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Abstract: Livestock production, as one of the oldest and most significant human activities, plays a
vital role in fulfilling the global demand for human nutrition and other animal-related products while
contributing to poverty reduction. However, it is also important to address the environmental impact
of livestock animals. Over 60% of the global biomass harvested annually to support human activity
is directed towards this sector, raising concerns about its sustainability. In addition to substantial
water and fertilizer usage reported in recent years, it is estimated that 14.5% of global greenhouse
gas emissions are generated by the livestock sector. Furthermore, the increasing amount of manure
resulting from intensive animal farming raises concerns about its disposal and potential water
pollution. The degradation of pasture and rangeland is another significant contributor to soil erosion.
Multiple approaches are being studied to reduce the environmental impact of livestock production,
but a sustainable alternative may be through forestry. Forests play a vital role in countering livestock
emissions by absorbing billions of tons of carbon dioxide each year, and they act as a crucial carbon
sink. Furthermore, the diversity and age of forests impact the carbon sequestration process. Forests
also help to combat climate change by reducing soil erosion and regulating the water cycle. As such,
sustainable forest management is essential as forests provide multiple benefits, including economic,
environmental, and social benefits, while also sequestering carbon. In this review, the current impact
of modern livestock production is described, along with the potential for mitigating it through
forestry-based solutions.

Keywords: livestock; environment; forestry; greenhouse gases; water and land use; climate change

1. Introduction

The first known domesticated livestock animal, which was used as a food-producing
animal by our ancestors, was the sheep, with this domestication dating back to around
11,000 years ago [1]. This domestication was even before our ancestors started cultivating
plants [2]. Several other species of livestock are now reared across the globe which serve
food, hide, and milk to humankind. Today, the livestock sector is one of the most flourishing
and highly organized sectors in the world [3,4]. According to the World Bank report, meat
production, which was around 45 million tons in 1980, jumped to 134 million tons in
2002, witnessing a three-times boom within 22 years [5]. Similarly, the recent forecast for
meat production predicts approximately 360 million tons, reflecting a 1.2 percent increase
compared with the 2021 estimates [6]. The world population is forecasted to touch the
10 billion mark by 2050. An increase in livestock farming ensures food availability to the
ever-growing population. However, the other side of “animal agriculture” is now coming
to light and creating an upcoming issue of environmental health. There are several pros and
cons of livestock production on social equity, economic growth, and natural resources [5].
The detrimental effects of livestock farming impact the global temperature, biodiversity,
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and quality of natural resources (air, water, and soil) [7]. These effects are attributable
to the permuted biogeochemical cycles of carbon, nitrogen, and phosphorous [8,9]. The
calamitous impact of livestock production on soil health [10,11], global warming [12–14],
air quality [15,16], water pollution [7], and environmental stability [3] are well documented
(Figure 1).
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afforestation and its potential impact on the environmental footprint of farm animals. 
Most studies focus either on afforestation or on the impact of farm animals on the envi-
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was created with created with BioRender.com (accessed on 15 August 2020). The environmental
footprint of livestock is discernible through their impact on various factors, including carbon and
nutrient cycling, greenhouse gases (GHGs), nutrient losses, water and land use, and, ultimately,
soil quality.

It is imperative to recognize the detrimental impacts of livestock farming on the envi-
ronment and explore viable solutions to mitigate them. Reducing the consumption of meat
could be one possible option [17] that aims to decrease the rearing and breeding of animals
on a large scale. However, such a shift in diet cannot be based only on nutritional choices as
there are multifaceted rationales for choosing food consumed by an individual [18]. Hence,
more globally applicable, sustainable remedies are crucial. Forests, vital for life, produce
oxygen, making them indispensable. For instance, a model developed in Turkey estimated
that a forest management approach focused on timber could result in the production of
2.6 million tons of oxygen over 100 years [19]. Moreover, forests play a vital role in con-
serving natural resources, subduing several types of pollution (air, water, soil, noise, etc.),
regulating biogeochemical cycles, and providing habitats for several species of plants and
animals [20]. Past studies have highlighted the effectiveness of urban forests in Beijing,
China in removing over 772 tons of PM10 (particulate matter with an aerodynamic diameter
smaller than 10 µm) and storing approximately 0.2 million tons of carbon biomass [21].
Similarly, earlier research in the UK demonstrated that good forestry management practices
could significantly limit soil erosion, preventing unacceptable increases in turbidity and
sedimentation in watercourses [22].

To our knowledge, there is no existing report that discusses the connection between
afforestation and its potential impact on the environmental footprint of farm animals. Most
studies focus either on afforestation or on the impact of farm animals on the environment.
In this review, we aim to highlight the negative effects of livestock on various biodiversity
resources and the environment and explore possible solutions using forestry. Additionally,
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this review provides novel insights into the effects of animal production on different
ecological realms, including the atmosphere, global water, and land use.

2. Overview of Environmental Impacts of Livestock Production
2.1. Impacts of Livestock Production on Greenhouse Gas (GHG) Emissions

In the current literature, six main gases are generally considered GHGs: perfluoro-
carbons, sulfur hexafluoride, hydrofluorocarbons, carbon dioxide, methane, and nitrous
oxide [23]. Of these, over 50% of the greenhouse effect is directly linked to the last three [24].
The interaction between the sun’s energy and these gases generates the greenhouse ef-
fect, as their ability to retain and capture heat is one of the main reasons for their special
attention from researchers [25]. For example, after absorbing infrared radiation, carbon
dioxide molecules vibrate and emit their radiation, which is then absorbed by another
GHG molecule [26]. This cycle, known as absorption-emission-absorption, maintains heat
close to the earth’s surface [23]. Similarly, methane and nitrous oxide molecules, due to
their constitutions, are also able to vibrate with the absorption of heat [27]. While the
greenhouse gases in our atmosphere are essential for keeping living organisms on the
planet, the continuous increase in their concentration is likely to be detrimental [28]. As
a result, the latest meetings of the Intergovernmental Panel on Climate Change (IPCC)
concluded that governments should not only assess their overall emissions but also find
solutions to reduce further emissions [29]. In this sense, methane and nitrous oxide were
found to be the most relevant GHGs in the livestock production sector.

2.1.1. Methane

Methane is a significant concern due to its global warming potential, which is esti-
mated to be 25 times greater than that of carbon dioxide [30,31]. Different types of livestock,
production regions, and systems contribute to varying degrees of overall methane emis-
sions [30]. In modern agriculture, ruminants are the largest source of methane emissions,
accounting for approximately one-third of global anthropogenic methane emissions [32].
This significant contribution is attributed to their large share in animal biomass and unique
digestive system. Generally, ruminants generate methane through two primary chan-
nels [33]. Earlier studies have demonstrated that methane emissions arising from forage
crops are minimal (less than 5%), and can therefore be disregarded [32]. While there is
evidence of methane emissions from micro anaerobic soil conditions during grazing, soils
with higher drainage can significantly slow down this process [34]. Therefore, the first
channel, which accounts for the highest proportion of emissions, is directly through enteric
fermentation [35]. This results in methane being emitted through flatulence and eructa-
tion [36]. The process of methane production during enteric fermentation is quite complex
and involves actors of microbial origin [32–35,37]. Unlike monogastric animals, ruminants
have the ability to digest fibrous plant material, mainly due to their stomach, which consists
of four distinct compartments [38]. A large anaerobic chamber in the gut of cattle called
the rumen, is responsible for fermenting plant materials [39–43]. Methane is produced
by microorganisms in the rumen known as methanogens [44–46]. These microorganisms
have unique characteristics that classify them as archaea. Methanogens are responsible
for the final step of methanogenesis, which produces methane from hydrogen and carbon
dioxide [47]. The production of methane is influenced by biological factors in the rumen,
such as pH and microbial composition, which are linked to the type of feed provided to the
animals [42,48–50]. In pastoral systems, natural pasture is the only feed source, resulting in
higher methane output [51]. Intensive systems, which feed animals concentrate-based diets
rich in grains and soybeans, generate lower methane emissions per animal [52]. However,
overall, intensive systems have higher emissions when considering the livestock popula-
tion in each system. Countries such as Brazil, China, and the United States, which rely on
intensive systems, are the largest contributors to agricultural methane emissions [53].

The second channel in which ruminant animals contribute to methane emissions is
through manure [54]. Specifically, the anaerobic decomposition of manure content and the
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use of lagoons and holding tanks to manage the liquid phase of manure are localized areas
of methane production [55]. In addition to odor pollution and hygiene hazards, poorly
managed manure can also have negative consequences. Manure, which is composed of
carbohydrates, proteins, and fats, is a complex type of substrate that is easily subjected
to fermentation [56]. In an anaerobic digestion process, organic matter from manure is
successively hydrolyzed and fermented, resulting in alcohols, fatty acids, hydrogen, and
carbon dioxide [57]. Like in enteric fermentation, these two last components are used to
generate methane, as ruminant manure is rich in microbes capable of methanogenesis [58].
However, the outputs are significantly lower due to moderate anaerobic biodegradability
below the threshold of 50%. In particular, the rate can be even lower in cattle manure,
depending on the levels of leftover lignin complexes from the diet [59]. Temperature is a
factor that can influence methanogenesis from manure. More precisely, low temperatures
can significantly decrease methane outputs [60]. In fact, when ambient temperatures fall
below the optimal range for methanogen activity, it significantly decelerates methane
production [61,62]. Previous studies have also shown a decrease in the decomposition
rate of organic matter within manure linked with temperature, and directly impacting
overall methane yield [63,64]. As such, it was proposed that in temperate and cold climates,
methane emissions could be decreased at a low cost by frequent removal and outdoor
storage [65]. Methane can also be oxidized by methane-oxidizing bacteria (MOB), which
were found to be present in solid manure [66]. Previous reports highlighted the need to
keep manure in a solid state to enhance the activity of MOB, as they might play a role
in methane mitigation [67]. However, it is critical to mention that manure containing
substantial water proportions with a relatively high buffer capacity can enhance anaerobic
digestion [68]. This is the case with lagoons and holding tanks. During the filling of these
facilities, there is a fast inoculation of new slurry material, which, depending on its chemical
properties, can intensify methanogenic activity.

Fortunately, the IPCC developed a methodology to estimate and potentially limit
methane emissions from liquid manure [69]. This methodology utilizes equations of vary-
ing complexity, which are categorized into tiers. To date, three tiers have been defined. The
methods for estimating methane emissions from livestock require definitions of livestock
subcategories, annual populations, and, for higher-tier methods, feed intake and character-
ization. The Tier 1 approach for estimating manure from livestock is based on a default
emission factor per unit of volatile solid by livestock category and manure storage system.
The Tier 2 method, which is more advanced, requires additional variables. This tier is
country-specific and considers the impact of the interaction between manure management
systems and livestock category during both excretion and storage. The Tier 3 method goes
beyond country-specific methodology and is a measurement-based approach to quantify
emission factors, which is the most accurate form of estimation but is not yet widely
adopted due to the high input needed.

2.1.2. Nitrous Oxide

Nitrous oxide is a greenhouse gas that is emitted in large quantities, ranking third
after carbon dioxide and methane [70]. The increasing concentration of nitrous oxide in
the atmosphere has become a concern due to its role in regulating stratospheric ozone and
the planetary radiation balance [71]. Previous research has also shown that nitrous oxide
is involved in the formation of acid rain [72]. Human activities such as land use, fossil
fuel combustion, wastewater treatment, and agriculture are sources of nitrous oxide emis-
sions [73]. In the United States, agricultural and soil management activities were estimated
to be the largest source of nitrous oxide emissions [74]. Livestock production, however,
contributes only minimally to nitrous oxide emissions, with manure being the primary
contributor [75]. The storage and management of manure lead to the formation of nitrous
oxide through alternative nitrification and denitrification processes, and both aerobic and
anaerobic reactions are involved [55]. The conversion of nitrogen from its oxidized form to
its gaseous state during the application and handling of manure also contributes to nitrous
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oxide emissions [76]. Nitrification, which yields nitrate from ammonia via nitrite in a
two-step conversion reaction, is catalyzed by two categories of microorganisms: ammonia-
oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) [77]. While the presence
of ammonia-oxidizing archaea has been detected in manure and soil during composting,
their role in nitrification has not yet been established [78]. On the other hand, denitri-
fication involves a wide variety of microorganisms, with fungi, archaea, and especially
heterotrophic bacteria being directly involved [79]. Denitrification can occur in either oxic
or anoxic conditions, depending on oxygen availability, and microorganisms can produce
nitrous oxide through different pathways [55]. Therefore, during storage and after field
application of manure, factors such as oxygen gradients can influence the production rate
of nitrous oxide [80]. Additionally, there is a correlation between chemical gradients and
emission levels of nitrous oxide from manure [81]. The influence of decomposer activity
on the development of chemical gradients, particularly the loss of carbon dioxide and
ammonia near air-liquid interfaces, can cause a reduction in alkalinity and pH. This is pri-
marily due to the acidifying process of ammonia oxidation, which may result in decreased
rates of nitrification and denitrification [80]. However, it can also lead to an increased
nitrite-to-nitrogen ratio in denitrification [82]. Overall, the current evidence suggests that
livestock impact on atmospheric nitrous oxide concentration is mostly related to manure.
Furthermore, net emissions not only depend on manure composition but also ambient
climatic conditions. Therefore, specific attention should be given to manure properties and
environmental conditions in order to develop appropriate mitigation solutions.

2.2. Impacts of Livestock Production on Water and Land Use
2.2.1. Water Use

The increasing demand for livestock-related products not only results in impacts on
GHG emissions and nutrient cycles but also puts substantial pressure on natural resources
such as land and water [8]. Large-scale feed crop cultivation, grazing land, and water use
are among the factors that directly link livestock production with detrimental impacts on
natural resource availability [83]. Given the finite and essential nature of water as a resource
for life on the planet, the overall water usage of livestock production systems is a topic of
ongoing debate [84]. Globally, freshwater resources are relatively scarce, accounting for
only about 2.5% of the total water reserves, with a significant portion of these resources
being inaccessible due to their storage in glaciers and permanent ice formations [85].
Addressing water use in livestock production appears to be vital for sustainable agriculture
and environmental conservation. Water utilization within the livestock industry extends
beyond direct consumption for hydration to a range of auxiliary functions and product
processing, as well as the crucial need for water in feed crop growth [86]. While these
additional water requirements are significant, direct consumption and feed crop growth
remain the central components. Previous reports have provided a quantitative assessment
of water usage in the livestock sector, shedding light on both direct and indirect water
consumption [87,88]. It was highlighted that the water footprint of feedlot beef cattle
ranged from 3.3 to 221 L H2Oe kg−1 of live weight [89]. Throughout the life cycle of a single
broiler, at least 1 L of water is needed to maintain homeostasis [90], with the potential for
even greater water requirements as temperatures rise [91–95]. Similarly, swine production
under confined and dry feeding conditions had a water turnover rate of 120 mL/kg during
the growing phase and 80 mL/kg of body weight for non-lactating adult pigs [96]. As a
result, it appears that direct water consumption contributes to the overall water use in
livestock production, primarily due to physiological functions such as growth, production,
reproduction, and temperature regulation, which require substantial amounts of water. The
use of water required for growing livestock feed seems to contribute the most to the overall
water demands in the industry [97]. As the demand for livestock products continues to
increase, the water demand will also increase since the livestock population will need to
grow. However, there is not yet a standardized method to estimate the exact amount of
evapotranspired water needed to produce 1 kg of feedstuff, and variations exist in the
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quantities of feedstuff that can be produced per cubic meter of water [98]. Studies have
shown that between 0.5 and 8 kg of dry matter forage can be generated per cubic meter
of water, depending on the production system [98]. More specifically, forage maize, one
of the most common feedstuffs, has been estimated to yield around 2.9 to 3.7 kg of dry
matter per cubic meter [99]. Major differences exist among livestock production systems in
various regions with differing levels of intensification, indicating the need for systematic
consideration of livestock-water interactions and site-specific interventions. This approach
is crucial for ensuring sustainable and productive use of water resources.

2.2.2. Land Use

Livestock primarily consumes food items that can otherwise be made available for
human consumption. Additionally, there is a recent consensus that the production of
feedstuff diverts arable land from food production [100]. Hence, finding the right balance
between direct consumption of plant production and feedstuff is crucial to global food
availability. Livestock production directly impacts land use through feed crops, grazing
land, and to a lesser extent, land conversion. Most of the agricultural land is directed
towards livestock nutrition, which is about twice as much as that for arable crops. Unfortu-
nately, the majority of livestock production systems have a protein conversion efficiency of
less than 0.5, which indirectly translates to the land needed to maintain specific livestock
systems [100]. Milk and egg production have efficiencies estimated at around 0.25 [101],
while lamb and beef have the lowest efficiency at 0.06 and 0.04, respectively [102]. Humans
would thus benefit more from consuming grain-based protein directly rather than consum-
ing grain-fed animal protein [103]. Despite the increasing interest in the use of inedible
feed in livestock production, using land to produce such products would not necessarily
eliminate competition if crops were simply grown instead [98]. In livestock production,
inedible feed encompasses materials unfit for human consumption yet valuable as sources
of nutrition for animals [104,105]. They consist of but are not limited to, straws, hays,
hulls, and crop residues, as well as certain weeds and invasive plants. These materials
are primarily utilized in ruminant nutrition as it is preferred that the use of potentially
edible feed resources by livestock be restricted to those with the highest daily nutrient
requirements [104]. Therefore, it appears that the large-scale cultivation of crops needed
for animal nutrition necessitates extensive areas of land, causing habitat loss and a decline
in biodiversity.

Grazing land, which can also be referred to as pastureland or grazing pasture, consists
of natural or cultivated vegetation that serves as a food source for ruminant animals [106].
Like feed crops, grazing land has a significant impact on land use. Indeed, managed
grazing covers more than 33 million square kilometers of the global land surface, making
it the single most extensive form of land use on Earth [107]. It is important to consider
the intensity and extent to which farm animals consume plants in a specific area over a
given period to limit their impacts on the environment. In fact, the continuous presence
of livestock on pastureland can hinder the natural generation of biomass, often resulting
in vegetation degradation [108]. Additionally, certain plant species are often targeted
by animals during grazing due to their nutritional profile and flavor, which can lead to
negative impacts on biodiversity and disrupt ecosystems [109]. Changes are noticed in the
abundance, cover, and configuration of life forms. These structural alterations are often
associated with vegetal species invasion, water drainage, erosion, and the alteration of soil
biochemical characteristics [110]. Grasslands have a natural ability to store large amounts
of carbon dioxide. Recent research indicates that a diverse plant community contributes
to increased soil organic carbon (SOC) levels by promoting the growth of belowground
biomass and enhancing the contribution of microbial necromass to SOC storage [111–113].
Conversely, intensive livestock grazing has been found to significantly reduce plant and
microbe-mediated SOC formation [110]. Eze, et al. [114] reported that grazing tends to
decrease SOC stocks by an average of 15% globally, with the most significant reductions
occurring in tropical regions and the least in temperate climates. Likewise, sheep grazing
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has a generally stronger impact on SOC than cattle grazing, with SOC reduction occurring
mostly in topsoil [115]. These findings suggest that livestock species, water availability,
and temperature are confounding factors in the impacts of grazing on SOC storage.

The relationship between livestock production and land conversion is evident from
the current literature. In this context, land conversion can be defined as the transformation
of natural ecosystems, such as forests or grasslands, into agricultural zones [116]. The
continuous expansion of these crops and pastures is the primary driver of livestock-related
land conversion. In fact, the demand for animal products has been increasing globally, with
meat production almost quadrupling between 1963 and 2015, and milk production more
than doubling (from 340 to 818 Mt) over the same period [117]. As a result, more land is
needed to meet these increasing demands. Indeed, not only more feedstuffs are required,
but a significant number of infrastructures need to be built in order to accommodate
the new herds [118]. This has led to deforestation in areas such as the Amazon, where
cultivated soybean areas are expanding [119]. Hence, the business-as-usual approach of
land conversion for livestock production is not sustainable, and strategies should instead
focus on improving efficiency through higher product output with limited inputs.

3. Potential Impacts of Forestry on the Environmental Footprint of Livestock Production

Forests are typically represented as areas with a significant tree presence and specific
characteristics, such as a canopy cover of over 10% and trees taller than 5 m [120]. More
specifically, the Food and Agriculture Organization of the United Nations (FAO, Rome,
Italy) defines a forest as an area greater than 0.5 hectares with such characteristics [121].
Afforestation is generally believed to alleviate environmental impacts from agriculture
and livestock farming, as it is associated with positive effects such as nutrient cycling.
Forests worldwide absorb billions of tons of carbon dioxide every year, which would
require a significant economic subsidy to replicate with an equivalent carbon sink [122].
These forests take in carbon dioxide from the atmosphere and convert it into carbohy-
drates, leading to the accumulation of more tree biomass over time and its storage in
the soil [123–126]. This process is termed as sequestering and storing of carbon for the
mitigation of climate change [127,128] as forest plays a role in removing greenhouse gases
from the atmosphere [129]. Hence, even though livestock farming emits greenhouse gases
all year round, these gases can be offset through carbon sequestration (Figure 2).

The sequestration concept is very complex [130] and requires details in terms of
compositions, as diversity in the forest ecosystem has a significant effect on carbon se-
questration [131–134]. For instance, aged trees store more atmospheric carbon than young
trees [135–137]. The potential for carbon sequestration also varies depending on the type
of forest, shrubs, agroforests, and other life forms and soil under the species [134,138,139].
Global interest has recently been placed on nature-based solutions for climate change
mitigation [140–142], highlighting the potential of forests in carbon dioxide removal from
the atmosphere and carbon storage in the soil [127,143]. Therefore, it is crucial to consider
afforestation and increasing forest cover through reforestation, as well as the management
and preservation of existing forests to increase their carbon storage potential. Additionally,
efforts to reduce emissions from deforestation due to livestock production [144–146], and
the development of renewable energy sources and wood-based products as an alternative
to fossil fuels, should be a priority in the next decades [147–150].

Forests might help mitigate the detrimental impact of livestock on climate change by
slowing down soil erosion and regulating the water cycle. Indeed, trees play a vital role in
improving the biophysical properties of soil, fostering healthier ecosystems, and supporting
sustainable land use practices [151,152]. As tree roots grow and spread underground, they
create a network that binds soil particles together, preventing erosion and promoting
soil stability [153]. This root network also increases the soil’s water-holding capacity by
creating channels for water to penetrate, reducing surface runoff and enhancing water
retention [154]. Additionally, the fallen leaves, branches, and other organic matter from
trees contribute to a natural layer of mulch on the forest floor [155]. This mulch acts
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as a protective cover, reducing the impact of rainfall on the soil surface and preventing
compaction [156]. Over time, the decomposition of these organic materials enriches the
soil with essential nutrients, enhancing its fertility [157]. Trees also promote increased
soil microbial activity, fostering a diverse community of organisms that aid in nutrient
cycling and decomposition processes [158]. The regulation of water cycles is primarily
recognized by the phenomenon of transpiration. Transpiration occurs when trees release
water vapor into the atmosphere through their stomata [159]. This moisture then forms
clouds, leading to precipitation. Transpiration not only cools the surrounding air but also
impacts local weather patterns [159]. By effectively capturing, storing, and releasing water,
forests maintain balanced water levels, prevent floods, and ensure a consistent supply of
water to rivers, streams, and other water bodies, benefiting both ecosystems and human
communities downstream [160]. Therefore, the biophysical effects of forests on soil and
water cycle promote, erosion control, water conservation, and nutrient cycling, making
forests essential components of resilient and sustainable landscapes.
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compaction [156]. Over time, the decomposition of these organic materials enriches the 
soil with essential nutrients, enhancing its fertility [157]. Trees also promote increased soil 
microbial activity, fostering a diverse community of organisms that aid in nutrient cycling 
and decomposition processes [158]. The regulation of water cycles is primarily recognized 
by the phenomenon of transpiration. Transpiration occurs when trees release water vapor 
into the atmosphere through their stomata [159]. This moisture then forms clouds, leading 
to precipitation. Transpiration not only cools the surrounding air but also impacts local 

Figure 2. Selected established or suggested effects of forests in the mitigation of the environmental
impacts of livestock production. The figure was created with created with BioRender.com (accessed
on 15 August 2020). Forests play a crucial role in mitigating livestock environmental footprints
by absorbing carbon dioxide emitted by livestock, acting as carbon sinks. Forests are also actively
involved in erosion control and the improvement of the soil biophysical structure.

While there is strong evidence that forests can be a solution to mitigate the negative
effects of livestock production on the environment, concomitant sustainable management
is necessary. Forests are managed for their products, which are categorized into timber and
non-timber products and services such as protection against water and wind erosion, carbon
sequestration, or cultural and social benefits [161,162]. The demand for diverse benefits
from forests can lead to the degradation of resources, caused by extensive harvesting
of products that damages their service roles and results in the unsustainability of forest
resources and the benefits gained [163,164]. Sustainable forest management is the practice
for the continued supply of economic, environmental, and sociocultural benefits [165]. This
requires monitoring and collecting information about their environmental, economic, and
social impacts [166]. As forests sequester carbon in living biomass, deadwood, and forest
soil [167], sustainable forest management can help to optimize their roles in increasing the
diversity of natural forests [168–170], supporting the growth of biomass, and contributing
to local socio-economic development [171]. Biomass, which increases with the age of the
tree, is one of the limiting factors for the potential of carbon sequestration [129,130,172],
as the large diameter at breast height has maximum biomass storage for a high amount
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of carbon (Figure 3). This implies that the carbon sequestration potential concerning tree
growth relationships at fine spatial scales is limited [173].
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figure was made by figuratively illustrating the literature [125,126,165]. The curved lines depict the
carbon storage potentials of each age class.

The relationship between forest and livestock production is also significantly linked
to the assessment of the carbon footprint (CFP). CFP quantifies greenhouse gas emissions
within specific boundaries, and is of utmost importance for individuals, organizations,
processes, products, or events [174,175]. It plays a vital role in reducing greenhouse gas
emissions. For organizations, understanding and calculating their CFP allows for the mea-
surement of emissions resulting from human activities [176]. This knowledge empowers
industries, particularly processing companies, to identify and optimize carbon-intensive
steps, aligning their production with carbon neutrality goals as outlined in initiatives like
the Green Deal [177]. Developing regulations and evaluation schemes for carbon emis-
sions in manufacturing processes is crucial in this context [178]. As previously discussed,
forests stand out as effective carbon sinks [124]. Introducing tree species resilient to future
climate conditions is necessary, emphasizing nature-based solutions to combat climate
change [179]. It is crucial to consider co-benefits such as biodiversity and livelihoods, pro-
moting income diversification and supporting livelihoods [180]. Enhancing forest capacity
for carbon sequestration through diversity should inform management decisions [181,182].
By incorporating this knowledge, forests can outweigh greenhouse gas emissions from
animal agriculture, contributing significantly to the overall reduction in the carbon foot-
print [175]. Encouraging investments in forestry emerges as a viable strategy to control
carbon emissions [183].

4. Conclusions

Given the escalating global population and increasing demand for livestock products,
it is imperative to address the environmental implications of livestock production on our
planet. Despite its crucial role in fulfilling humanity’s dietary needs, the exponential growth
of livestock production has exacted a substantial toll on the environment. The environ-
mental impact of livestock production is a multi-faceted challenge, including greenhouse
gas emissions, water usage, land conversion, soil erosion, and the sustainable use of finite
resources such as water and land for feed crops. The adverse impact on biodiversity, includ-
ing changes in vegetation, habitat loss, and disruptions in ecosystems, further underscores
the urgency of finding viable solutions.
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This short review highlights a promising avenue for reducing the environmental
impact of livestock production, which is the implementation of afforestation and sustainable
forestry management practices. Forests, which can be considered “the earth’s lungs”,
have the remarkable ability to sequester carbon dioxide and act as vital carbon sinks.
Through the promotion of afforestation and reforestation, it is possible to counterbalance
the emissions from livestock farming, thereby lowering the overall carbon footprint. Forests
provide numerous advantages, such as erosion control, water cycle regulation, biodiversity
promotion, and soil fertility enhancement. However, the success of these initiatives is
contingent upon the adoption of sustainable forest management practices. Achieving
a harmonious balance between meeting the demands for timber and non-timber forest
products while preserving forests’ ecological functions is vital. This requires a holistic
approach that considers the complex relationships between tree species, forest biodiversity,
and carbon sequestration potential. Furthermore, embracing nature-based solutions can
significantly contribute to global efforts to combat climate change.

In conclusion, addressing the environmental challenges posed by livestock production
necessitates a paradigm shift in our approach. By endorsing sustainable forestry practices
and recognizing the crucial role of forests in mitigating the environmental footprint, we
can create a more sustainable future. As we stand at a crossroads between environmental
conservation and agricultural expansion, the decisions we make today will impact future
generations. It is our collective responsibility to safeguard our planet, ensuring a harmo-
nious coexistence between humanity, livestock, and nature. It is imperative to adopt an
approach characterized by the implementation of strategic interventions and a commitment
to sustainable practices to ensure that the needs of humanity are met while preserving the
balance of our ecosystems.
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