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Abstract: The use of natural polymers has increased due to concern about environmental pollution
caused by plastics and emerging pollutants from fossil fuels. In this context, polysaccharides from
macroalgae and microalgae arise as natural and abundant resources for various biological, biomed-
ical, and food applications. Different nanomaterials are produced from these polysaccharides to
act as effective carriers in the food and pharmaceutical industry: drug and nutrient carriers, active
compound encapsulation, and delivery of therapeutic agents to tumor tissues. Polysaccharides-
based nanomaterials applied as functional ingredients incorporated into foods can improve texture
properties and decrease the caloric density of food products. These nanostructures also present the
potential for developing food packaging with antioxidant and antimicrobial properties. In addition,
polysaccharides-based nanomaterials are biocompatible, biodegradable, and safe for medical prac-
tices to prevent and manage various chronic diseases, such as diabetes, obesity, and cardiovascular
disease. In this sense, this review article addresses the use of algal polysaccharides for manufac-
turing nanomaterials and their potential applications in food and biomedical areas. In addition,
the paper discusses the general aspects of algae as a source of polysaccharides, the nanomaterials
produced from these polymers, as well as recent studies and the potential use of algal polysaccharides
for industries.

Keywords: biopolymers; macroalgae; microalgae; nanoparticles; sustainability

1. Introduction

The use of green polymers has increased due to the threat of marine plastic and
the discovery of emerging pollutants. Polysaccharides represent macromolecules with
monosaccharide units joined by glycosidic bonds. Due to diversified sources, the chem-
ical nature and characteristics are varied significantly. These molecules are abundant in
nature and present biodegradability and biocompatibility properties. In addition, they
are renewable, non-toxic, and relatively cheap. Other advantages of polysaccharides are
their hydrophilicity, mechanical stability, and tunability. Polysaccharides are polymers
that can be extracted from renewable sources such as algae, vegetables, microorganisms,
and animals [1–6].

Algae and microalgae are sustainable alternative resources for producing biopolymers
through the biorefinery model because of their high growth rate, ability to grow in different
conditions, carbon dioxide (CO2) utilization, and lack of competition with food resources.
Quality control measures and advanced cultivation techniques must be adopted to obtain
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high-quality polysaccharides. Moreover, the polysaccharide extraction process can influ-
ence the composition and molecular weight of the biopolymer. Therefore, it is crucial to
choose the best extraction process for obtaining polysaccharides of interest [7,8].

Regarding the applications, algal polysaccharides such as agar, alginates, and car-
rageenans have been produced industrially for over a century. These polymers have the
potential for application in food areas and manufacturing high-value products used in
many research and applications in biomedicine. Algae and microalgae have potential
as raw materials for biomaterials and nanomaterials. The polysaccharides can also be
transformed into nanoparticles, which can have applications in the most diverse areas,
such as food, feed, cosmetics, biomedical, and modern medicine, mainly used as a wound
dressing, or for gene delivery and drug delivery [7,9–12].

Nanomaterials based on polysaccharides produced using different techniques promote
the manufacture of nanoparticle structures [13] with complex designs and high preparation
costs. Therefore, the preparation steps, low yield, and high cost are obstacles to promoting
nano/microcapsules in the market [6]. Furthermore, extracting valuable components of
algal polysaccharides is still challenging from an economic view because all compounds
are compacted and filled in the cell, making the process very expensive [14]. Additionally,
some polysaccharides have low solubility in common solvents, which limits the chemical
modification of polysaccharides [15]. Thus, there is a need for cost-effective advanced
synthesis processes, and the use of green and recyclable solvents can be encouraged for the
commercial synthesis of nanoparticles, for example, based on seaweed polysaccharides in
industries. The derivatization of seaweed polysaccharides with other macromolecules can
be focused on developing cost effective and sustainable approaches and products. Research
should also focus on the action of seaweed-based polysaccharides in vivo for the delivery
of nutraceuticals [13].

Nanomaterials have characteristics that promote safety for biomedical applications,
such as biocompatibility and biodegradability. Various chronic diseases, such as diabetes,
obesity, and cardiovascular disease, were effectively controlled and avoided by the con-
sumption of polysaccharide-based nanomaterials. Nanosystems based on polysaccharides
reduce the side effects and toxicity of drugs, reduce the caloric density of foods, and
improve the texture of food products [5].

In this context, this review article addresses the use of algal polysaccharides for manu-
facturing nanomaterials and their potential applications in the food and biomedical areas.
In addition, the paper discusses the general aspects of algae as a source of polysaccharides,
the nanomaterials produced from these polymers, as well as recent studies and the potential
use of algal polysaccharides for industry.

2. Algae as Sources of Polysaccharides

In macroalgae, polysaccharides can be found either on the cell surface (structural
polysaccharides) or intracellularly (storage polysaccharides). Alginates, carrageenans, cel-
lulose, sulfated polysaccharides, fucoidans, ulvans, and porphyran are the most prominent
examples of the former. In the second type, the best known polysaccharides are laminarin
and starch [16]. Carrageenans and agar are sulfated polysaccharides found in red algae [17].
On the other hand, fucoidans, alginates, and laminarin are prevalent in brown algae, while
ulvans are present in green algae [18]. Cellulose and hemicelluloses can be found in the ex-
tracellular covering of green algae Chlorophyta and Charophyta, the red algae Rhodophyta,
in the phylum Ochrophyta, and the Phaeophyceae class (brown algae). Some species
from Xanthophyceae (yellow green algae), Chrysophyceae class (golden algae), and Dino-
phyta (thecate dinoflagellates) have cellulose as a structural polysaccharide for their cell
wall [19] (Table 1).
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Table 1. Polysaccharides from algae.

Macroalga/Microalga Macroalgae Extraction Method/
Microalgae Cultivation Strategy Polysaccharides Type Polysaccharides Yield (% w/w) Reference

Alaria esculenta

Preservation with formic acid (4 weeks; 20 ◦C)

Alginates

32.5 * [20]

Short alkaline extraction (1–5 h), pH 9, 20 ◦C 24.0 [21]

Sequential extraction of fucoidan/laminarin, alginate, and
cellulose using mild chemical methods 7.1 [22]

Chondrus
crispus

Hydrothermal processing with subcritical water during
non-isothermal heating up to 140 ◦C

Carrageenans

75.5 [23]

Dark cultivation for 21 days 44.3 [24]

Dispersion with demineralized water stirred with a magnetic
rod at 500 rpm for 8 h at 90 ◦C 39.2 [25]

Laminaria
japonica

Ultrasound-assisted
Extraction (195 W for 30 min at 60 ◦C). Laminaria

japonica
polysaccharides

9.7 [26]

Alkaline extraction (NaOH solution of pH 10.0 for 4 h at 80 ◦C) 44.6 [27]

Ultrasonic-enzyme synergistic method (0.3% cellulase, 0.7%
pectinase, and 1.5% papain; 30 min 55 ◦C) 19.4 [28]

Padina tetrastromatica

Subcritical water extraction (150 ◦C, 5 MPa, 15 min)

Fucoidans

14.0 [29]

Water extraction (12 h at room temperature) 9.5 [30]

Treatment with selective solvents (EtOH, CaCl2, HCl, Na2CO3) 9.4 [31]

Saccharina
latissima

Preservation with
formic acid

(16 weeks; 20 ◦C)

Cellulose

18.0 [20]

Typical extraction (acidification—HCl, alkaline
extraction—Na2CO3), solid/liquid separation, precipitation,

and drying)
26.0 [32]

Sequential extraction of fucoidan/ laminarin, alginate, and
cellulose using mild chemical methods 6.9 [22]
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Table 1. Cont.

Macroalga/Microalga Macroalgae Extraction Method/
Microalgae Cultivation Strategy Polysaccharides Type Polysaccharides Yield (% w/w) Reference

Ulva sp.

Foliose citric acid-based
extraction

Ulvans

41.0 [33]

Soxhlet extraction with methanol and 5% of ammonium oxalate 13.8 [34]

Microwave-assisted hydrothermal (liquid phase/EtOH, 1:1.5,
choline chloride 1%, 120 ◦C) 32.5 [35]

Arthrospira platensis SAG 21.99 Indoor cultures; static magnetic fields
application for 24 h d−1 Exopolysaccharides 34.8 [36]

Chlorella fusca LEB 111 Outdoor cultures; static magnetic fields
application for 1 h d−1 Starch 10.9 [36]

Chlorella
vulgaris

BG 11 medium, light intensity 65 µmol photons m−2 s−1 and
temperature 28 ◦C

Heteropolysaccharides 32.7 [37]

Three-stage process with stressed conditions applied in the
second stage (light intensity of 360 µmol photons m−2 s−1 and

nitrogen starvation (F/2 medium deprived of NaNO3)
Starch 21.0 [38]

Neocystis mucosa SX Cation exchange resin method was used to
extract polysaccharides Exopolysaccharides 6.2 [39]

Nostoc flagelliforme H2O2 acclimation method Exopolysaccharides 4.7 [40]

Spirulina platensis

Two stage culture: (1) 96 µmol photons m−2 s−1 at 28 ◦C;
(2) light intensity 192 µmol photons m−2 s−1 and 38 ◦C of

temperature for 3 days Polysaccharide of
Spirulina platensis

27.3 [41]

Commercial microalgal powder was extracted with ultrapure
water and ultrasonic treatment (45 kHz, 300 w) at 60 ◦C for 1 h. 16.7 [42]

Commercial powder and alkaline extraction 10.8 [43]

Spirulina sp. Outdoor cultures Exopolysaccharides 49.3 [36]

* approximate value.
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When discussing algal polysaccharides, the typical approach involves harvesting the
algae from its natural habitat and applying extraction and purification methods. Extraction
techniques are tailored and optimized for each algal species to obtain the highest possible
yield of the polysaccharides with their desired properties [44] (Figure 1). Depending on the
specific polysaccharide, these properties may include gelatinization, structural attributes,
or even antioxidant properties, as demonstrated by the macroalga Laminaria japonica [45].
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Figure 1. Steps for the obtention of exopolysaccharides (EPS) from microalgae and cyanobacteria
cultures and their potential applications [46].

Nevertheless, through aquaculture, it is possible to explore different cultivation tech-
niques for algae to enhance polysaccharide yields and promote environmental sustainability.
When investigating cultivation methods for Chondrus crispus, Tanoeiro et al. [45] found that
the free-floating balloon cultivation method with periodic water changes three times a week
resulted in the highest carrageenan yield. However, in terms of production, seaweed culti-
vation still lags behind harvesting, which typically yields approximately 50% carrageenans
content. Nonetheless, aquaculture of this species can provide a sufficient carrageenans
supply to sustain the industry without harming natural populations, representing a more
sustainable alternative as C. crispus becomes increasingly scarce in its natural environment.

Similar to macroalgae, microalgae also possess the capacity to produce polysaccharides.
These can either be part of the cell wall (starch) or excreted outside the cells as a self-
protective response to environmental stresses, referred to as exopolysaccharides (EPS).
Consequently, cultivation strategies can be employed to stimulate the production of these
substances (Table 1). For instance, the green microalga Neochloris oleoabundans increases
its polysaccharide production when cultured mixotrophically with sugars and sodium
nitrate [47], while Chlorella fusca LEB 111 is stimulated for magnetic fields application in
the cultures [36].

Both macroalgae and microalgae benefit from the application of biorefinery techniques.
In the case of macroalgae, it is possible to obtain multiple types of polysaccharides from the
same species through sequential extractions. Birgersson et al. [22] employed an integrated
process to recover alginates, fucoidans, laminarin, and cellulose from Saccharina latíssima
and Alaria esculenta. The total yields of polysaccharides were 23.4% and 26.3% of the dry
biomass for the respective algae. All extractions were performed using mild chemical
methods to preserve the molecular weights of the polysaccharides, particularly alginates.

Regarding polysaccharide production from microalgae, the biorefinery approach dif-
fers from that of macroalgae. In microalgal processes, the goal is to extract other high-value
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components in addition to exopolysaccharides. These substances are excreted by the mi-
croalgae into the culture medium. The remaining products are separated from the biomass.
Fatty acids, phycocyanin, other pigments, biofuels, food, biofertilizers, and energy are alter-
native products extracted alongside EPS [8]. Furthermore, in microalgae cultivation, there
is potential to utilize saline and brackish water [48,49] and wastewater [50] as culture media.
Gaseous effluents can also be employed as nutrient sources for cultivating microorgan-
isms [51]. In addition to increasing biomass productivity and reducing production costs, it
is also possible to enhance microalgae cultivation through strategies such as supplementing
cultures with phytohormones [52]. These alternatives render microalgae biorefinery highly
productive, sustainable, and economically viable for industrial applications. Moreover,
they allow for a higher market share for microalgal polysaccharides.

3. Algal Polysaccharides in Food and Biomedical Context

Algal and microalgal polysaccharides have been studied and explored in various
food and biomedical contexts due to their functional properties and potential health ben-
efits [9,10]. In the food context, algal and microalgal polysaccharides have been used as
natural food additives due to their gelling, stabilizing, and emulsifying properties, as
well as for packaging purposes (edible coating or film for active and intelligent pack-
aging) [53]. Microalgae-based polysaccharides, classified as structural polysaccharides
(cellulose present in the cell wall), storage polysaccharides (starch and glycogen stored in
the chloroplast), and extracellular polysaccharides (secreted outside the cell for intercellular
communication), exhibit anti-inflammatory and immunomodulatory properties used for
the production of nutraceuticals [54].

Algae and microalgae possess polysaccharides in their biomass with biocompatible
properties, low toxicity, and the ability to form gels upon contact with metal ions or pH
changes, making them suitable for various applications [9]. Additionally, some marine
polysaccharides, such as chitosan, sodium alginate, and agar, have demonstrated antibacte-
rial and antioxidant functions, as well as biocompatibility, which can be applied to food
preservation or to enhance the physicochemical properties of food [55].

The dried biomass of algae such as Spirulina or Chlorella has been applied to traditional
food products like bread, soups, and cookies [56,57]. However, the sensory evaluation
indicates a low incorporation of algae (0.5%) as a better concentration accepted by potential
consumers due to the sensory characteristics of microalgae [56]. Furthermore, adding
microalgae biomass in large quantities tends to modify the rheological and technological
properties of the original matrix used. Extracted polysaccharides from algae can serve as
an alternative to reduce the impact on flavor while providing functional characteristics to
the food. Technologies such as enzyme-assisted extraction or ultrasound are options for
recovering polysaccharides from microalgae for use in functional foods, nutraceuticals, or
supplements [58]. The microalga Spirulina is an example of the application of polysaccha-
rides in food, as it contains polysaccharides widely used as food additives or colorants in
ice creams, chewing gums, candies, dairy products, soft drinks, or jellies [59].

Among the polysaccharides, sulfated polysaccharides stand out in food commercial
applications. These compounds are applied in the food industry due to their stabilizing,
gelling, emulsifying, and viscosity-increasing properties. Because they stimulate and
stabilize the structure of food, they are widely used in food preparations such as jams,
jellies, ice cream, and other dairy products as additives [60]. In the food industry, sulfated
polysaccharides are used to restrict the activity of foodborne pathogens such as Escherichia
coli, Staphylococcus aureus, and Salmonella enterica [61].

Agar has a wide application in food processing like pastry fillings, jams and jellies,
confections, beverages, spreads, garnishes, puddings, desserts, ice cream, meat, and poultry
products. This polysaccharide is widely used to prepare jellies where food colors and flavors
are added to hot agar extract followed by molding and cooling [62].

For commercial purposes, carrageenan is also a widely used polysaccharide. Car-
rageenan, such as κ, λ, and ι carrageenan, must be isolated separately as their combined
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form decreases the gel strength, which is not ideal for industrial purposes. Due to their
excellent functional properties, they act as a thickener, stabilizer, and texture modifier. They
improve the appearance and the quality of food from a commercial perspective. They are
widely used in dairy, baking, and food processing industries in the production of foods such
as puddings, milkshakes, instant soups, sauces, jellies, and pastes [63]. In the biomedical
field, microalgal polysaccharides have been studied for applications such as drug delivery
systems, tissue engineering, wound dressings, cancer therapy, bone regeneration therapy,
and antibacterial and antiviral agents [10]. The biological activity of polysaccharides and
exopolysaccharides obtained from microalgae can be observed through the direct use of
extracts or purified compounds. It has been demonstrated that these biomolecules have a
variety of benefits, including anti-tumor properties [64], antioxidant effects [65], antiviral
activity [66], anti-inflammatory properties [54], and antimicrobial activity [67].

Sulfated polysaccharides derived from marine sources stand out for their immuno-
logical, antiviral, probiotic, and prebiotic properties. The diverse structure of sulfated
polysaccharides has shown excellent responses against the COVID-19 virus (SARS-CoV-2).
These polysaccharides enhance the host’s antiviral response by interfering with attachment,
adsorption, and virus replications [66]. Moreover, they block the initial entry of the virus or
inhibit its transcription and translation by modulating the immune response of the host
cell. These compounds can also help modulate immunity against SARS-CoV-2 through
various pathways. Polysaccharides such as carrageenans can serve as effective adjuvants
to enhance the efficacy of peptide-based vaccines through immunoenhancement [68].

Algal polysaccharides also stand out for their antioxidant activity, which can be uti-
lized in both food and biomedical applications [69]. Polysaccharides from Chlorella pyrenoi-
dosa were precipitated using different concentrations of ethanol, and their antioxidant
activities were evaluated by determining the hydroxyl radical scavenging, DPPH radical
scavenging, and superoxide anion scavenging activities. The results demonstrated that the
polysaccharides exhibited positive effects in vitro in the elimination of free radicals [65].

4. Algal Polysaccharide-Based Nanomaterials

With the rapid advancement of nanobiotechnology, nanomaterials have reached
the food and pharmaceutical sectors and benefited consumers for clinical and medical
treatments [70]. Polysaccharide-based nanosystems can reduce drug toxicity and side
effects [5,71]. Nanomaterials based on algae and microalgae have received attention due
to their physicochemical properties, stability, and low cost, in addition to characteristics
such as hydrophilicity, high biodegradability, and biocompatibility [14,72]. Due to their
specific controlled structures, algal biocompounds such as polysaccharides can fabricate
nanomaterials (Table 2). According to Qiu et al. [73], polysaccharide-based nanocarri-
ers can be divided into nanoliposomes, nanoparticles, nanomicelles, nanoemulsions and
nanohydrogels (Figure 2). Among these materials, nanoparticles, nanofibers, and nanogels
stand out [74,75].

Table 2. Production of nanomaterials based on algal polysaccharides.

Alga Polysaccharide Manufacturing Methodology Outcomes Reference

Fucus vesiculosus Fucoidan

The polyelectrolyte
self-assembly method was used

to obtain fucoidan/chitosan
nanoparticles to

encapsulate quercetin.

Improved physicochemical
properties; controlled release

under simulated gastrointestinal
conditions; encapsulation

efficiency from 97% to 99%.

[76]

Brown algae Fucoidan

Nanoparticles prepared via
electrostatic interaction using

fucoidan and soybean
protein isolated to

encapsulate curcumin.

Salt tolerance, heat resistance,
and storage stability;

encapsulation efficiency of >95%.
[77]
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Table 2. Cont.

Alga Polysaccharide Manufacturing Methodology Outcomes Reference

Laminaria japonica Fucoidan

The antisolvent precipitation
method was used to produce

nanoparticles based on
zein and fucoidan to

encapsulate resveratrol.

Photostability; ionic, pH, and
storage stabilities; controlled

release under in vitro digestion
conditions; encapsulation

efficiency of 95.4%.

[78]

Red algae K-carrageenan

The antisolvent precipitation
method was used to produce

zein-K-carrageenan
nanoparticles to

encapsulate quercetin.

Improved water dispersibility,
thermal stability, and controlled
release under in vitro digestion

conditions; encapsulation
efficiency of 62%.

[79]

Sargassum
angustifolium Fucoidan

Ultrasonic treatment was used to
prepare nanoemulsions for
fucoxanthin encapsulation.

Controlled release under
gastrointestinal conditions;

encapsulation efficiency of 79%.
[80]

Red algae Agar

Precipitation and solvent-casting
methods were used to prepare

mineralized agar-based
nanocomposite films.

Mechanical and light barrier
properties, antimicrobial activity

against Staphylococcus aureus.
[81]

Red algae K-carrageenan

Solvent-casting method was
used to prepare nanocomposite
films from k-carrageenan, konjac

glucomannan, and
TiO2 nanoparticles.

Thermal stability; mechanical
and UV barrier properties;

antimicrobial and fresh-keeping
properties in

strawberry preservation.

[82]

Spirulina maxima Pectin

Pectin was extracted from
microalga and then modified
using high temperature and

pressure for a specific duration.
Subsequently, pectin

nanoparticles were created
through sonication of the

modified pectin.

Potential to modulate gut
microbial community, enhance

the expression of
immune-related genes, and
improve gut morphology.

[83]

Spirulina platensis Spirulina
polysaccharides

Selenium nanoparticles with
Spirulina polysaccharides have

been developed with a
solution-phase method.

Microalgal polysaccharides were
extracted with hot water.

Enhanced cellular uptake and
anticancer efficacy, potential

candidate for further evaluation
as a chemopreventive and

chemotherapeutic agent against
human cancers.

[84]

Red microalgae Sulfated
polysaccharides

Hydrogels were developed
using sulfated polysaccharides,

chitosan, and zinc.

A broad spectrum of
antimicrobial activities, potential

use as wound dressings.
[85]

Chlorella vulgaris
Carbohydrates

containing
polysaccharide

Secreted carbohydrates by
microalgal cells were used for

reducing and capping
silver nanoparticles.

Anticancer and
antimicrobial applications. [86]

Ulva fasciata Ulvan
Deionized water was used to

produce ulvan/polyvinyl
alcohol (ulvan/PVA) nanofibers.

Desirable thermal stability and
mechanical properties for

tissue engineering.
[87]
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The abundant availability and biocompatibility characteristics demonstrate the ability
of polysaccharide-based nanoparticles for use as delivery systems of bioactive compounds.
Different techniques (ionic gelation, emulsion, and complexation of polyelectrolytes) can
convert polymers, such as polysaccharides, into nanoparticles. Ionic gelation and com-
plexation of polyelectrolytes are commonly employed by adding cationic molecules to
these anionic polymers [88]. Thus, polysaccharides of algal origin can produce stable
polymeric nanoparticles, with the desired shape, size, and charge, through the opposite
charge interaction of the polysaccharide [14].

Nanofibers are elongated thin structures composed of synthetic polymer, natural
polymer, or biopolymers. These nanomaterials exhibit different characteristics concerning
their mechanical, electrical, and thermal properties, which gives them diverse applicability
in the pharmaceutical, cosmetic, textile, and food industries. In addition, nanofibers
allow the controlled release of several agents with high transport capacities due to their
porosity. Nanofibers can be developed by phase separation, drawing, and electrospinning.
Electrospinning has an advantage related to the ease of scaling up, reproducibility, and the
application of non-aggressive conditions to the biocompounds used/added for developing
fibers as bioactive compounds and polymers [89,90]. Due to their high porosity, small pore
size, and high surface area, the application of polysaccharide-based nanofibers includes
several fields, such as drug delivery, tissue engineering, bone regeneration, and wound
dressing. Polysaccharide-based nanofibers have shown attractive and promising results for
the safe administration of drugs [91].

Nanogels are nanometer-sized hydrogels produced by the chemical or physical crosslink-
ing of polymeric chains. The three-dimensional network formed has water retention
capacity and does not present solubility in an aqueous system [92,93]. Nanogels are nano-
materials reported for applications in many fields due to their high mechanical stability,
strong drug-loading capacity, and smooth response to environmental stimuli for controlled
release [91]. Polysaccharides are natural hydrogel-forming polymers. Polysaccharides
isolated from algae can produce these nanomaterials [94]. In this way, nanomaterials based
on algal polysaccharides are constantly under development to maximize and improve
nano-delivery systems based on polysaccharides of algal origin.



Polysaccharides 2023, 4 380

5. Nano-Formulations Added Algal Polysaccharides

The growth of the seaweed industry and biorefinery increase the need for high-value
applications of biopolymers [94]. The inherent properties of marine polysaccharides,
such as biodegradability and biocompatibility [15], make nanocarriers based on marine
polysaccharides a high-potential platform in the biomedical, pharmaceutical, and food
areas (Table 2, Figure 3). The manipulation of polysaccharides on a nanometric scale has
contributed to increasing the potential of these components in a range of applications,
boosting interdisciplinarity in the scientific world to maximize the exploitation of all the
advantages of nanostructured polysaccharides [95].
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Synthesized nanomaterials based on algae biopolymers, such as polysaccharides, can
be used for coating and encapsulation and to contribute to sustainability [14]. Polysaccharide-
based nanomaterials are reported for biomedical applications, such as wound healing,
cancer treatment, tissue engineering, drug delivery, gene delivery, and antimicrobial activ-
ities [6]. Nanoparticles have many advantages in the treatment of cancer (Figure 4) and
drug delivery. For example, fucoidan nanoparticles loaded with chemotherapeutic agents
have potential in cancer treatment. Carrageenan-based nanoparticles are suitable carriers
to offer continuous control for drug delivery. On the other hand, nanofibers based on ulvan
polysaccharides have potential in different fields, such as dressings, gene delivery, tissue
engineering, and drug delivery [14]. Moreover, polysaccharide-based nanomaterials have
wide applications as functional ingredients since they have biologically active properties
that provide health benefits and can prevent or treat diseases [96]. Another potentiality of
polysaccharide-based nanomaterials is to reduce the energy density of several processed
food products [97–99]. In addition, polysaccharides can be combined with other commer-
cial biopolymers to form nanomaterials and develop food packaging with biodegradable,
antimicrobial, and toxic-free nature [14].



Polysaccharides 2023, 4 381

Polysaccharides 2023, 4, FOR PEER REVIEW  12 
 

 

with other commercial biopolymers to form nanomaterials and develop food packaging 

with biodegradable, antimicrobial, and toxic-free nature [14]. 

 

Figure 4. Advantages of nanoparticles in cancer treatment [100]. 

5.1. Application in Food Science 

The  increasing awareness among consumers about  foods  that promote health has 

driven  the  food  industry  to develop products with  the  incorporation of bioactive com-

pounds [101]. In this context, nanotechnology can contribute to obtaining functional foods 

and nutraceuticals. Nanoencapsulation of bioactive compounds for food enrichment can 

prevent the degradation of these compounds during processing and storage and increase 

stability  and  bioavailability,  preserving  their  bioactivity  [102,103].  Furthermore, using 

polysaccharides as encapsulants in the food industry can prevent the loss of volatile com-

pounds and improve the dispersion of low-solubility compounds in the food matrix [103]. 

Polysaccharides from algae have characteristics of interest as an encapsulating material, 

such as bioavailability, biocompatibility, bioactivity, and non-toxicity [104]. 

Fucoidan has been studied as a component of the polymeric matrix for the nanoen-

capsulation of bioactive compounds to improve characteristics such as low solubility in 

water and instability to temperature and pH variations [105]. Studies have shown that the 

encapsulation of curcumin, quercetin, and resveratrol, using fucoidans as one of the pol-

ymeric materials, improved the stability of these compounds, allowing controlled release 

during simulated digestion in vitro [76–78]. This polysaccharide can be effective in pre-

serving bioactive ingredients incorporated into functional foods. 

Roy et al. [106] applied κ-carrageenan as a stabilizer of colloidal zein particles loaded 

with quercetin. Using  this polysaccharide as a coating  for  the hydrophobic compound 

zein  to  encapsulate  quercetin  resulted  in dispersibility  in water,  thermostability,  con-

trolled release, and antioxidant activity. Therefore, this system can be used as a vehicle for 

hydrophobic bioactive compounds. Gallón et al. [107] investigated the application of ex-

opolysaccharides  produced  by  the  microalgae  Chlorella  pyrenoidosa  and  Botryococcus 

braunii as a stabilizer in the silver nanoparticle’s synthesis. The microalgal exopolysaccha-

rides enable the synthesis of particles with controlled and stable size and dispersion. The 

nanoparticles obtained exhibited antibacterial activity against Staphylococcus aureus, Esch‐

erichia coli, and S. aureus that was resistant to the antibiotic methicillin, indicating the po-

tential application of these particles as antimicrobials in food packaging. 

Oliyaei et al. [80] evaluated the stabilization of nanoemulsions using natural polysac-

charides as an emulsifier to encapsulate fucoxanthin. Fucoidans presented higher encap-

sulation  efficiency  (79%)  compared  with  gum  Arabic.  Furthermore,  both  polymers 

showed a controlled release of fucoxanthin during simulated digestion in vitro. Richa and 

Figure 4. Advantages of nanoparticles in cancer treatment [100].

5.1. Application in Food Science

The increasing awareness among consumers about foods that promote health has
driven the food industry to develop products with the incorporation of bioactive com-
pounds [101]. In this context, nanotechnology can contribute to obtaining functional foods
and nutraceuticals. Nanoencapsulation of bioactive compounds for food enrichment can
prevent the degradation of these compounds during processing and storage and increase
stability and bioavailability, preserving their bioactivity [102,103]. Furthermore, using
polysaccharides as encapsulants in the food industry can prevent the loss of volatile com-
pounds and improve the dispersion of low-solubility compounds in the food matrix [103].
Polysaccharides from algae have characteristics of interest as an encapsulating material,
such as bioavailability, biocompatibility, bioactivity, and non-toxicity [104].

Fucoidan has been studied as a component of the polymeric matrix for the nanoen-
capsulation of bioactive compounds to improve characteristics such as low solubility in
water and instability to temperature and pH variations [105]. Studies have shown that
the encapsulation of curcumin, quercetin, and resveratrol, using fucoidans as one of the
polymeric materials, improved the stability of these compounds, allowing controlled re-
lease during simulated digestion in vitro [76–78]. This polysaccharide can be effective in
preserving bioactive ingredients incorporated into functional foods.

Roy et al. [106] applied κ-carrageenan as a stabilizer of colloidal zein particles loaded
with quercetin. Using this polysaccharide as a coating for the hydrophobic compound
zein to encapsulate quercetin resulted in dispersibility in water, thermostability, controlled
release, and antioxidant activity. Therefore, this system can be used as a vehicle for
hydrophobic bioactive compounds. Gallón et al. [107] investigated the application of
exopolysaccharides produced by the microalgae Chlorella pyrenoidosa and Botryococcus
braunii as a stabilizer in the silver nanoparticle’s synthesis. The microalgal exopolysac-
charides enable the synthesis of particles with controlled and stable size and dispersion.
The nanoparticles obtained exhibited antibacterial activity against Staphylococcus aureus,
Escherichia coli, and S. aureus that was resistant to the antibiotic methicillin, indicating the
potential application of these particles as antimicrobials in food packaging.

Oliyaei et al. [80] evaluated the stabilization of nanoemulsions using natural polysac-
charides as an emulsifier to encapsulate fucoxanthin. Fucoidans presented higher encapsu-
lation efficiency (79%) compared with gum Arabic. Furthermore, both polymers showed a
controlled release of fucoxanthin during simulated digestion in vitro. Richa and Choud-
hury [108] reported that fucoidans and κ-carrageenan as emulsifiers showed comparable
properties to Tween 20 in nanoemulsions formulation for curcumin encapsulation. These
authors found that fucoidans and levan increased the antioxidant activity of the system.
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Polysaccharides have been investigated for the development of food packaging due
to their properties, such as inherent protective function, gel formation capacity, and oxy-
gen and carbon dioxide barriers. However, these compounds have poor barrier prop-
erties against water vapor due to their hydrophilic nature and poor mechanical stabil-
ity [109]. Therefore, nanocomposites obtained from polymer blends with the incorporation
of nanoparticles can be an alternative to improve the properties of films produced with
algal polysaccharides [110]. Several studies have evaluated the development of films from
nanoformulations containing algal polysaccharides and nanoparticles for applications as
food packaging material [81,82,106].

The polysaccharide κ-carrageenan was used in the elaboration of a nanocomposite film
containing konjac glucomannan and titanium dioxide nanoparticles. The film exhibited
thermal stability, barrier properties against UV light, mechanical properties, water vapor
permeability, hydrophobicity, and antifungal capacity. When applied as packaging for
strawberries, this nanocomposite film resulted in the inhibition of the fungus Penicillium
viridicatum, as well as a reduction in weight loss and titratable acidity, compared to fruits
not packaged or stored in plastic packaging [82]. Similar properties were observed for
nanocomposite films based on k-carrageenan and silver nanoparticles, such as UV bar-
rier, mechanical resistance, thermal stability, and antimicrobial activity against food-borne
pathogenic bacteria (Escherichia coli, and Listeria monocytogenes) [106]. Agar-based nanocom-
posite films reinforced with Zn mineral also showed improved barrier and mechanical
properties and antimicrobial activity against Staphylococcus aureus and Candida albicans [81].
These studies indicate that nanocomposite films based on polysaccharides of algal origin are
promising as food packaging materials to preserve food quality and prevent contamination
during storage.

5.2. Applications in Biomedical Science

Nanotechnology plays an indispensable role in the field of advanced medicine and
biotechnology. Given that polysaccharides derived from algae and microalgae have demon-
strated immunomodulatory, anti-inflammatory, antitumor, antibacterial, antiviral, and an-
tioxidant properties [10,66,111], these compounds hold significant potential for utilization
in the development of nanotechnological materials for biomedical applications [9,107,112].

Chandrarathna et al. [83] investigated the impact of modified pectin and modified
pectin nanoparticles, derived from the microalgae Spirulina maxima, on the modulation of
the intestinal microbiota of mice and immune responses, including antimicrobial, antiviral,
and inflammatory cytokines. The results revealed that mice treated with nanopectin experi-
enced weight gain, attributed to improved digestibility and enhanced nutrient availability
resulting from the smaller particle size. Additionally, the smaller particle size (64.11 nm)
provided a larger surface area for microbial growth within the gut compared to the longer
pectin parent molecules. The mice treated with nanopectin displayed an increased density
of goblet cells in the intestinal barrier, which obstructed the access of pathogenic microbes
to the intestinal epithelium. Furthermore, these mice exhibited an increased expression of
intestinal alkaline phosphatases, known to have an anti-inflammatory effect.

Selenium nanoparticles were synthesized using varying amounts of polysaccharide
extract from the marine microalgae Spirulina platensis. These nanoparticles were evaluated
for their cytotoxicity against multiple cancer cell lines. The synthesized nanoparticles
exhibited long-term stability for a minimum of three months and a nearly nine-fold increase
in cell uptake. Notably, the material demonstrated selectivity towards cancer cells over
normal cells, highlighting its potential for cancer chemoprevention [84].

Liberman et al. [85] formulated hydrogels by incorporating zinc and sulfated polysac-
charides derived from three red microalgae (Porphyridium sp., Dixoniella grisea, and Por-
phyridium aerugineum) with chitosan. These nanomaterials can be applied as a physical
barrier against bacterial contamination while maintaining a moist environment, offering
improved biocompatibility and mechanical properties. The demonstrated characteristics of
these hydrogels underscore their potential as effective wound dressings.
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Carbohydrates containing polysaccharides from Chlorella vulgaris were utilized in
the biosynthesis of silver nanoparticles (AgNPs). The resulting particles exhibited a zeta
potential of +26 mV, indicating their colloidal stability and making them highly desirable for
applications in anticancer and antimicrobial fields. Additionally, the minimum inhibitory
concentrations against Gram-positive bacteria (Staphylococcus aureus) and Gram-negative
bacteria (Escherichia coli) found were 37.5 µg mL−1 and 9.4 µg mL−1, respectively. When
Hep-G2 cancer cells were exposed to AgNPs at a concentration of 4.7 µg mL−1, their
viability decreased to 61% after 24 h and 37% after 48 h of treatment [86].

Nanofibers, due to their structural similarity to the extracellular matrix of the human
body, have garnered significant attention as a potential material for tissue engineering [113].
Amongst the various candidates, algae belonging to the Ulva genus, which contain ulvans
as their primary polysaccharides, show promise for nanofiber production in this field. By
employing an eco-friendly extraction method using water as the solvent, polysaccharides
were successfully extracted from Ulva fasciata, and ulvan/polyvinyl alcohol nanofibers
were developed. These nanofibers exhibited desirable thermal stability and mechanical
properties, rendering them suitable not only for tissue engineering but also for a range of
other biomedical applications [87].

6. Industrial Potential of Algal Polysaccharides

The potential applications of polysaccharides produced by algae in several industrial
sectors and the rising demand for sustainable products can boost the market for these
polysaccharides. The global seaweed polysaccharides market has exhibited steady growth
in recent years. Projections indicate that sales of these products will increase from USD1
million in 2023 to approximately USD3 million in 2033 [114,115].

In this context, several companies that produce and commercialize polysaccharides
from macroalgae have been identified. One such product is FoodGel™ Carrageenan, the
polysaccharide κ-carrageenan extracted from the seaweed Eucheuma cottonii and produced
by the FoodCHem company [116]. This product is of food-grade quality and is commonly
used as an emulsifier and stabilizer in the food industry. Other companies producing
this polysaccharide for application in food products are Cargill [117], CP Kelco [118],
and Gelymar [119].

Maritech® is the fucoidan polysaccharide extracted and purified from seaweed. It
is produced by Marinova Pty Ltd. for application in functional foods and beverages,
dermatological formulations, and animal health products [120]. Gely™Alg is a line of
sodium alginate products obtained from brown algae by the company Gelymar with wide
application in the food and pharmaceutical industries [119]. Qingdao Gather Great Ocean
Algae Industry Group produces sodium alginate, carrageenans, and agar-agar extracted
from seaweed for use in the food, pharmaceutical, and chemical industries. This company
also manufactures empty capsules from these polysaccharides [121].

However, the industrial production of microalgal polysaccharides is still limited. The
main market is the production of microalgal EPS for application in the cosmetics industry
due to its antioxidant, anti-inflammatory, and antimicrobial properties [122]. Companies
predominantly obtain this polysaccharide from the microalgae Porphyridium cruentum [8].

Regarding the nanotechnological application of algal polysaccharides, although re-
search has shown promising results in several areas, the commercialization of these prod-
ucts may require further advances in research. Bioavailability, toxicity, and production
costs should be further explored, as well as regulatory issues [14,123].

7. Conclusions

Algae and microalgae are sustainable resources for producing biocompatible and
renewable polysaccharides capable of synthesizing nanomaterials for applications in food
and biomedical fields. Nanotechnology combined with polysaccharides of algal origin
can prevent the loss of volatile compounds and improve the dispersion of low-solubility
compounds in the food matrixes. Moreover, these nanomaterials are promising approaches
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for developing packaging systems to preserve food quality. Packaging produced with
added nanomaterials based on algal polysaccharides can improve barrier properties against
UV light, mechanical properties, and permeability to water vapor.

Polysaccharide-based nanostructures also have attracted much attention in biomed-
ical carriers due to their excellent encapsulation capacity. Polysaccharides derived from
algae and microalgae demonstrate immunomodulatory, anti-inflammatory, antitumor, and
antiviral properties for developing nanotechnological materials for biomedical applications.
Algal polysaccharide nanomaterials can improve digestibility and nutrient availability,
and they demonstrate potential for cancer chemoprevention and tissue engineering. In
addition, using polysaccharides as a coating contributes to thermostability, a controlled
release of bioactive compounds, and antioxidant and antimicrobial activities, which are
promising characteristics for biomedical and food areas. Therefore, in addition to minimiz-
ing environmental contamination through CO2 fixation, the contribution of microalgae to
the production of polysaccharides extends to the manufacture of nanomaterials for various
applications in the food and biomedical industry context.
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