasets used for training and testing
these classifiers [3]. This article focuses on a scenario where classifiers are trained once and
deployed in production environments, continuously facing datasets with increasing noise
levels over time.

When dealing with datasets prone to increasing noise, several challenges arise in select-
ing the most appropriate classifiers. The following problems are commonly encountered:
(i) Classifiers must exhibit robustness to noise, ensuring accurate predictions despite noisy
instances or attributes in the data. The selection of classifiers that can effectively handle
varying levels of noise is crucial to maintaining high prediction performance over time [4];
(ii) It is often difficult to collect and label large amounts of data representative of the noise
encountered in the real world. As a result, classifiers may be trained on datasets that are not
representative of the noise that they will encounter in production, which can lead to poor
performance [5]; (iii) Noise can take many different forms making it difficult to distinguish
between noise and real data variation [6]; (iv) There are scenarios where efficient handling
of real-time data streams with increasing noise requires classifiers that can process incoming
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instances promptly. In cases like this, solutions like ensemble methods or active learning
techniques may not be effective since retraining time can be highly costly [7].

This paper presents the novel “WB Score” methodology for selecting a robust clas-
sifier in increasingly noisy environments. The methodology inputs a dataset and a list
of classifiers to test, determining the most reliable despite significant noise. By provid-
ing an intuitive graph that visually represents classifier performance, decision-makers
can efficiently assess and choose an appropriate classifier based on their specific needs
and the overall noise levels. Although there are graphic or visual methodologies such
as robustness curves [8], noise tolerance plots [9], box plots [10], stacked bar charts [11],
and heatmaps [12], none of them were designed to take into account the increase in noise
nor to analyze a set of classifiers at the same time to select the best one for the task to
be performed.

This paper is organized as follows: Section 2 introduces relevant related works;
Section 3 presents the Data and Methods; Section 4 shows the results and relevant discus-
sions of this analysis; finally, Section 5 contains the conclusions.

2. Related Works

As an application of machine learning, classification techniques are used to distinguish
instances of a dataset into classes or groups of similar elements [13]. These techniques are
widely applied in several areas of knowledge area, for example, biology [14], biometric
authentication [15], computer vision [16], document classification [17], development of
new drugs [18], pattern recognition [19], and natural language processing [20]. For each of
these areas, there are peculiarities in their explanatory variables (or features) that make a
classification algorithm better than another for a given purpose or dataset.

However, for the composition of a dataset, there may have needed to be more accu-
rate readings in the collected values, causing errors or imprecision. This work presents
a ranking method for classification algorithms that consider adding noise in the origi-
nal dataset, thus enabling the choice of the most robust algorithm under this condition.
The selected algorithm can then be of great value in datasets with known noisy or inaccu-
rate information.

The “No Free Lunch theorem” [21] says that no single algorithm always performs
better than others in all datasets. Depending on its data, a classifier can give the best
response among all others due to some of its internal implementations, which deal better
with the existing dataset bias [22]. Finding the better solution for a practical problem is
formally known as the Algorithm Selection Problem in literature [23].

At first, the most logical approach for selecting a classification algorithm for a new
problem is to compare the performance of previous similar ones, choosing the best option
historically found. In this case, subjects like ranking [24–27], meta-learning [28,29], problem
difficulty [30], and knowledge discovery [31] can also be addressed.

Another approach found is using multiple classifier systems as an alternative to
improve accuracy. The idea is to have a classifier pool that can be used to compose the
result, selecting the best classifier for each sample to be classified. Several studies have
demonstrated its advantages over individual classification models [32].

The literature needs to include the approach of selecting the best classifier for the
case in which we have a noisy dataset or is error-prone in its data acquisition [33,34].
However, some articles demonstrate that using MCS helps to reduce the effects of noise
in the analyzed datasets [35–37]. The proposed methodology is a solution to fill this gap,
allowing the analysis of several classifiers simultaneously to choose one that is more robust
to errors or noise within the used dataset. The classifiers’ accuracy response on the original
dataset and the datasets in which noise is introduced are considered to find the best suitable
algorithm with the used dataset.

Some works use sensitivity analysis [38,39] to identify the relationship of all fields that
make up the input data, trying to find out the most important ones and discard those who
contribute with a tiny fraction, which can then be considered negligible [40]. Methods like
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One-Factor-at-a-Time [41] and Elementary Effects [42] are examples of this, and they are
helpful in large modeled systems with dozens of inputs or more, but this work is different.
Here, the objective is to check how the output response degrades from the original ones as
the noise levels grow up, regardless of how the input data interact with themselves.

3. Data and Methods

The data are presented in Section 3.1, whereas the methods are explained from
Section 3.2 through to Section 3.7.

3.1. Used Datasets

Five well-known classic public datasets were used in this experiment: IRIS, GLASS,
IONOSPHERE, IMAGE SEGMENTATION, and SEEDS. All of them are available to down-
load from the UC Irvine Machine Learning Repository (https://archive.ics.uci.edu
(accessed on 1 July 2023)). A customized flooding dataset in São Paulo was also ana-
lyzed (FLOODINGS SP) [43]. Table 1 gives a short description of each dataset and the size
of elements.

Table 1. Description of datasets used in the experiment.

Dataset Description Instances Attributes

IRIS
Classification of iris flowers into three

species: setosa, versicolor,
and virginica.

150 4

GLASS
Classification of glass types into six

categories: window, bottle, table,
vehicle, laboratory, and other.

214 9

IONOSPHERE
Classification of ionospheric conditions
into three categories: quiet, disturbed,

and very disturbed.
351 34

IMAGE SEGMENTATION

The instances were drawn randomly
from a database of 7 outdoor images
and were hand segmented to create a

classification for every pixel.

210 19

SEEDS
Classification of seeds into three species:
setaria italica, digitaria sanguinalis, and

eleusine indica.
210 7

FLOODINGS SP Classification of floodings events
between 2015 and 2016 in São Paulo. 825 6

The attributes in each dataset vary in type and number. However, they all allow being
tampered with generated noise, a necessary characteristic for evaluating the proposed
methodology. All numerical values were tampered with multiplicative and additive noise.

It is interesting to note that all variables observed in real life are analog by nature, and
we depend on instruments or sensors to measure them correctly [44]. In this sense, any data
expressing some environmental characteristic will be expressed in real numerical values,
making the numerical framework presented here perfectly applicable and coherent. It is
impossible to apply the noises if the attributes were nominal or strings without probably
changing their class, which would reflect in a dataset utterly different from the original.

3.2. WB Score Explained

Let D0 = {(xi, yi) ε X × Y : i = 1, . . . , m} an original considered dataset; where
xi are observations and yi a class label. Additionally, let De = {(xi

(e), yi) ∈ X × Y :
i = 1, . . . , m} a dataset with observations tampered with e% noise-level.

https://archive.ics.uci.edu
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Assuming f k(x) : X → Y a trained classifier through Dk, for k = 0, 1, . . . , β; the
accuracy regarding the original and noise-corrupted datasets, herein denoted by A0 and
Ac, respectively, are defined as:

A0 =
1
m

m

∑
i=1

δ( f k(xi), yi)

Ac =
1

β.m

β

∑
k=1

m

∑
i=i

δ( f k(xi), yi)

where δ(a, b) =
{

1 if a = b
0 otherwise

is the Kronecker operator.

The basic idea of the proposed methodology is the analysis of possible models that
may be used in a classification problem from a dataset that may contain noise in its data.
The central evaluation metric used is the overall accuracy [45].

Applying different random noise intensities is a convenient procedure to assess the
robustness of the model in this scenario. One can consider the original dataset as the
baseline to be compared with other noise levels. Consequently, these perturbed datasets
allow for analyzing how the error rates increase due to the added noise intensities.

For this discussion, we consider noise intensities ranging from `in f % to `sup%, by a
progressive increase of `step%. Regarding the perturbation process, the following expression
is employed:

x̃i = xi +
ε`xi

2
; i = 1, 2, . . . , m (1)

where x̃i is the resulting perturbation on xi; ε is a random scalar sampled from a uniform
distribution in [−1,+1]; and ` ∈ [`in f , `sup] represents the noise level ranging from `in f %
to `sup%, respectively.

It is worth observing that the respective assignment between xi and its “label” (yi) is
still persistent to x̃i, for i = 1, . . . , m.

In addition to calculating the accuracy achieved by the model when using the original
dataset (A0), the average of the accuracies of this same dataset with added noise ranging
from `in f % to `sup%, with increment step of `step%, is also calculated (Ac). Limiting the error
or noise threshold in data measurement readings to a minimal or negligible value is one
of the main goals when building a dataset, ensuring the assertiveness of the classification
algorithm output.

Once the accuracy values are calculated, we can derive the ρ and θ values that comprise
the indicators of the proposed methodology, herein called the WB Score. Figure 1 describes
the above-discussed methodology in a flow chart diagram.

In practice, the accuracy values are placed on a Cartesian graph with the original
accuracy on the y-axis and the average of the accuracies with noise on the x-axis, as
depicted in Figure 2. The vector resulting from the sum of these values indicates the
evaluation of the classification algorithm tested, where ρ is the value of its module and θ is
the angle formed between the vector and the abscissa axis.

It is worth noting that, in this configuration, the ρ module can be greater than 1.
In order to keep it between [0, 1], we can normalize it. In this way, the ρ and θ values can
be expressed as follows:

ρ =

(
A0

2 + Ac
2

2

) 1
2

; [0, 1] (2)

θ = arctan
(

A0

Ac

)
; (0, π/2). (3)
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Figure 1. The flow chart shows how the WB Score methodology calculates the rho and theta indicators
and the visual positioning of each classifier.

Figure 2. Visualization of ρ and θ indicators.

Analyzing Figure 2, we can point to the following properties:
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(i) Vectors with θ < π
4 generally represent algorithms with robustness in relation to

noisy datasets;
(ii) Vectors with θ > π

4 generally represent algorithms with robustness in relation to
noiseless datasets;

(iii) Vectors with θ ≈ π
4 represent algorithms with a balanced response between noisy and

noiseless datasets.

Figure 3 graphically express these properties, highlighting regions for each one of
them. The region comprising the balanced response was arbitrarily defined to θ between
43 and 47 degrees (45 ± 2 degrees).

The indicative vectors may have the same modulus value (length of ρ) but can be
differentiated by their angular part (value of θ). Thus, it is possible to choose a more
robust algorithm for the case of a noisy dataset, a noiseless dataset, or a balanced solution
between both.

The methodology will always return a position of the tested classifier within the
delimited graphic area, except for the case in which the accuracies have a value of zero.
In this case, we will have a mathematical uncertainty to calculate the arc whose tangent
would be zero divided by zero. However, this is an undesirable situation, meaning that the
classifier always gets its predictions wrong, and is therefore useless.

Lastly, it is worth mentioning that the accuracy evaluation metric is used in this
introduction to the WB Score methodology. However, it can be changed to any other
evaluation metric among dozens of others described in the literature, such as Kappa, Total
Cost, Average Cost, KB, MAE, RMSE, RAE, RRSE Precision, Recall, F-measure, ROC, PRC,
and others [46].
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Figure 3. Regarding the values of the θ angle, we can identify distinct areas that indicate the
robustness of the classification algorithm analyzed in terms of noisy, noiseless, or balanced response.

3.3. Selected Classifiers for Testing

Eight supervised classification algorithms were tested: KNN (K-Nearest Neighbors) [47];
Naïve Bayes (NB) [48]; Random Forest (RF) [49]; J48 (JAVA implementation of the original
C4.5 classifier [50]); Random Tree (RT) [51]; Multilayer Perceptron (MLP) [52]; SVM with
linear kernel [53]; and SVM with Radial Basis Function kernel [54]. One is a linear classifier
(SVM with linear kernel), one implements the Bayes theory (Naïve Bayes), and all others are
nonlinear-based classifiers. Table 2 lists all of them.



Eng 2023, 4 2503

Table 2. List of selected classifiers for testing.

Classifier Name Acronym Classification Type

Naive Bayes NB Bayes Theory

Support Vector Machine
(linear kernel) SVM (linear) Linear

C4.5 (ported in JAVA) J48 Nonlinear

K-Nearest Neighbor KNN Nonlinear

MultilayerPerceptron MLP Nonlinear

Random Forest RF Nonlinear

Random Tree RT Nonlinear

Support Vector Machine
(Radial Basis Function kernel) SVM (RBF) Nonlinear

3.4. The WEKA Software

WEKA (Waikato Environment for Knowledge Analysis) is a widely used and highly re-
garded open-source software suite for machine learning and data mining tasks.
Developed at the University of Waikato in New Zealand, WEKA provides a compre-
hensive set of tools and algorithms for machine learning, including data preprocessing,
classification, regression, clustering, association rules mining, and feature selection [55].

One of the primary strengths of WEKA lies in its extensive collection of classification
algorithms. It offers a diverse range of techniques that can be employed to build predictive
models from labeled datasets. These algorithms encompass traditional and state-of-the-art
approaches, allowing researchers and practitioners to choose the most suitable method
for their tasks. WEKA includes popular classification algorithms such as decision trees,
random forests, Support Vector Machines (SVM), k-Nearest Neighbors (k-NN), naive Bayes,
and neural networks.

WEKA’s classification algorithms excel in their flexibility and configurability.
The software provides users with numerous options to customize the learning process, such
as adjusting parameters, handling missing values, nominal and numeric attributes, and
imbalanced datasets. This level of control allows for fine-tuning the models and adapting
them to different types of data and problem domains.

In this experiment, the WEKA exploration module was extensively used to follow the
methodology described in Section 3.2. All the classifiers’ implementations came from this
module, included in the WEKA 3.9.6 version.

3.5. Fine Tuning with Grid Search

The Grid Search procedure [56] was used under the WEKA tool to fine-tune the clas-
sifiers’ core parameters. Table 3 shows the key parameters each classifier was fine-tuned, the
original search space entered, and the actual best configuration found.
All parameter names are referenced as they are found within implementations of the
classifiers in WEKA.

3.6. Introduced Noises

In this experiment, three types of noise were introduced to generate the noisy test datasets:

1. Multiplicative: random variations to the original value ensuring that the noise is
centered around zero;

2. Additive: random variations to the original value with the variations centered around
the mean value;

3. Both multiplicative and additive: noises are added and divided by two, so the result
will remain within the desired noise level.
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Table 3. Best parameters’ configuration found using the Grid Search method.

Classifier Fine-Tuned Parameter Search Space

Best Configuration (IRIS,
GLASS, IONOSPHERE,

SEGMENTATION, SEEDS,
FLOODINGS SP)

KNN KNN
distanceWeighting

{3, 5, 7, 9, 11}
{None,

1/distance,
1-distance}

11, 3, 7, 3, 3, 3
1/distance (all)

NB useKernelEstimator
useSupervisedDiscretization

{0, 1}
{0, 1}

1, 0, 1, 0, 0, 0
0, 1, 0, 1, 1, 1

RF numIterations
maxDepth

{10, 20, . . . , 190, 200}
{1, 2, 3, . . . , 8, 9, 10}

200, 30, 60, 200, 80, 200
3, 7, 6, 10, 10, 7

J48 minNumObj
unpruned

{1, 3, 5, 7, 9, 11}
{0, 1}

3, 5, 5, 5, 1, 1
1 (all)

RT breakTiesRandomly
maxDepth

{0, 1}
{1, 2, 3, . . . , 8, 9, 10}

1, 1, 0, 1, 0, 0
2, 6, 6, 5, 5, 9

MLP learningRate
momentum

{0.1, 0.2, . . . , 0.5}
{0.1, 0.2, . . . , 0.5}

0.5, 0.5, 0.4, 0.5, 0.5, 0.5
0.5, 0.2, 0.1, 0.1, 0.1, 0.4

SVM (linear)
cost

coef0
{1, 10, 100, 1000, 10000}

{0, 1}
10000, 10, 100, 1, 100, 100

1 (all)

SVM (RBF)
cost

gamma
{1, 10, 100, 1000, 10000}

{0.01, 0.1, 1}
10, 10, 10, 10000, 10000, 1
0.01, 1, 0.1, 10000, 0.01, 0.1

These types of noises appear when an output response depends on a linear combina-
tion of input data, the typical scenario in production environments. A linear combination
involves the accumulation of additive and multiplicative errors, which is the behavior
reproduced by this approach.

For the generation of each test dataset with a specified noise level, the original
dataset was read line by line, and all numerical values were tampered with these three
noise types, generating 100 new instances each. Only the label value remained the same.
Ultimately, each test dataset was 300 times bigger than the original one.

More information about this procedure, the code, and the public datasets used can be
found in the GitHub repository from this experiment: https://github.com/wagnerbilla/
WBScore (accessed on 1 July 2023).

3.7. Accuracies Calculation

For the application of the methodology described in Section 3.2, the following values
were used: `in f = 1, `sup = 20 and `step = 1. Noises of progressive intensities from 1 to 20%
were considered, with an incremental step of 1%. It was supposed that noise levels above
20% are no longer a concrete basis for comparing with the original dataset.

For each of the datasets described in Section 3.1 and for each classifier described in
Section 3.3, the following steps were applied to calculate the accuracies:

(i) The classifier was trained on the original dataset;
(ii) The classifier was tested on the original dataset;
(iii) For each of the 20 datasets with different noise levels, the classifier was tested, and

the accuracies were registered;
(iv) A graph of the classifier as a function of the noise level was plotted.

The graph plots showed that the accuracy of the classifier generally decreases as the
noise level increases.

The described approach is quick and direct for measuring accuracy values as a function
of introduced noise. The intention was not to guarantee the absence of data overfits by the

https://github.com/wagnerbilla/WBScore
https://github.com/wagnerbilla/WBScore
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classifiers; it is a reference implementation only. One can intend to replace it completely,
using any other technique found in literature, splitting the original dataset into three others
(train, validation, and test), and applying noise only in the tested instances or including a
cross-validation scheme during the training phase.

4. Results and Discussion
4.1. Classic Datasets

Figure 4 shows the accuracy curves of each classifier tested over the variation of
the inserted noise, using the best parameters’ configurations found with the Grid Search
method in all selected testing datasets, as detailed earlier in Table 3.

Figure 4. The tested algorithms’ performance curves as a function of adding noise levels to the
original datasets.

In all graphs, a generalized degradation of the accuracy of the classifiers is visible due
to the increase in noise. The response curves of the classifiers also change concerning the
dataset type because it is a data-driven process, and each dataset type generates a different
“signature” by each classifier.

The classifiers that stood out in these tests were the KNN and the RF. KNN won in
the IRIS, IONOSPHERE, IMAGE SEGMENTATION, and SEEDS datasets, whereas in the
GLASS dataset, the RF gives the best response. They all have better overall accuracy than
their competitors, almost always remaining as the highest curves in the performance graphs.

Figure 5 shows the position of each classifier in the WB Score graph space for each
tested dataset.
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Figure 5. The classifier’s position in the WB Score graph space according to ρ and θ values.

Each graph represents a visual interpretation of all classifiers as a function of the tested
dataset and the chosen evaluation metric, which, in this case, is accuracy. It is possible to
perceive a greater or lesser spread of the position of the classifiers in each of the results,
which may indicate the internal structure of the dataset.

We could analyze all of these graphical results, but for brevity, let us look closer at the
SEEDS dataset, as the spread of the classifiers is concentrated on two regions of the graph that
can be explored: Balanced Response (BR) and Strong Noiseless Response (SNLR). Remember
that what is discussed here for this dataset is also valid for the others. Table 4 shows the
summarized results and Table 5 the classifiers’ performance rank for the SEEDS dataset.

Table 4. Summarized results of WSB Score’s parameters for the SEEDS dataset.

Algorithm A0 Ac ρ θ
Accuracy
Drop %

KNN 0.971 0.946 0.958 45.74 6.78
NB 0.933 0.875 0.904 46.82 9.40
RF 1 0.920 0.960 47.38 15.05
J48 0.985 0.884 0.936 48.10 20.49
RT 0.990 0.897 0.945 47.80 19.36

MLP 1 0.854 0.929 49.49 28.72
SVM (linear) 0.985 0.863 0.926 48.78 24.85
SVM (RBF) 0.990 0.849 0.922 49.37 27.70
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Table 5. Performance rank of the eight tested classifiers against the SEEDS dataset.

Rank # Overall Performance
(ρ)

Strong Noiseless
Response (ρ sin θ)

Balanced Response
(43◦ ≤ θ ≤ 47◦)

1 RF RF KNN
2 KNN MLP NB
3 RT RT
4 J48 SVM (RBF)
5 MLP J48
6 SVM (linear) SVM (linear)
7 SVM (RBF) KNN
8 NB NB

For the SEEDS dataset, we have the ranking of the best classifiers for three possible
situations: overall performance (when considering only the ρ value), strong noiseless
response (an environment without noise), and a balanced response. Thus, the practitioner
can decide which is the best classifier for his dataset in the environment in which it should
be inserted.

Finally, it is also worth noting that the KNN classifier, in addition to presenting the
best accuracy, also had the lowest drop in accuracy of all classifiers tested, making it a great
choice for classifying this dataset. This information can be seen in the “Accuracy drop %”
column in Table 4.

4.2. Customized Flooding Dataset

Figure 6 shows the accuracy curves of each classifier tested against a custom flooding
dataset using the WB Score methodology. These data came from a real production environ-
ment and were taken from the Climate Emergency Management Center (CGE) between
2015 and 2016 (https://www.cgesp.org/). Additional information on this dataset can be
found in Section 2.1 of [43].

Again we have different responses for each type of classifier, showing that the internal
and logical implementation of each has different approaches. The SVM (RBF), SVM (linear),
and MLP classifiers practically behaved indifferently to the applied noise level, always
presenting similar accuracy throughout the process. This situation did not occur in any of
the five classic datasets analyzed earlier, indicating that this behavior is linked to the data
contained in the dataset and how its random variables behave. The other classifiers had
their outputs degraded, as expected. KNN was the winning classifier, followed by RF.
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Figure 6. The tested algorithms’ performance against the FLOODINGS SP dataset.

https://www.cgesp.org/
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Figure 7 shows the position of each classifier in the WB Score graph space for the
FLOODINGS SP dataset.
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Figure 7. The classifier’s position in the WB Score graph space for the FLOODINGS SP dataset.

It is possible to verify that almost all classifiers are located in the Balanced Response
(BR) area; only the classifiers based on decision trees RT and J48 are located in the Strong
Noiseless Response Area (SNRA). At the top of the graph, we can easily see the icons
corresponding to the KNN and RF algorithms.

Table 6 shows the summarized results and Table 7 the classifiers’ performance rank
for the FLOODING SP dataset.

Table 6. Summarized results of WSB Score’s parameters for the FLOODINGS SP dataset.

Algorithm A0 Ac ρ θ
Accuracy
Drop %

KNN 0.975 0.958 0.967 45.49 3.74
NB 0.886 0.839 0.862 46.56 6.37
RF 0.961 0.923 0.942 46.15 6.41
J48 0.941 0.867 0.905 47.36 10.33
RT 0.927 0.864 0.896 47.00 9.49

MLP 0.827 0.822 0.825 45.17 1.55
SVM (linear) 0.717 0.717 0.717 45.00 0
SVM (RBF) 0.884 0.885 0.885 44.98 0

Table 7. Performance rank of the eight tested classifiers against the FLOODINGS SP dataset.

Rank # Overall Performance
(ρ)

Strong Noiseless
Response (ρ sin θ)

Balanced Response
43◦ ≤ θ ≤ 47◦)

1 KNN KNN SVM (RBF)
2 RF RF SVM (linear)
3 J48 J48 MLP
4 RT RT KNN
5 SVM (RBF) NB RF
6 NB SVM (RBF) NB
7 MLP MLP RJ
8 SVM (linear) SVM (linear) J48
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According to the results presented in the tables above, the nonlinear classifiers KNN
and RF presented the best results for the FLOODING SP dataset, with KNN being the best
option. It is interesting to note that the SVM’s classifiers presented no accuracy drop in all
noise levels tested, indicating that they are immune to the noise applied to this dataset.

4.3. Comparison of Classifier Selection Methods

The proposed WB Score methodology addresses the challenges of selecting robust
classifiers in noisy real-world scenarios. To provide a comprehensive comparison, we will
evaluate the WB Score methodology alongside other standard methods: ensemble learn-
ing, Grid Search with cross-validation, performance-based selection, algorithm selection
heuristics, algorithm ranking based on statistical tests, and portfolio selection.

WB Score Methodology: The WB Score methodology stands out for explicitly ad-
dressing noise-related challenges. It focuses on classifier performance and noise robustness,
which is crucial in real-world applications. Utilizing a visually intuitive graph for perfor-
mance representation aids decision-making.

Ensemble Learning: Ensemble learning combines predictions to improve performance.
It enhances robustness by reducing noise impact. However, it may increase computational
complexity and needs explicit insights into individual classifier performance [57,58].

Grid Search with Cross-Validation: Grid Search with cross-validation systematically
explores hyperparameter combinations for classifiers. It helps find optimal configurations
but can be computationally expensive [59].

Performance-Based Selection: Performance-based selection trains classifiers on a
subset of data and evaluates their performance on a validation set. It prioritizes the best-
performing classifiers, assuming consistent noise levels between training and validation
data [60].

Algorithm Selection Heuristics: Algorithm selection heuristics use dataset character-
istics to guide classifier choice. Although they can be effective, they may not account for
subtle noise patterns [61].

Algorithm Ranking Based on Statistical Tests: This method ranks classifiers based
on their performance across multiple data splits and uses statistical tests to determine
significance. However, it may not fully capture noise-related challenges [62].

Portfolio Selection: Portfolio selection treats classifier selection as an optimization
problem, distributing resources based on historical classifier performance. It requires
careful consideration of noise and performance history [3].

Table 8 summarizes the method’s main characteristics, highlighting each approach’s
pros and cons.

The WB Score methodology offers a specialized approach explicitly designed to ad-
dress noise-related challenges, making it a promising solution for real-world scenarios with
increasing noise levels. Although other methods, such as ensemble learning, Grid Search
with cross-validation, performance-based selection, algorithm selection heuristics, algo-
rithm ranking based on statistical tests, and portfolio selection, contribute valuable techniques,
their application may require careful consideration of specific noise-related concerns.
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Table 8. Comparison of classifier selection methods.

Method Pros Cons

WB Score Methodology

Explicitly addresses
noise-related challenges.

Specific details of noise robustness
and efficient handling are

not detailed.

Emphasizes robustness to noise
and efficient noise handling.

Utilizes a visually intuitive graph
for performance representation.

Ensemble Learning

Robustness through combination
of multiple classifiers.

Increased
computational complexity.

Effective noise reduction. Limited insight into individual
classifier performance.

Grid Search with Cross-Validation

Systematic exploration of
hyperparameter space.

Computationally expensive for
large search spaces.

Can find optimal configurations.

Performance-Based Selection

Prioritizes
best-performing classifiers.

Assumes consistent noise levels
between training and

validation data.

Evaluates classifiers on
validation set.

Algorithm Selection Heuristics
Guided by dataset characteristics. May not capture subtle noise

patterns.

Tailored to specific characteristics.

Algorithm Ranking Based on
Statistical Tests

Ranks classifiers based
on performance.

May not fully capture
noise-related challenges.

Uses statistical tests
for significance.

Portfolio Selection

Optimizes resource allocation
based on historical performance.

Requires consideration of noise
and performance history.

Addresses classifier performance
over time.

5. Conclusions

According to the type of dataset used for a classification task, there is a better algorithm
for the problem to be attacked in which the bias is minimized. In the vast majority of data,
noise insertions make it challenging to choose the best robust single solution for the purpose,
and there needs to be more literature on this type of approach. The WB Score methodology
presented here makes it possible to choose the best classifier for a given dataset among a set
of options, considering its accuracy response when introducing noise levels representing
a scenario where classifiers are trained once and deployed in production environments,
continuously facing increasing noise levels over time. Graphical or visual methodologies
are found in the literature. However, none were designed to consider the increase in noise
levels nor to analyze a set of classifiers simultaneously to select the best one.

Five classic datasets and a customized one were used to show that the methodology
will always present its graphical output as long as the accuracy of the tested classifiers is
nonzero and the dataset is based on numerical values. Two classifiers stood out in the tests,
drawing much attention: KNN and RF, both considered nonlinear classifiers.

In real-life applications, the analyzed objects are usually represented as random
variables. Contaminating it with additive and multiplicative noise is a convenient process
to produce scenarios with distinct variability. In this sense, generalizing the results for tens
of datasets in a noisy environment involves positioning the tested classifiers in the areas
defined in the WB Score output graph. This straightforward procedure enables users to
select the best classifier for their specific needs.
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Possible WB Score methodology application fields are medical settings where accurate
and reliable classification of patient data is paramount. The ability to explicitly account for
noise and ensure robustness can lead to improved diagnostic accuracy; financial forecasting,
where markets are noisy and subject to unpredictable fluctuations, the methodology’s focus
on noise robustness empowers financial analysts to identify classifiers better suited for
handling noisy market data, leading to more accurate predictions and informed investment
strategies; environmental monitoring, where the choice of the best classifier aids in building
reliable models for predicting natural events, such as rainfall patterns or air quality levels,
contributing to effective environmental management and disaster preparedness; and indus-
trial settings, where data from sensors and machinery may be contaminated with noise,
the WB Score methodology can optimize predictive maintenance processes by selecting
robust classifiers that identify potential equipment failures and maintenance needs more
accurately, minimizing downtime and maximizing operational efficiency.

This article introduced a basic reference implementation to present an overview of
the WB Score methodology. This implementation can be changed according to the needs
of practitioners. One can change, for example, how the training and testing phases of the
classifiers are performed, as well as choose another evaluation metric.

6. Future Works

Well-known classic datasets and a custom dataset were explored here. However, there
are a multitude of types with different characteristics among them. We can mention new
scenarios to be studied: unbalanced datasets, noise in classes not yet seen, and the addition
of between-class samples.

The types of noise introduced in this study were the traditional ones found in the
literature, especially when the classifier’s response is a function of a linear combination
of random variables in the dataset’s attributes. However, other types should be explored,
such as the generation of convolutional noise and the reinforcement method commonly
used in reinforcement learning scenarios.
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