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Abstract: This work extends the investigation of higher-order sensitivity and uncertainty analysis
from 3rd-order to 4th-order for a polyethylene-reflected plutonium (PERP) OECD/NEA reactor
physics benchmark. Specifically, by applying the 4th-order comprehensive adjoint sensitivity analysis
methodology (4th-CASAM) to the PERP benchmark, this work presents the numerical results of the
most important 4th-order sensitivities of the benchmark’s total leakage response with respect to the
benchmark’s 180 microscopic total cross sections, which includes 180 4th-order unmixed sensitivities
and 360 4th-order mixed sensitivities corresponding to the largest 3rd-order ones. The numerical
results obtained in this work reveal that the number of 4th-order relative sensitivities that have large
values (e.g., greater than 1.0) is far greater than the number of important 1st-, 2nd- and 3rd-order
sensitivities. The majority of those large sensitivities involve isotopes 1H and 239Pu contained in
the PERP benchmark. Furthermore, it is found that for most groups of isotopes 1H and 239Pu of the
PERP benchmark, the values of the 4th-order relative sensitivities are significantly larger than the
corresponding 1st-, 2nd- and 3rd-order sensitivities. The overall largest 4th-order relative sensitivity
S(4)

(
σ

g=30
t,6 , σ

g=30
t,6 , σ

g=30
t,6 , σ

g=30
t,6

)
= 2.720× 106 is around 291,000 times, 6350 times and 90 times

larger than the corresponding largest 1st-order, 2nd-order and 3rd-order sensitivities, respectively,
and the overall largest mixed 4th-order relative sensitivity S(4)

(
σ30

t,6, σ30
t,6, σ30

t,6, σ30
t,5

)
= 2.279× 105 is

also much larger than the largest 2nd-order and 3rd-order mixed sensitivities. The results of the 4th-
order sensitivities presented in this work have been independently verified with the results obtained
using the well-known finite difference method, as well as with the values of the corresponding
symmetric 4th-order sensitivities. The 4th-order sensitivity results obtained in this work will be
subsequently used on the 4th-order uncertainty analysis to evaluate their impact on the uncertainties
they induce in the PERP leakage response.

Keywords: polyethylene-reflected plutonium sphere; 1st-order sensitivity; 2nd-order sensitivity;
3rd-order sensitivity; 4th-order sensitivity; adjoint sensitivity analysis methodology; total leakage
response; microscopic total cross sections

1. Introduction

The Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) conceived
by Cacuci [1] has opened the way for the exact computation of the large number of 2nd-
order sensitivities that arise in large-scale problems comprising many parameters. The
uniquely advantageous features of the 2nd-ASAM have been demonstrated by applying
this methodology to a polyethylene-reflected plutonium (acronym: PERP) OECD/NEA
reactor physics benchmark [2]. As has been described in [3,4], the numerical model of
the PERP benchmark comprises 21,976 uncertain parameters, of which 7477 parameters
have non-zero values. These non-zero parameters are as follows: 180 group-averaged
microscopic total cross sections; 7101 non-zero group-averaged microscopic scattering cross
sections; 120 fission process parameters; 60 fission spectrum parameters; 10 parameters
describing the experiment’s nuclear sources; and 6 isotopic number densities. All of the
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7477 non-zero first-order sensitivities and (7477)2 second-order sensitivities of the PERP
leakage response with respect to the benchmark’s parameters were computed and analyzed
in [4–9]. The results presented in [4–9] revealed that the 2nd-order sensitivities of the PERP
benchmark’s leakage response with respect to the 180 group-averaged microscopic total
cross sections are the largest and have, therefore, the largest impact on the uncertainties
induced in the leakage response.

Since the results obtained in [4–9] indicated that the effects of the 2nd-order sensitivi-
ties of the PERP leakage response to the total microscopic group cross sections are much
larger than the effects of the corresponding 1st-order sensitivities, Cacuci and Fang [10–12]
have extended the concepts underlying the 2nd-ASAM in order to compute the (180)3

3rd-order sensitivities of the PERP benchmark’s total leakage response with respect to the
microscopic total cross sections. It turned out that some of these 3rd-order sensitivities
were far larger than the corresponding 2nd-order ones, thereby having the largest impact
on the uncertainties induced in the PERP benchmark’s leakage response. This finding has
motivated the development of the 4th-order comprehensive adjoint sensitivity analysis
(4th-CASAM) formulas for computing exact 4th-order sensitivities of the PERP leakage
response with respect to the benchmark’s microscopic total cross sections, as documented
in [13]. By applying the 4th-order formulas developed in [13], this work presents the
numerical computation and analysis for the most important 4th-order sensitivities of the
PERP benchmark’s total leakage response with respect to the benchmark’s 180 microscopic
total cross sections. The results analyzed in this work include 180 fourth-order unmixed
sensitivities and 360 fourth-order mixed sensitivities, all of which arise from the largest
3rd-order sensitivities of the PERP benchmark’s leakage response to the total cross sections.
The results for the 4th-order sensitivities presented in this work will be subsequently used
to perform the corresponding 4th-order analysis of the impact which these sensitivities will
have on uncertainties in the PERP leakage response, which can be induced by uncertainties
in the PERP benchmark’s total microscopic cross sections.

This work is organized as follows: Section 2 reports the numerical results for the
180 fourth-order unmixed sensitivities of the PERP’s leakage response with respect to the
microscopic total cross sections. Section 2 also presents a comparison of the 4th-order
unmixed sensitivities to the corresponding 1st-, 2nd- and 3rd-order ones. Furthermore,
Section 2 also reports and analyzes the numerical results for the 360 fourth-order mixed
sensitivities that correspond to the largest 3rd-order unmixed sensitivity S(3)

(
σ30

t,6, σ30
t,6, σ30

t,6

)
and the largest 3rd-order mixed sensitivity S(3)

(
σ30

t,1, σ30
t,6, σ30

t,6

)
. Section 3 presents the verifi-

cation of the 4th-order mixed sensitivities obtained in this work by using their symmetry
properties and also by using fourth-order finite-difference formulas. The sensitivity of the
4th-order finite-difference formulas with respect to the size of the parameter variations that
must be used in the respective formulas are also discussed in Section 3. Section 4 presents a
comparison of the 4th-order unmixed sensitivities obtained using the 4th-CASAM with the
results produced by using fourth-order finite-difference formulas. Section 5 compares the
CPU times required by applying the 4th-CASAM versus using the finite difference method.
Section 6 summarizes and highlights the significance of the pioneering results obtained in
this work.
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2. Fourth-Order Sensitivities of the PERP Leakage Response with Respect to the
Benchmark’s Microscopic Total Cross Sections

As has been described in [4], the PERP benchmark for subcritical neutron and gamma
measurements comprises a metallic inner sphere (“core”), which is designated as
“material 1” and contains the following four isotopes: Isotope 1 (239Pu), Isotope 2 (240Pu),
Isotope 3 (69Ga) and Isotope 4 (71Ga). This core is surrounded by a spherical shell of
polyethylene (designated as “material 2”), containing two isotopes, designated as Isotope 5
(C) and Isotope 6 (1H), respectively. The dimensions and material composition of the PERP
metal sphere considered in this work are reproduced in Table 1 for convenient reference.

Table 1. Dimensions and material composition of the PERP benchmark [4].

Materials Isotopes Weight
Fraction

Density
(g/cm3) Zones

Material 1
(Plutonium metal)

Isotope 1 (239Pu) 9.3804 × 10−1

19.6
Homogeneous sphere of radius r1 = 3.794 cm,

designated as “material 1” and assigned to zone 1.
Isotope 2 (240Pu) 5.9411 × 10−2

Isotope 3 (69Ga) 1.5152 × 10−3

Isotope 4 (71Ga) 1.0346 × 10−3

Material 2
(polyethylene)

Isotope 5 (C) 8.5630 × 10−1
0.95

Homogeneous spherical shell of inner radius
r1 = 3.794 cm and outer radius r2 = 7.604 cm,

designated as “material 2” and assigned to zone 2.Isotope 6 (1H) 1.4370 × 10−1

The neutron flux distribution within the PERP benchmark is computed by using the
multi-group discrete ordinates particle transport code PARTISN [14] to solve the multi-
group approximation of the neutron transport equation with a spontaneous fission source
being provided by the code SOURCES4C [15]. The PARTISN [14] computations used the
MENDF71X [16] 618−group cross section data collapsed to G = 30 energy groups, as
well as an angular quadrature of S32 and a P3 Legendre expansion of the scattering cross
section, in conjunction with a fine-mesh spacing of 0.005 cm (comprising 759 meshes for
the plutonium sphere radius of 3.794 cm, and 762 meshes for the polyethylene shell of
thickness 3.81 cm). The group boundaries of the G = 30 energy groups are provided in [4].
Additional information regarding the mathematical modeling of the PERP benchmark is
provided in [4,13].

The mathematical expression of the PERP benchmark’s leakage response, denoted as
L(α), is provided below:

L(α) ,
∫
Sb

dS
G

∑
g=1

∫
Ω·n>0

dΩ Ω · n ϕg(r, Ω) , (1)

where Sb is the external surface area of the PERP sphere. For convenient reference, the
histogram plot of the leakage for each energy group for the PERP benchmark is reproduced
in Figure 1 from [4,5,9]. The value of the total leakage computed using Equation (1) for the
PERP benchmark is 1.7648 × 106 neutrons/sec.
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Figure 1. Histogram plot of the leakage for each energy group for the PERP benchmark.

The 4th-order absolute sensitivities ∂4L(α)/∂tj1∂tj2∂tj3∂tj4, j1 = 1, . . . JTX;
j2 = 1, . . . j1; j3 = 1, . . . j2; j4 = 1, . . . , j3, of the PERP leakage response with respect
to the benchmark’s microscopic total cross sections are computed by applying the 4th-
Order Comprehensive Sensitivity Analysis Methodology (4th-CASAM). The mathematical
expressions used for the computations in this work have been derived in [13] and are
reproduced below, for convenience:{

∂4L
(
α,ϕ;ψ(1);ψ(2);ψ(3);ψ(4)

)
∂tj4∂tj3∂tj2∂tj1

}
α0

= −
{〈
ψ

(4)
1 (j3; j2; j1; r, Ω), S(j4;α)ϕ(r, Ω)

〉
(1)

}
α0

−
{〈
ψ

(4)
2 (j3; j2; j1; r, Ω), S(j4;α)ψ(1)(r, Ω)

〉
(1)

}
α0
−
{〈
ψ

(4)
3 (j3; j2; j1; r, Ω), S(j4;α)ψ(2)

1 (j1; r, Ω)
〉
(1)

}
α0

−
{〈
ψ

(4)
4 (j3; j2; j1; r, Ω), S(j4;α)ψ(2)

2 (j1; r, Ω)
〉
(1)

}
α0

−
{〈
ψ

(4)
5 (j3; j2; j1; r, Ω), S(j4;α)ψ(3)

1 (j2; j1; r, Ω)
〉
(1)

}
α0

−
{〈
ψ

(4)
6 (j3; j2; j1; r, Ω), S(j4;α)ψ(3)

2 (j2; j1; r, Ω)
〉
(1)

}
α0

−
{〈
ψ

(4)
7 (j3; j2; j1; r, Ω), S(j4;α)ψ(3)

3 (j2; j1; r, Ω)
〉
(1)

}
α0

−
{〈
ψ

(4)
8 (j3; j2; j1; r, Ω), S(j4;α)ψ(3)

4 (j2; j1; r, Ω)
〉
(1)

}
α0

,

f or j1 = 1, ...JTX; j2 = 1, ...j1; j3 = 1, ...j2; j4 = 1, ..., j3.

(2)
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The meanings of the various symbols which appear in Equation (2) are as follows:

(i) The symbol 〈 〉(1) indicates the integration of two elements, as defined in Equations
(A1)−(A8) in the Appendix A.

(ii) The indices j1, j2, j3 and j4 are used to index the parameters tj1, tj2, tj3 and tj4, respec-
tively, in the vector of parameters t, which is defined as follows:

t ,
[
t1, . . . , tJTX

]† ,
[
σ1

t,i=1, σ2
t,i=1, . . . , σG

t,i=1, . . . , σ
g
t,i, . . . , σ1

t,i=I , . . . , σG
t,i=I

]†
,

f or i = 1, . . . , I = 6; g = 1, . . . , G = 30; JTX , I × G.
(3)

The dagger in Equation (3) denotes “transposition”, σ
g
t,i denotes the group-averaged

microscopic total cross section for isotope i and energy group g, and JTX denotes the
total number of microscopic total cross sections.

(iii) The vectors ψ(1);ψ(2);ψ(3);ψ(4) denote the 1st-level, 2nd-level, 3rd-level, and 4th-
level adjoint functions, respectively. Specifically:

(1) ψ(1)(r, Ω) denotes the 1st-level adjoint functions, which are the solutions of
the 1st-Level Adjoint Sensitivity System (1st-LASS) as defined in Equations
(A13) and (A14) in the Appendix A.

(2) ψ
(2)
1 (j1; r, Ω) and ψ(2)

2 (j1; r, Ω) denote the two 2nd-level adjoint functions,
which are the solutions of the 2nd-Level Adjoint Sensitivity System (2nd-LASS)
as defined in Equations (A15)−(A18) in the Appendix A.

(3) ψ
(3)
1 (j2; j1; r, Ω),ψ(3)

2 (j2; j1; r, Ω),ψ(3)
3 (j2; j1; r, Ω) andψ(3)

4 (j2; j1; r, Ω) denote
the four 3rd-level adjoint functions, which are the solutions of the 3rd-Level
Adjoint Sensitivity System (3rd-LASS) as defined in Equations (A19)−(A26) in
the Appendix A.

(4) ψ
(4)
i (j3; j2; j1; r, Ω), i = 1, . . . , 8, denote the eight 4th-level adjoint functions,

which are the solutions of the 4th-Level Adjoint Sensitivity System (4th-LASS)
as defined in Equations (A27)−(A42) in the Appendix A.

(iv) The vector S(j4;α) is a G× G diagonal matrix having non-zero elements of the form
∂Σg

t (α)/∂tj4, g = 1, . . . , G on its diagonal, i.e.,

S(j4;α) ,

 ∂Σ1
t (α)/∂tj4 • 0
• • •
0 • ∂ΣG

t (α)/∂tj4

, (4)

where Σg
t (α) =

I
∑

i=1
Niσ

g
t,i denotes the macroscopic total cross section for energy

group g.

The parameters tj1, tj2, tj3 and tj4, which appear on the left-side of Equation (2) in the
definition of the 4th-order sensitivities ∂4L(α)/∂tj1∂tj2∂tj3∂tj4, correspond to the micro-
scopic group total cross sections, as indicated in Equation (3). The specific correspondences
are indicated in Equation (5), below:

tj1 → σ
g1
t,i1, j1→ i1 = 1, . . . , I; g1 = 1, . . . , G; tj2 → σ

g2
t,i2, j2→ i2 = 1, . . . , I; g2 = 1, . . . , G;

tj3 → σ
g3
t,i3, j3→ i3 = 1, . . . , I; g3 = 1, . . . , G; tj4 → σ

g4
t,i4, j4→ i4 = 1, . . . , I; g4 = 1, . . . , G.

(5)
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To facilitate the interpretation of the numerical results to be presented in this work,
it is convenient to express the 4th-order absolute sensitivities ∂4L/∂σ

g1
t,i1∂σ

g2
t,i2∂σ

g3
t,i3∂σ

g4
t,i4 ;

i1,i2,i3,i4 = 1, . . . , I; g1, g2, g3, g4 = 1, . . . , G, in terms of the corresponding 4th-order relative
sensitivities, denoted as S(4)

(
σ

g1
t,j1, σ

g2
t,i2, σ

g3
t,i3, σ

g4
t,i4

)
and defined as follows for the I = 6

isotopes and G = 30 energy groups of the PERP benchmark:

S(4)
(

σ
g1
t,j1, σ

g2
t,i2, σ

g3
t,i3, σ

g4
t,i4

)
, ∂4L

∂σ
g1
t,i1∂σ

g2
t,i2∂σ

g3
t,i3∂σ

g4
t,i4

(
σ

g1
t,j1σ

g2
t,i2σ

g3
t,i3σ

g4
t,i4

L

)
,

i1, i2, i3, i4 = 1, . . . , I; g1, g2, g3, g4 = 1, . . . , G.

(6)

The mathematical expressions shown in Equations (2) and (6) were programmed
in FORTRAN together with the expressions provided in Equations (A13)−(A42), in the
Appendix A, to compute (using the codes PARTISN and SOURCES4C-modified accord-
ingly) the 4th-order sensitivities of the PERP leakage response with respect to the micro-
scopic total cross sections. Thus, the numerical results obtained for 4th-order unmixed and
mixed sensitivities are presented below in Sections 2.1 and 2.2, respectively.

2.1. Numerical Results for Fourth-Order Unmixed Sensitivities and Comparison with the
Corresponding 1st-, 2nd- and 3rd-Order Unmixed Sensitivities

S(4)
(

σ
g
t,i, σ

g
t,i, σ

g
t,i, σ

g
t,i

)
,
[

∂4L/
(

∂σ
g
t,i

)4
][(

σ
g
t,i

)4
/L
]

, i = 1, . . . , 6; g = 1, . . . , 30, repre-

sents the 4th-order unmixed relative sensitivities of the PERP leakage response with respect
to the same microscopic total cross section (namely: σ

g
t,i) for each isotope and for each energy

group. These unmixed sensitivities are important since they contribute to the moments (i.e.,
expected values, variances/covariances, skewness) of the response distribution even when
the model parameters are uncorrelated. Moreover, the values of these unmixed 4th-order
relative sensitivities of the response to the same model parameters can be directly compared
to the values of the corresponding 1st-order, 2nd-order and 3rd-order unmixed relative sen-
sitivities, namely, S(1)

(
σ

g
t,i

)
, S(2)

(
σ

g
t,i, σ

g
t,i

)
and S(3)

(
σ

g
t,i, σ

g
t,i, σ

g
t,i

)
, i = 1, . . . , 6; g = 1, . . . , 30.

These comparisons are presented in Tables 2–7 for the six isotopes that are contained in
the PERP benchmark. The relative sensitivities which are larger than unity are highlighted
using bold numbers.

Table 2. Comparison of the 1st-order, 2nd-order, 3rd-order and 4th-order unmixed relative sensitivi-

ties S(1)
(

σ
g
t,1

)
, S(2)

(
σ

g
t,1, σ

g
t,1

)
, S(3)

(
σ

g
t,1, σ

g
t,1, σ

g
t,1

)
, S(4)

(
σ

g
t,1, σ

g
t,1, σ

g
t,1, σ

g
t,1

)
, g = 1, . . . , 30, for isotope 1

(239Pu) of the PERP benchmark.

g 1st-Order 2nd-Order 3rd-Order 4th-Order

1 −0.0003 0.0003 −0.0003 0.00032
2 −0.0007 0.0005 −0.0005 0.00063
3 −0.0019 0.0015 −0.0015 0.0018
4 −0.009 0.007 −0.008 0.0098
5 −0.046 0.043 −0.054 0.083
6 −0.135 0.162 −0.267 0.552
7 −0.790 1.987 −7.294 35.17
8 −0.726 1.768 −6.270 29.19
9 −0.843 2.205 −8.454 42.66

10 −0.845 2.177 −8.247 41.15
11 −0.775 1.879 −6.691 31.39
12 −1.320 4.586 −23.71 162.05
13 −1.154 4.039 −20.96 143.67
14 −0.952 3.435 −18.29 128.58
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Table 2. Cont.

g 1st-Order 2nd-Order 3rd-Order 4th-Order

15 −0.690 2.487 −13.18 91.99
16 −0.779 3.487 −23.10 202.03
17 −0.364 1.578 −10.07 84.76
18 −0.227 0.995 −6.428 54.71
19 −0.181 0.789 −5.063 42.86
20 −0.155 0.601 −3.431 25.74
21 −0.137 0.479 −2.480 16.85
22 −0.099 0.297 −1.313 7.624
23 −0.081 0.205 −0.777 3.894
24 −0.051 0.123 −0.438 2.055
25 −0.060 0.138 −0.473 2.149
26 −0.063 0.158 −0.581 2.807
27 −0.017 0.022 −0.039 0.095
28 −0.003 0.002 −0.0017 0.0019
29 −0.035 0.072 −0.226 0.939
30 −0.461 1.353 −5.980 35.05

Table 3. Comparison of the 1st-order, 2nd-order, 3rd-order and 4th-order unmixed relative sensitivi-

ties S(1)
(

σ
g
t,2

)
, S(2)

(
σ

g
t,2, σ

g
t,2

)
, S(3)

(
σ

g
t,2, σ

g
t,2, σ

g
t,2

)
, S(4)

(
σ

g
t,2, σ

g
t,2, σ

g
t,2, σ

g
t,2

)
, g = 1, . . . , 30, for isotope

2 (240Pu).

g 1st-Order 2nd-Order 3rd-Order 4th-Order

1 −2.060 × 10−5 1.052 × 10−6 −6.857 × 10−8 5.127 × 10−9

2 −4.117 × 10−5 2.089 × 10−6 −1.358 × 10−7 1.018 × 10−8

3 −1.192 × 10−4 6.055 × 10−6 −3.948 × 10−7 2.983 × 10−8

4 −5.638 × 10−4 2.947 × 10−5 −1.994 × 10−6 1.586 × 10−7

5 −2.894 × 10−3 1.730 × 10−4 −1.370 × 10−5 1.316 × 10−6

6 −8.513 × 10−3 6.485 × 10−4 −6.744 × 10−5 8.802 × 10−6

7 −4.958 × 10−2 7.836 × 10−3 −1.806 × 10−3 5.467 × 10−4

8 −4.574 × 10−2 7.026 × 10−3 −1.571 × 10−3 4.613 × 10−4

9 −5.318 × 10−2 8.769 × 10−3 −2.120 × 10−3 6.747 × 10−4

10 −5.345 × 10−2 8.711 × 10−3 −2.087 × 10−3 6.586 × 10−4

11 −4.909 × 10−2 7.547 × 10−3 −1.703 × 10−3 5.064 × 10−4

12 −8.364 × 10−2 1.842 × 10−2 −6.032 × 10−3 2.613 × 10−3

13 −7.145 × 10−2 1.548 × 10−2 −4.974 × 10−3 2.111 × 10−3

14 −5.953 × 10−2 1.342 × 10−2 −4.466 × 10−3 1.962 × 10−3

15 −4.267 × 10−2 9.506 × 10−3 −3.114 × 10−3 1.344 × 10−3

16 −4.864 × 10−2 1.052 × 10−6 −5.606 × 10−3 3.059 × 10−3

17 −2.236 × 10−2 2.089 × 10−6 −2.328 × 10−3 1.202 × 10−3

18 −1.358 × 10−2 6.055 × 10−6 −1.383 × 10−3 7.051 × 10−4

19 −1.021 × 10−2 2.947 × 10−5 −9.170 × 10−4 4.392 × 10−4

20 −8.914 × 10−3 1.730 × 10−4 −6.590 × 10−4 2.853 × 10−4

21 −6.716 × 10−3 6.485 × 10−4 −2.947 × 10−4 9.841 × 10−5

22 −4.676 × 10−3 7.836 × 10−3 −1.364 × 10−4 3.723 × 10−5

23 −7.458 × 10−3 7.026 × 10−3 −6.187 × 10−4 2.872 × 10−4

24 −4.371 × 10−3 8.769 × 10−3 −2.703 × 10−4 1.079 × 10−4

25 −8.131 × 10−4 8.711 × 10−3 −1.170 × 10−6 7.178 × 10−8

26 −9.171 × 10−4 7.547 × 10−3 −1.776 × 10−6 1.245 × 10−7

27 −1.862 × 10−2 1.842 × 10−2 −4.965 × 10−2 1.295 × 10−1

28 −9.671 × 10−3 1.548 × 10−2 −3.722 × 10−2 1.186 × 10−1

29 −1.364 × 10−4 1.342 × 10−2 −1.385 × 10−8 2.268 × 10−10

30 −7.909 × 10−3 9.506 × 10−3 −3.016 × 10−5 3.031 × 10−6
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Table 4. Comparison of the 1st-order, 2nd-order, 3rd-order, and 4th-order unmixed relative sensitiv-

ities, S(1)
(

σ
g
t,3

)
, S(2)

(
σ

g
t,3, σ

g
t,3

)
, S(3)

(
σ

g
t,3, σ

g
t,3, σ

g
t,3

)
, S(4)

(
σ

g
t,3, σ

g
t,3, σ

g
t,3, σ

g
t,3

)
, g = 1, . . . , 30, for isotope

3 (69Ga).

g 1st-Order 2nd-Order 3rd-Order 4th-Order

1 −9.214 × 10−7 2.104 × 10−9 −6.132 × 10−12 2.050 × 10−14

2 −1.974 × 10−6 4.804 × 10−9 −1.497 × 10−11 5.381 × 10−14

3 −6.012 × 10−6 1.541 × 10−8 −5.068 × 10−11 1.932 × 10−13

4 −3.036 × 10−5 8.545 × 10−8 −3.114 × 10−10 1.334 × 10−12

5 −1.587 × 10−4 5.204 × 10−7 −2.260 × 10−9 1.191 × 10−11

6 −4.353 × 10−4 1.696 × 10−6 −9.018 × 10−9 6.019 × 10−11

7 −2.107 × 10−3 1.415 × 10−5 −1.386 × 10−7 1.784 × 10−9

8 −1.717 × 10−3 9.897 × 10−6 −8.307 × 10−8 9.152 × 10−10

9 −1.912 × 10−3 1.133 × 10−5 −9.845 × 10−8 1.126 × 10−9

10 −1.956 × 10−3 1.166 × 10−5 −1.022 × 10−7 1.181 × 10−9

11 −1.943 × 10−3 1.182 × 10−5 −1.055 × 10−7 1.241 × 10−9

12 −3.756 × 10−3 3.714 × 10−5 −5.464 × 10−7 1.063 × 10−8

13 −3.522 × 10−3 3.762 × 10−5 −5.957 × 10−7 1.246 × 10−8

14 −2.987 × 10−3 3.371 × 10−5 −5.624 × 10−7 1.238 × 10−8

15 −2.182 × 10−3 2.485 × 10−5 −4.163 × 10−7 9.187 × 10−9

16 −2.551 × 10−3 3.733 × 10−5 −8.089 × 10−7 2.315 × 10−8

17 −1.262 × 10−3 1.893 × 10−5 −4.187 × 10−7 1.220 × 10−8

18 −8.411 × 10−4 1.371 × 10−5 −3.289 × 10−7 1.039 × 10−8

19 −8.605 × 10−4 1.790 × 10−5 −5.485 × 10−7 2.213 × 10−8

20 −6.458 × 10−4 1.050 × 10−5 −2.506 × 10−7 7.859 × 10−9

21 −3.919 × 10−4 3.949 × 10−6 −5.856 × 10−8 1.141 × 10−9

22 −1.489 × 10−4 6.668 × 10−7 −4.408 × 10−9 3.832 × 10−11

23 −1.104 × 10−4 3.859 × 10−7 −2.008 × 10−9 1.380 × 10−11

24 −3.199 × 10−5 4.778 × 10−8 −1.059 × 10−10 3.094 × 10−13

25 −1.726 × 10−5 1.136 × 10−8 −1.118 × 10−11 1.456 × 10−14

26 −5.147 × 10−5 1.046 × 10−7 −3.139 × 10−10 1.235 × 10−12

27 −2.586 × 10−5 4.825 × 10−8 −1.331 × 10−10 4.823 × 10−13

28 −8.496 × 10−7 1.192 × 10−10 −2.523 × 10−14 7.064 × 10−18

29 −6.754 × 10−7 2.747 × 10−11 −1.682 × 10−15 1.364 × 10−19

30 −2.542 × 10−5 4.111 × 10−9 −1.002 × 10−12 3.237 × 10−16

Table 5. Comparison of the 1st-order, 2nd-order, 3rd-order, and 4th-order unmixed relative sensitivi-

ties, S(1)
(

σ
g
t,4

)
, S(2)

(
σ

g
t,4, σ

g
t,4

)
, S(3)

(
σ

g
t,4, σ

g
t,4, σ

g
t,4

)
, S(4)

(
σ

g
t,4, σ

g
t,4, σ

g
t,4, σ

g
t,4

)
, g = 1, . . . , 30, for isotope

4 (71Ga).

g 1st-Order 2nd-Order 3rd-Order 4th-Order

1 −6.266 × 10−7 9.730 × 10−10 −1.928 × 10−12 4.385 × 10−15

2 −1.345 × 10−6 2.230 × 10−9 −4.734 × 10−12 1.159 × 10−14

3 −4.103 × 10−6 7.176 × 10−9 −1.611 × 10−11 4.190 × 10−14

4 −2.069 × 10−5 3.967 × 10−8 −9.849 × 10−11 2.874 × 10−13

5 −1.072 × 10−4 2.374 × 10−7 −6.966 × 10−10 2.479 × 10−12

6 −2.906 × 10−4 7.557 × 10−7 −2.683 × 10−9 1.195 × 10−11

7 −1.397 × 10−3 6.218 × 10−6 −4.037 × 10−8 3.443 × 10−10

8 −1.149 × 10−3 4.436 × 10−6 −2.492 × 10−8 1.838 × 10−10

9 −1.295 × 10−3 5.202 × 10−6 −3.063 × 10−8 2.374 × 10−10

10 −1.327 × 10−3 5.368 × 10−6 −3.192 × 10−8 2.501 × 10−10

11 −1.318 × 10−3 5.439 × 10−6 −3.296 × 10−8 2.630 × 10−10

12 −2.549 × 10−3 1.710 × 10−5 −1.707 × 10−7 2.253 × 10−9

13 −2.375 × 10−3 1.711 × 10−5 −1.828 × 10−7 2.579 × 10−9

14 −2.005 × 10−3 1.521 × 10−5 −1.705 × 10−7 2.523 × 10−9

15 −1.481 × 10−3 1.145 × 10−5 −1.302 × 10−7 1.950 × 10−9

16 −1.662 × 10−3 1.585 × 10−5 −2.237 × 10−7 4.172 × 10−9
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Table 5. Cont.

g 1st-Order 2nd-Order 3rd-Order 4th-Order

17 −8.176 × 10−4 7.950 × 10−6 −1.139 × 10−7 2.152 × 10−9

18 −5.318 × 10−4 5.479 × 10−6 −8.310 × 10−8 1.660 × 10−9

19 −4.939 × 10−4 5.898 × 10−6 −1.037 × 10−7 2.403 × 10−9

20 −3.976 × 10−4 3.979 × 10−6 −5.847 × 10−8 1.129 × 10−9

21 −2.344 × 10−4 1.413 × 10−6 −1.253 × 10−8 1.461 × 10−10

22 −2.170 × 10−3 1.416 × 10−4 −1.364 × 10−5 1.727 × 10−6

23 −1.337 × 10−4 5.659 × 10−7 −3.568 × 10−9 2.970 × 10−11

24 −1.322 × 10−5 8.156 × 10−9 −7.470 × 10−12 9.013 × 10−15

25 −7.518 × 10−6 2.154 × 10−9 −9.232 × 10−13 5.234 × 10−16

26 −2.313 × 10−5 2.112 × 10−8 −2.848 × 10−11 5.034 × 10−14

27 −1.201 × 10−5 1.041 × 10−8 −1.333 × 10−11 2.243 × 10−14

28 −4.131 × 10−7 2.818 × 10−11 −2.901 × 10−15 3.949 × 10−19

29 −3.512 × 10−7 7.429 × 10−12 −2.365 × 10−16 9.973 × 10−21

30 −1.665 × 10−5 1.764 × 10−9 −2.815 × 10−13 5.958 × 10−17

Table 6. Comparison of the 1st-order through 4th-order unmixed relative sensitivities,

S(1)
(

σ
g
t,5

)
, S(2)

(
σ

g
t,5, σ

g
t,5

)
, S(3)

(
σ

g
t,5, σ

g
t,5, σ

g
t,5

)
, S(4)

(
σ

g
t,5, σ

g
t,5, σ

g
t,5, σ

g
t,5

)
, g = 1, . . . , 30, for isotope 5 (C).

g 1st-Order 2nd-Order 3rd-Order 4th-Order

1 −9.992 × 10−6 1.066 × 10−6 1.038 × 10−7 2.827 × 10−7

2 −2.017 × 10−5 2.185 × 10−6 4.236 × 10−8 4.551 × 10−7

3 −6.373 × 10−5 7.901 × 10−6 −3.833 × 10−7 1.722 × 10−6

4 −2.996 × 10−4 3.873 × 10−5 −3.872 × 10−6 6.870 × 10−6

5 −1.597 × 10−3 2.359 × 10−4 −3.370 × 10−5 3.870 × 10−5

6 −4.403 × 10−3 6.521 × 10−4 −1.175 × 10−4 7.664 × 10−5

7 −3.698 × 10−2 9.376 × 10−3 −3.113 × 10−3 1.981 × 10−3

8 −4.631 × 10−2 1.447 × 10−2 −5.744 × 10−3 3.688 × 10−3

9 −4.502 × 10−2 1.114 × 10−2 −3.553 × 10−3 1.709 × 10−3

10 −5.135 × 10−2 1.368 × 10−2 −4.754 × 10−3 2.369 × 10−3

11 −5.645 × 10−2 1.633 × 10−2 −6.262 × 10−3 3.304 × 10−3

12 −1.345 × 10−1 6.055 × 10−2 −3.799 × 10−2 3.192 × 10−2

13 −1.529 × 10−1 8.249 × 10−2 −6.342 × 10−2 6.411 × 10−2

14 −1.504 × 10−1 8.573 × 10−2 −7.064 × 10−2 7.609 × 10−2

15 −1.299 × 10−1 6.928 × 10−2 −5.391 × 10−2 5.477 × 10−2

16 −2.074 × 10−1 1.415 × 10−1 −1.429 × 10−1 1.902 × 10−1

17 −1.665 × 10−1 9.779 × 10−2 −8.554 × 10−2 9.874 × 10−2

18 −1.439 × 10−1 7.678 × 10−2 −6.114 × 10−2 6.431 × 10−2

19 −1.310 × 10−1 6.625 × 10−2 −5.004 × 10−2 4.995 × 10−2

20 −1.212 × 10−1 5.905 × 10−2 −4.297 × 10−2 4.133 × 10−2

21 −1.129 × 10−1 5.347 × 10−2 −3.780 × 10−2 3.532 × 10−2

22 −1.036 × 10−1 4.747 × 10−2 −3.247 × 10−2 2.934 × 10−2

23 −9.589 × 10−2 4.280 × 10−2 −2.851 × 10−2 2.509 × 10−2

24 −8.693 × 10−2 3.756 × 10−2 −2.422 × 10−2 2.063 × 10−2

25 −8.213 × 10−2 3.496 × 10−2 −2.220 × 10−2 1.862 × 10−2

26 −7.550 × 10−2 3.142 × 10−2 −1.949 × 10−2 1.597 × 10−2

27 −6.727 × 10−2 2.701 × 10−2 −1.617 × 10−2 1.279 × 10−2

28 −6.224 × 10−2 2.437 × 10−2 −1.422 × 10−2 1.097 × 10−2

29 −5.995 × 10−2 2.298 × 10−2 −1.312 × 10−2 9.896 × 10−3

30 −7.847 × 10−1 3.016 × 100 −1.745 × 101 1.340 × 102
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Table 7. Comparison of 1st-order through 4th-order unmixed relative sensitivities, S(1)
(

σ
g
t,6

)
,

S(2)
(

σ
g
t,6, σ

g
t,6

)
, S(3)

(
σ

g
t,6, σ

g
t,6, σ

g
t,6

)
, S(4)

(
σ

g
t,6, σ

g
t,6, σ

g
t,6, σ

g
t,6

)
, g = 1, . . . , 30, for isotope 6 (1H).

g 1st-Order 2nd-Order 3rd-Order 3rd-Order

1 −8.471 × 10−6 7.636 × 10−7 6.322 × 10−8 1.460 × 10−7

2 −2.060 × 10−5 2.280 × 10−6 4.516 × 10−8 4.956 × 10−7

3 −6.810 × 10−5 9.021 × 10−6 −4.677 × 10−7 2.245 × 10−6

4 −3.932 × 10−4 6.673 × 10−5 −8.758 × 10−6 2.039 × 10−5

5 −2.449 × 10−3 5.549 × 10−4 −1.216 × 10−4 2.142 × 10−4

6 −9.342 × 10−3 2.935 × 10−3 −1.123 × 10−3 1.553 × 10−3

7 −7.589 × 10−2 3.949 × 10−2 −2.690 × 10−2 3.513 × 10−2

8 −9.115 × 10−2 5.604 × 10−2 −4.380 × 10−2 5.536 × 10−2

9 −1.358 × 10−1 1.014 × 10−1 −9.758 × 10−2 1.416 × 10−1

10 −1.659 × 10−1 1.428 × 10−1 −1.604 × 10−1 2.582 × 10−1

11 −1.899 × 10−1 1.849 × 10−1 −2.385 × 10−1 4.233 × 10−1

12 −4.446 × 10−1 6.620 × 10−1 −1.373 × 100 3.815 × 100

13 −5.266 × 10−1 9.782 × 10−1 −2.590 × 100 9.015 × 100

14 −5.772 × 10−1 1.262 × 100 −3.991 × 100 1.650 × 101

15 −5.820 × 10−1 1.391 × 100 −4.581 × 100 2.208 × 101

16 −1.164 × 100 4.460 × 100 −2.530 × 101 1.890 × 102

17 −1.173 × 100 4.853 × 100 −2.991 × 101 2.432 × 102

18 −1.141 × 100 4.828 × 100 −3.049 × 101 2.543 × 102

19 −1.094 × 100 4.619 × 100 −2.913 × 101 2.428 × 102

20 −1.033 × 100 4.284 × 100 −2.655 × 101 2.175 × 102

21 −9.692 × 10−1 3.937 × 100 −2.388 × 101 1.915 × 102

22 −8.917 × 10−1 3.515 × 100 −2.069 × 101 1.609 × 102

23 −8.262 × 10−1 3.177 × 100 −1.823 × 101 1.382 × 102

24 −7.495 × 10−1 2.792 × 100 −1.552 × 101 1.140 × 102

25 −7.087 × 10−1 2.604 × 100 −1.427 × 101 1.033 × 102

26 −6.529 × 10−1 2.349 × 100 −1.260 × 101 8.932 × 101

27 −5.845 × 10−1 2.039 × 100 −1.061 × 101 7.288 × 101

28 −5.474 × 10−1 1.885 × 100 −9.678 × 100 6.565 × 101

29 −5.439 × 10−1 1.891 × 100 −9.800 × 100 6.705 × 101

30 −9.366 × 100 4.296 × 102 −2.966 × 104 2.720 × 106

Table 2 presents a side-by-side comparison of the 4th-order unmixed relative sensitivi-
ties to the corresponding 1st-, 2nd- and 3rd-order ones, for all energy groups g = 1, . . . , 30,
of isotope 1 (239Pu) of the PERP benchmark. Figure 2 further illustrates the comparison
of the absolute values of the 1st-order through 4th-order unmixed relative sensitivities
for isotope 1 (239Pu) of the PERP benchmark. It shows that the number of 4th-order rela-
tive sensitivities that have large absolute values (e.g., greater than 1.0) is far greater than
the number of 1st-order, 2nd-order and 3rd-order relative sensitivities that have values
greater than 1.0 (as highlighted in bold in this table). Furthermore, the values of the
4th-order relative sensitivities are much larger than the corresponding values of the 1st-,
2nd- and 3rd-order unmixed sensitivities. Specifically, for energy groups g = 7, . . . , 26
and g = 29, 30, the values of the 4th-order relative sensitivities are ca. 3−8 times larger
than the corresponding values of the 3rd-order sensitivities, are ca. 12−57 times larger
than the corresponding 2nd-order ones, and are ca. 26−259 times larger than the cor-
responding values of the 1st-order sensitivities. The largest value for the 4th -order un-
mixed relative sensitivity is S(4)

(
σ

g=16
t,1 , σ

g=16
t,1 , σ

g=16
t,1 , σ

g=16
t,1

)
= 202.03, which occurs for

the 16th energy group. By comparison, the largest values for the 1st-, 2nd-, 3rd-order
unmixed relative sensitivities are S(1)

(
σ

g=12
t,1

)
= −1.32, S(2)

(
σ

g=12
t,1 , σ

g=12
t,1

)
= 4.586 and

S(3)
(

σ
g=12
t,1 , σ

g=12
t,1 , σ

g=12
t,1

)
= −23.71, which all occur for the 12th energy group. It is note-

worthy that all of the 1st-order and 3rd-order unmixed relative sensitivities are negative,
while all of the unmixed 2nd-order and 4th-order ones are positive.
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Figure 2. Illustration of the absolute values of the 1st-order through 4th-order unmixed relative sensitivities for isotope 1
(239Pu) of the PERP benchmark.

Tables 3–5 compare the 4th-order unmixed relative sensitivities with the corresponding
1st-, 2nd- and 3rd-order ones, for isotopes 2, 3 and 4 (namely, 240Pu, 69Ga and 71Ga) of
the PERP benchmark, respectively, and all energy groups g = 1, . . . , 30. As can be seen
from these tables, the values for all of the 1st–4th order unmixed relative sensitivities are
very small, i.e., of the order of 10−2 or less. However, for the same energy group of each
isotope, the value of the 1st-order relative sensitivity is generally the largest, followed
by the 2nd-order sensitivity, and then by the 3rd-order sensitivity, while the 4th-order
sensitivity is the smallest. Specifically, as shown in Table 3, for all energy groups (except
for groups 27 and 28) of the isotope 240Pu, the values of the 1st-order relative sensitivities
are ca. 3–30 times greater than the corresponding values of the 2nd-order sensitivities,
ca. 1–2 orders of magnitudes greater than the corresponding values of the 3rd-order
ones and ca. 1–3 orders of magnitudes greater than the corresponding values of the
4th-order ones. Similarly, as shown in Tables 4 and 5, respectively, for all energy groups of
isotopes 69Ga and 71Ga, the values of the 1st-order relative sensitivities are ca. 2–3 orders
of magnitudes greater than the corresponding values of the 2nd-order sensitivities, and
ca. 4–5 orders of magnitudes greater than the corresponding values of the 3rd-order ones,
and ca. 5–12 orders of magnitudes greater than the corresponding values of the 4th-order
ones. All of the 1st- and 3rd-order unmixed relative sensitivities presented in Tables 3–5 are
negative, while all the 2nd-order and 4th-order unmixed relative sensitivities are positive.
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Table 6 presents a comparison among the values of the 1st-, 2nd-, 3rd- and 4th-order
unmixed relative sensitivities for isotope 5 (C). As shown in this table, the sensitivity
values are mostly of the order of 10−1 or 10−2 (or less) for all energy groups, except for
the lowest energy group (g = 30). For each energy group, g = 1, . . . , 29, the 1st-order
relative sensitivities are the largest, followed by the 2nd-order sensitivities, while the
3rd-order and 4th-order sensitivities are the smallest, respectively. Specifically, for these
groups, the absolute values of the 1st-order relative sensitivities are around one order of
magnitude greater than that of the corresponding 2nd-order sensitivities, and the 2nd-
order sensitivities are generally 1 to 3 times greater than the corresponding 3rd-order
ones, while the magnitudes of the 3rd-order sensitivities are close to the correspond-
ing 4th-order ones. However, for the lowest group (g = 30), all the 1st-, 2nd-, 3rd- and
4th-order unmixed relative sensitivities reach their respective largest values, which are
significantly larger than the values in other groups; in particular, the largest 4th-order
unmixed sensitivity S(4)

(
σ

g=30
t,5 , σ

g=30
t,5 , σ

g=30
t,5 , σ

g=30
t,5

)
= 134.02 is the overall largest in the

table, followed by the largest 3rd-order sensitivity S(3)
(

σ
g=30
t,5 , σ

g=30
t,5 , σ

g=30
t,5

)
= −17.45, the

largest 2nd-order sensitivity S(2)
(

σ
g=30
t,5 , σ

g=30
t,5

)
= 3.01, and the largest 1st-order sensitivity

S(1)
(

σ
g=30
t,5

)
= −0.785, respectively.

Table 7 and Figure 3 present a comparison of the values of the unmixed relative sensitivities
for isotope 6 (1H) from 1st-order through 4th-order. As shown in the table and the figure, many
of the relative sensitivities for isotope 6 (1H) have absolute values greater than 1.0, including
6 first-order sensitivities, 17 second-order unmixed sensitivities, 19 third-order unmixed sen-
sitivities, and 19 fourth-order unmixed sensitivities, as highlighted in bold in Table 7. All the
sensitivities for energy groups g = 1, . . . , 11 are relatively small (i.e., of the order of 10−1 or
smaller), but the 1st-order sensitivities are slightly larger (in absolute values) than the correspond-
ing 2nd-, 3rd- and 4th-order ones. For energy groups g = 12, . . . , 29, all of the 4th-order unmixed
relative sensitivities are significantly larger than the corresponding 1st-, 2nd- and 3rd-order ones.
Depending on the specific energy group, the values of the 4th-order relative sensitivity are ca.
2 to 7 times larger than the corresponding 3rd-order ones, ca. 5 to 52 times larger than the values
of the corresponding 2nd-order sensitivities, and ca. 8 to 220 times larger than the values of the
corresponding 1st-order sensitivities. As shown in Table 7, the largest absolute values for the
1st-, 2nd-, 3rd- and 4th-order unmixed relative sensitivities all occur for the lowest-energy group
(g = 30; thermal neutrons), which are significantly larger than the values of the sensitivities
in other energy groups. Notably, the largest 4th-order unmixed relative sensitivity attains a
very large value: S(4)

(
σ

g=30
t,6 , σ

g=30
t,6 , σ

g=30
t,6 , σ

g=30
t,6

)
= 2.720× 106. By comparison, the largest

values for the 1st-, 2nd- and 3rd-order unmixed relative sensitivities are: S(1)
(

σ
g=30
t,6

)
= −9.366,

S(2)
(

σ
g=30
t,6 , σ

g=30
t,6

)
= 4.296× 102 and S(3)

(
σ

g=30
t,6 , σ

g=30
t,6 , σ

g=30
t,6

)
= −2.966× 104, respectively.

In summary, the results in Tables 2–7 indicate that the microscopic total cross sections
of isotopes 1H and 239Pu of the PERP benchmark are the most important parameters
affecting the PERP benchmark’s leakage response since they are involved in all of the
large values (i.e., greater than 1.0) of the 1st-, 2nd-, 3rd- and 4th-order unmixed relative
sensitivities. By comparison, as shown in Tables 3–6, all of the unmixed relative sensitivities
that involve the microscopic total cross sections of isotopes 240Pu, 69Ga, 71Ga and C have
values of the order of 10−2 or less (with one exception, for isotope 5 in energy g = 30).
Moreover, the results in Tables 2 and 7 indicate that, for most energy groups, the values
of the 4th-order unmixed relative sensitivities for isotopes 1H and 239Pu are significantly
larger than the corresponding values of the 1st-, 2nd- and 3rd-order unmixed sensitivities.
In particular, the largest 1st-, 2nd-, 3rd- and 4th-order unmixed sensitivities arise from the
microscopic total cross sections σ

g=12
t,1 and σ

g=16
t,1 of isotope 1 (239Pu), and σ

g=30
t,6 of isotope 6

(1H), respectively. Specifically, for isotope 239Pu, as shown in Table 2, the largest 4th-order
unmixed relative sensitivity attains a value of S(4)

(
σ

g=16
t,1 , σ

g=16
t,1 , σ

g=16
t,1 , σ

g=16
t,1

)
= 202.03,
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which is ca. 8 times larger than the corresponding largest 3rd-order relative sensitivity and
ca. 57 times larger than that of the corresponding largest 2nd-order one, and ca. 259 times
larger than the corresponding largest 1st-order one. Notably, for isotope 1H, as shown in
Table 7, all of the sensitivities have very large values: the largest 4th-order unmixed relative
sensitivity has an extremely large value of S(4)

(
σ

g=30
t,6 , σ

g=30
t,6 , σ

g=30
t,6 , σ

g=30
t,6

)
= 2.720× 106,

which is ca. 90 times larger than the corresponding largest 3rd-order relative sensitivity, and
ca. 6350 times larger than the corresponding largest 2nd-order one, and ca. 291,000 times
larger than the corresponding largest 1st-order relative sensitivity.

Figure 3. Illustration of the absolute values of the 1st-order through 4th-order unmixed relative sensitivities for isotope 6
(1H) of the PERP benchmark.

In summary, the most important parameters among the 180 microscopic total cross
sections of the PERP benchmark are:

(i) the microscopic total cross section for the 12th-energy group (which comprises the
energy interval from 0.823 MeV to 1.35 MeV) and the 16th-energy group (which
comprises the energy interval from 67.6 KeV to 184 KeV) of isotope 239Pu (i.e., σ

g=12
t,1

and σ
g=16
t,1 ); and

(ii) the 30th energy group (which comprises thermalized neutrons in the energy interval
from 1.39 × 10−4 eV to 0.152 eV) of isotope 1H (i.e., σ30

t,6).
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As illustrated in Figure 1 for the histogram plot of the leakage for each energy group
of the PERP benchmark, the largest neutron leakage occurs in group 30, and the 2nd-
largest leakage occurs in group 12. It is therefore not surprising that most of the large
relative sensitivities are related to the 12th-energy group and the 30th energy group.
Furthermore, the 16th-energy group of isotope 239Pu becomes important only for the 4th-
order sensitivities, as the largest 4th-order unmixed sensitivity of isotope 1 (239Pu) is with
respect to the parameter σ

g=16
t,1 .

Notably, the results presented in Tables 2–7 also indicate that the 1st-order and
3rd-order unmixed relative sensitivities are all negative, while the 2nd-order and 4th-
order unmixed relative sensitivities are all positive for all six isotopes contained in the
PERP benchmark.

2.2. Numerical Results for Fourth-Order Mixed Sensitivities Corresponding to the Largest
Third-Order Sensitivities

The total number of fourth-order sensitivities of the PERP leakage response with
respect to the microscopic total cross sections is 1,049,760,000, of which 45,212,895 are
distinct. Although it is by far the most efficient method for computing sensitivities, the
4th-CASAM would still need ca. 11,568 h CPU-time, using a DELL computer (AMD FX-
8350) with an 8-core processor, for obtaining the exact values of all of the distinct 4th-order
sensitivities ∂4L(α)/∂tj4∂tj3∂tj2∂tj1 [13]. Therefore, the computation of these sensitivities
must be prioritized, and the priority order selected in this work is to compute the ones that
are expected to be the largest. Thus, based on the trends indicated by the numerical results
presented in Tables 2–7, it would be expected that the largest 4th-order sensitivities would
be those which correspond to the largest 3rd-order ones. Previous computations [11] of
the third-order sensitivities of the PERP leakage response to the benchmark’s microscopic
total cross sections indicated that the largest 3rd-order unmixed and mixed sensitivities are
S(3)

(
σ

g=30
t,6 , σ

g=30
t,6 , σ

g=30
t,6

)
and S(3)

(
σ

g1=30
t,1 , σ

g2=30
t,6 , σ

g3=30
t,6

)
, respectively. It was also shown

in [11] that the microscopic total cross sections σ
g=30
t,1 and σ30

t,6 for the 30th energy group of
isotopes 239Pu and 1H are the two most important parameters affecting the PERP bench-
mark’s leakage response since they are involved in the largest mixed and unmixed 1st-,
2nd- and 3rd-order sensitivities. Therefore, the 4th-order sensitivities of the PERP leakage
response corresponding to S(3)

(
σ

g=30
t,6 , σ

g=30
t,6 , σ

g=30
t,6

)
and S(3)

(
σ

g1=30
t,1 , σ

g2=30
t,6 , σ

g3=30
t,6

)
have

been computed with the highest priority. The numerical results for the mixed 4th-order
sensitivities corresponding to S(3)

(
σ30

t,6, σ30
t,6, σ30

t,6

)
are reported in Section 2.2.1, while the

numerical results for the 4th-order sensitivities corresponding to the largest 3rd-order
mixed sensitivity, namely S(3)

(
σ30

t,1, σ30
t,6, σ30

t,6

)
, are reported in Section 2.2.2.

2.2.1. Fourth-Order Mixed Sensitivities S(4)
(

σ30
t,6, σ30

t,6, σ30
t,6, σ

g
t,i

)
, i = 1, . . . , 6; g = 1, . . . , 30

Corresponding to the largest unmixed 3rd-order sensitivity S(3)
(

σ30
t,6, σ30

t,6, σ30
t,6

)
, there

are 180 fourth-order mixed sensitivities of the PERP leakage response with respect to the
180 microscopic total cross sections, namely, S(4)

(
σ30

t,6, σ30
t,6, σ30

t,6, σ
g
t,i

)
, i = 1, . . . , 6; g = 1, . . . , 30.

Figure 4 illustrates the numerical results obtained for these 4th-order mixed relative sensi-
tivities by using a distinct symbol and color for each of the isotopes i = 2, . . . , 6.
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As shown in Figure 4, the majority (i.e., 163 out of 180) of the 4th-order mixed relative
sensitivities S(4)

(
σ30

t,6, σ30
t,6, σ30

t,6, σ
g
t,i

)
, i = 1, . . . , 6; g = 1, . . . , 30, have values greater than 1.0.

Generally, the values for S(4)
(

σ30
t,6, σ30

t,6, σ30
t,6, σ

g
t,i=1

)
and S(4)

(
σ30

t,6, σ30
t,6, σ30

t,6, σ
g
t,i=6

)
are among

the largest, followed by the values for S(4)
(

σ30
t,6, σ30

t,6, σ30
t,6, σ

g
t,i=5

)
and S(4)

(
σ30

t,6, σ30
t,6, σ30

t,6, σ
g
t,i=2

)
,

while the values for S(4)
(

σ30
t,6, σ30

t,6, σ30
t,6, σ

g
t,i=3

)
and S(4)

(
σ30

t,6, σ30
t,6, σ30

t,6, σ
g
t,i=4

)
are among the

smallest. This is consistent with the previous observations, which indicated that the mi-
croscopic total cross sections of isotopes 1 (239Pu) and 6 (1H) have a larger impact on the
sensitivities than the microscopic total cross sections of isotopes 2, 3 and 4 (i.e.,240Pu, 69Ga,
and 71Ga). For the highest energy groups, g = 1, . . . , 6, which comprise the energy interval
from 6.07 MeV to 17.0 MeV, the sensitivities S(4)

(
σ30

t,6, σ30
t,6, σ30

t,6, σ
g
t,i=1

)
are the largest among

the sensitivities corresponding to each of the depicted isotopes. For the lower energy
groups g = 7, . . . , 15, which comprise the energy interval from 184.0 KeV to 6.07 MeV, the
values S(4)

(
σ30

t,6, σ30
t,6, σ30

t,6, σ
g
t,i=1

)
are also the largest, followed by S(4)

(
σ30

t,6, σ30
t,6, σ30

t,6, σ
g
t,i=6

)
,

S(4)
(

σ30
t,6, σ30

t,6, σ30
t,6, σ

g
t,i=5

)
and S(4)

(
σ30

t,6, σ30
t,6, σ30

t,6, σ
g
t,i=2

)
, respectively. For energy groups

g = 16, . . . , 30, which comprise the energy interval from 1.39 × 10−4 eV to 184.0 KeV,
the values of S(4)

(
σ30

t,6, σ30
t,6, σ30

t,6, σ
g
t,i=6

)
are the largest, followed by S(4)

(
σ30

t,6, σ30
t,6, σ30

t,6, σ
g
t,i=5

)
,

S(4)
(

σ30
t,6, σ30

t,6, σ30
t,6, σ

g
t,i=1

)
and S(4)

(
σ30

t,6, σ30
t,6, σ30

t,6, σ
g
t,i=2

)
, respectively. Figure 4 also indicates

that among the 180 fourth-order relative sensitivities S(4)
(

σ30
t,6, σ30

t,6, σ30
t,6, σ

g
t,i

)
, i = 1, . . . , 6;

g = 1,. . . ,30, the overall largest value is attained by the unmixed sensitivity
S(4)

(
σ30

t,6, σ30
t,6, σ30

t,6, σ30
t,6

)
= 2.720× 106, which is presented in Section 2.1. The overall largest

mixed 4th-order relative sensitivity is S(4)
(

σ30
t,6, σ30

t,6, σ30
t,6, σ30

t,5

)
= 2.279× 105, which involves

the 30th energy group (thermalized neutrons) of the microscopic total cross sections for
isotopes 6 (1H) and 5 (C).

Figure 4. Numerical results for the 4th-order mixed relative sensitivities S(4)
(

σ30
t,6, σ30

t,6, σ30
t,6, σ

g
t,i

)
, i = 1, . . . , 6; g = 1, . . . , 30.
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2.2.2. Fourth-Order Mixed Sensitivities S(4)
(

σ30
t,1, σ30

t,6, σ30
t,6, σ

g
t,i

)
, i = 1, . . . , 6; g = 1, . . . , 30

The 180 fourth-order mixed sensitivities, S(4)
(

σ30
t,1, σ30

t,6, σ30
t,6, σ

g
t,i

)
, i = 1, . . . , 6; g = 1,. . . ,30,

which correspond to the largest mixed 3rd-order sensitivity S(3)
(

σ30
t,1, σ30

t,6, σ30
t,6

)
, are depicted

in Figure 5.
As shown in Figure 5, the data distributions for S(4)

(
σ30

t,1, σ30
t,6, σ30

t,6, σ
g
t,i

)
, i = 1, . . . , 6;

g = 1, . . . , 30 are very similar to the distributions depicted in Figure 4, except that the mag-
nitudes of the sensitivities for S(4)

(
σ30

t,1, σ30
t,6, σ30

t,6, σ
g
t,i

)
, i = 1, . . . , 6; g = 1, . . . , 30 are ca. two

orders smaller than those for S(4)
(

σ30
t,6, σ30

t,6, σ30
t,6, σ

g
t,i

)
, i = 1, . . . , 6; g = 1, . . . , 30. The major-

ity (i.e., 139 out of 180) of the 4th-order mixed relative sensitivities S(4)
(

σ30
t,1, σ30

t,6, σ30
t,6, σ

g
t,i

)
,

i = 1,. . . ,6; g = 1, . . . , 30 have values greater than 1.0. As in Figure 4, the largest sensitivities are
S(4)

(
σ30

t,1, σ30
t,6, σ30

t,6, σ
g
t,i=1

)
and S(4)

(
σ30

t,1, σ30
t,6, σ30

t,6, σ
g
t,i=6

)
, followed by S(4)

(
σ30

t,1, σ30
t,6, σ30

t,6, σ
g
t,i=5

)
and S(4)

(
σ30

t,1, σ30
t,6, σ30

t,6, σ
g
t,i=2

)
, while the values for S(4)

(
σ30

t,1, σ30
t,6, σ30

t,6, σ
g
t,i=3

)
and

S(4)
(

σ30
t,1, σ30

t,6, σ30
t,6, σ

g
t,i=4

)
are generally the smallest. The overall largest value in

S(4)
(

σ30
t,1, σ30

t,6, σ30
t,6, σ

g
t,i

)
, i = 1, . . . , 6; g = 1, . . . , 30, is attained by

S(4)
(

σ30
t,1, σ30

t,6, σ30
t,6, σ30

t,6

)
= 7.561× 104, which involves the 30th energy group of the mi-

croscopic total cross sections for isotopes 1 (239Pu) and 6 (1H).

Figure 5. Numerical results for the 4th-order mixed relative sensitivities S(4)
(

σ30
t,1, σ30

t,6, σ30
t,6, σ

g
t,i

)
, i = 1, . . . , 6; g = 1, . . . , 30.
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3. Verification of the 4th-Order Mixed Relative Sensitivities

Within the 4th-CASAM, the 2nd-order mixed sensitivities are computed twice, using
two distinct expressions that involve two distinct 2nd-level adjoint functions. Therefore, the
4th-CASAM provides an independent way for verifying the 2nd-order mixed sensitivities
by using their inherent symmetries. In the same way, the 4th-CASAM provides six distinct
expressions, involving four distinct 3rd-level adjoint functions, for the computation of
the 3rd-order mixed sensitivities, so the correctness and accuracy of their computations
(and, therefore, the accuracy of the computations of the underlying adjoint functions)
is inherently assured within the 4th-CASAM by ensuring that each set of symmetric
sensitivities has the same numerical value. Finally, the 4th-CASAM provides 24 distinct
expressions, involving eight distinct 4th-level adjoint functions, for the computation of
the 4th-order mixed sensitivities, so the correctness and accuracy of their computations
are inherently assured within the 4th-CASAM by ensuring that each set of symmetric
sensitivities has the same numerical value, within small round-off errors.

On the other hand, the unmixed sensitivities (of all orders) are computed within
the 4th-CASAM just once since the unmixed sensitivities do not possess symmetries in-
herent in the mixed sensitivities. Thus, the unmixed sensitivities can be verified within
the 4th-CASAM framework only indirectly, since the adjoint functions which enter in
the expressions of the unmixed sensitivities also enter in the expressions of the corre-
sponding mixed ones, so they will have been verified within the intrinsic 4th-CASAM
verification process based on the symmetries of the mixed sensitivities. The only way
to verify the unmixed sensitivities directly and without involving adjoint functions in
their verification process is to compute them approximately by using finite-difference
formulas in conjunction with forward re-calculations and compare the numerical values
obtained using finite-differences with the values produced by the 4th-CASAM. However,
as will be illustrated in Section 4 below, this comparison process is not self-evident since
the values produced by the finite-difference schemes are seldom accurate. Furthermore,
the accuracy of the finite-difference formulas for higher-order derivatives/sensitivities
becomes increasingly more sensitive to the chosen step-size.

3.1. Exact Verification of the 4th-Order Mixed Sensitivities Using the Inherent Symmetries within
the 4th-CASAM

For the 4th-order mixed sensitivities of the leakage response with respect to four
different parameters, there are six sets of symmetrical sensitivities, each set comprising four
symmetrical sensitivities that have the same numerical value. Altogether, the following 24
absolute sensitivities are symmetrical: ∂4L(α)/∂αj1∂αj2∂αj3∂αj4, ∂4L(α)/∂αj1∂αj2∂αj4∂αj3,
∂4L(α)/∂αj1∂αj3∂αj2∂αj4, ∂4L(α)/∂αj1∂αj3∂αj4∂αj2, ∂4L(α)/∂αj1∂αj4∂αj2∂αj3,
∂4L(α)/∂αj1∂αj4∂αj3∂αj2, ∂4L(α)/∂αj2∂αj1∂αj3∂αj4, ∂4L(α)/∂αj2∂αj1∂αj4∂αj3,
∂4L(α)/∂αj2∂αj3∂αj1∂αj4, ∂4L(α)/∂αj2∂αj3∂αj4∂αj1, ∂4L(α)/∂αj2∂αj4∂αj1∂αj3,
∂4L(α)/∂αj2∂αj4∂αj3∂αj1, ∂4L(α)/∂αj3∂αj1∂αj2∂αj4, ∂4L(α)/∂αj3∂αj1∂αj4∂αj2,
∂4L(α)/∂αj3∂αj2∂αj1∂αj4, ∂4L(α)/∂αj3∂αj2∂αj4∂αj1, ∂4L(α)/∂αj4∂αj2∂αj1∂αj3,
∂4L(α)/∂αj4∂αj2∂αj3∂αj1, ∂4L(α)/∂αj4∂αj1∂αj2∂αj3, ∂4L(α)/∂αj4∂αj1∂αj3∂αj2,
∂4L(α)/∂αj4∂αj2∂αj1∂αj3, ∂4L(α)/∂αj4∂αj2∂αj3∂αj1, ∂4L(α)/∂αj4∂αj3∂αj1∂αj2,
∂4L(α)/∂αj4∂αj3∂αj2∂αj1. Each of these 24 sensitivities can be independently computed
using distinct expressions, involving distinct 2nd-, 3rd- and 4th-level adjoint systems and
the corresponding adjoint functions ψ(2)

i (j1; r, Ω), i = 1, 2; ψ(3)
i (j2; j1; r, Ω), i = 1, . . . , 4,

and ψ(4)
i (j3; j2; j1; r, Ω), i = 1, . . . , 8. The numerical values of these 24 mixed sensitivities

can be verified by intercomparisons, thus providing a mutual “solution verification” that
the respective computations were performed correctly.

As an example, corresponding to the overall largest 4th-order mixed relative sensitivity
S(4)

(
σ30

t,6, σ30
t,6, σ30

t,6, σ30
t,5

)
= 2.279× 105, as shown in Figure 4, there are three symmetric ones,

namely: S(4)
(

σ30
t,6, σ30

t,6, σ30
t,5, σ30

t,6

)
= 2.279× 105, S(4)

(
σ30

t,6, σ30
t,5, σ30

t,6, σ30
t,6

)
= 2.279× 105, and
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S(4)
(

σ30
t,5, σ30

t,6, σ30
t,6, σ30

t,6

)
= 2.279× 105. Each of them was solved independently using the

4th-CASAM method, and their values are identical for this example.
As a further illustrative example, consider the largest 4th-order mixed relative sensitiv-

ity depicted in Figure 5, which is the 4th-order mixed sensitivity of the leakage response with
respect to the parameters σ30

t,1, σ30
t,6, σ30

t,6 and σ30
t,6, i.e., S(4)

(
σ30

t,1, σ30
t,6, σ30

t,6, σ30
t,6

)
= 7.561× 104,

which occurs for group 30 of isotope 1 (239Pu) and isotope 6 (1H). Comparing
S(4)

(
σ30

t,1, σ30
t,6, σ30

t,6, σ30
t,6

)
= 7.561× 104 to the corresponding symmetric sensitivities, namely:

S(4)
(

σ30
t,6, σ30

t,1, σ30
t,6, σ30

t,6

)
= 7.556 × 104, S(4)

(
σ30

t,6, σ30
t,6, σ30

t,1, σ30
t,6

)
= 7.556 × 104 and

S(4)
(

σ30
t,6, σ30

t,6, σ30
t,6, σ30

t,1

)
= 7.550× 104, indicates that these sensitivities agree well with each

other. The small numerical differences between these sensitivities stem from small numeri-
cal differences in the numerical values for the forward and various adjoint functions, which
are computed using the PARTISN code [14].

A similar verification was performed for the 4th-order mixed sensitivity
S(4)

(
σ30

t,1, σ30
t,1, σ30

t,6, σ30
t,6

)
= 3.739× 103 of the leakage response with respect to the param-

eters σ30
t,1, σ30

t,1, σ30
t,6 and σ30

t,6. The corresponding symmetric sensitivities are: S(4)(σ30
t,1, σ30

t,6,

σ30
t,6, σ30

t,1) = 3.742 × 103, S(4)
(

σ30
t,1, σ30

t,6, σ30
t,1, σ30

t,6

)
= 3.739 × 103, S(4)(σ30

t,6, σ30
t,1, σ30

t,6,

σ30
t,1) = 3.735× 103 and S(4)

(
σ30

t,6, σ30
t,6, σ30

t,1, σ30
t,1

)
= 3.735× 103, which also agree very well

among each other. These verifications provide confidence in the computations of the sensi-
tivities themselves and also in the numerical computations of the various adjoint functions
which are used for computing efficiently and exactly the corresponding sensitivities.

3.2. Approximate Verification of the 4th-Order Mixed Sensitivities Using Finite-Differences

The well-known finite-difference formula for the 4th-order mixed absolute sensitivities
has the following form:

∂4L(α)
∂αj1∂αj2∂αj3∂αj4

≈ 1
16hj1hj2hj3hj4

(Lj1+1,j2+1,j3+1,j4+1 − Lj1+1,j2+1,j3+1,j4−1

−Lj1+1,j2+1,j3−1,j4+1 + Lj1+1,j2+1,j3−1,j4−1 − Lj1+1,j2−1,j3+1,j4+1 + Lj1+1,j2−1,j3+1,j4−1

+Lj1+1,j2−1,j3−1,j4+1 − Lj1+1,j2−1,j3−1,j4−1 − Lj1−1,j2+1,j3+1,j4+1 + Lj1−1,j2+1,j3+1,j4−1

+Lj1−1,j2+1,j3−1,j4+1 − Lj1−1,j2+1,j3−1,j4−1 + Lj1−1,j2−1,j3+1,j4+1 − Lj1−1,j2−1,j3+1,j4−1

−Lj1−1,j2−1,j3−1,j4+1 + Lj1−1,j2−1,j3−1,j4−1) + O(hj1
2, hj2

2, hj3
2, hj4

2),

(7)

where Lj1+1,j2+1,j3+1,j4+1 , L
(
αj1 + hj1, αj2 + hj2, αj3 + hj3, αj4 + hj4

)
, etc. In general, finite-

difference methods produce only approximate values for the respective derivatives (sen-
sitivities). In particular, the finite-difference formula shown in Equation (7) is subject to
second-order errors. For the verification of ∂4L(α)/∂tj1

(
∂tj2
)3, the general finite-difference

formula for the 4th-order mixed absolute sensitivities given in Equation (7) takes the
following form:

∂4L(α)

∂tj1(∂tj2)
3 ≈ 1

16hj1hj2
3

(
Lj1+1,j2+3 − 3Lj1+1,j2+1 + 3Lj1+1,j2−1 − Lj1+1,j2−3

−Lj1−1,j2+3 + 3Lj1−1,j2+1 − 3Lj1−1,j2−1 +Lj1−1,j2−3
)
,

(8)

where Lj1+1,j2+3 , L
(
tj1 + hj1, tj2 + 3hj2

)
, Lj1−1,j2−3 , L

(
tj1 − hj1, tj2 − 3hj2

)
, etc., and

where hj1 denotes a variation in the parameter tj1 around its nominal value t0
j1 and hj2

denotes a variation in the parameter tj2 around its nominal value t0
j2.
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Two representative 4th-order mixed relative sensitivities were chosen for verification,
as follows:

(i) the largest 4th-order mixed relative sensitivity depicted in Figure 4, i.e., S(4)(σ30
t,6, σ30

t,6,
σ30

t,6, σ30
t,5) = 2.279× 105, for the leakage response with respect to the microscopic total

cross sections for group 30 of isotopes 5 (C) and 6 (1H); and
(ii) the largest 4th-order mixed relative sensitivity depicted in Figure 5, i.e., S(4)(σ30

t,1, σ30
t,6,

σ30
t,6, σ30

t,6) = 7.561× 104, which occurs for group 30 of isotopes 1 (239Pu) and 6 (1H).

The trials using various step sizes (i.e., parameter variations) in the finite differ-
ence formula provided in Equation (8) for the largest sensitivity, i.e., S(4)(σ30

t,6, σ30
t,6, σ30

t,6,
σ30

t,5) = 2.279× 105, are presented in Table 8, below. For the finite difference (FD) method, it
has been noticed that this method for computing the 4th-order sensitivities is extremely
sensitive to the variation of step sizes: when the variations of hj1 and hj2 are too large or
too small, the results produced by Equation (8) will be far off from the exact value obtained
from the 4th-CASAM method.

Table 8. Computations of S(4)
(

σ30
t,6, σ30

t,6, σ30
t,6, σ30

t,5

)
using Equation (8) with various step-sizes.

Step-Size for hj1 Step-Size for hj2
S(4)

(
σ30

t,6,σ30
t,6,σ30

t,6,σ30
t,5

)
FD-Method

FD−4thCASAM
4thCASAM

0.125% × σ
g=30
t,5 0.125% × σ

g=30
t,6 3.066 × 105 34.6%

0.50% ×σ
g=30
t,5 0.25% ×σ

g=30
t,6 2.423 × 105 6.34%

0.50% × σ
g=30
t,5 0.50% × σ

g=30
t,6 2.818 × 105 23.6%

1.00% × σ
g=30
t,5 1.00% × σ

g=30
t,6 6.784 × 105 197%

3.00% × σ
g=30
t,5 1.00% × σ

g=30
t,6 2.124 × 106 832%

>3.0% × σ
g=30
t,5 >2.0% × σ

g=30
t,6 − −

As shown in Table 8, for a 0.125% change in both parameters σ
g=30
t,5 and σ

g=30
t,6 , the

finite difference method causes an error of 34.6% from the exact value of S(4)(σ30
t,6, σ30

t,6, σ30
t,6,

σ30
t,5) = 2.279× 105. The combination of a 0.5% change in σ

g=30
t,5 and a 0.25% change in σ

g=30
t,6

reduces the error to 6.34%, which yields the best trial result, as highlighted with bold num-
bers in the table. However, a 1.0% change in both parameters σ

g=30
t,5 and σ

g=30
t,6 increases the

error to 197%; the combination of a 3.0% change in σ
g=30
t,5 and a 1.0% change in σ

g=30
t,6 further

increases the error to 832%. For any combination of hj1 > 3%× σ30
t,5 and hj2 > 2%× σ30

t,6,
the 4th-order mixed sensitivity cannot be computed using the finite difference formula
provided in Equation (8), because the PARTISN forward computation fails to converge
when computing the last term in Equation (8), namely, Lj1−1,j2−3 , L

(
tj1 − hj1, tj2 − 3hj2

)
.

Table 9 presents the results for the trials using various step sizes in the finite difference
formula provided in Equation (8) for the largest 4th-order mixed relative sensitivity de-
picted in Figure 5, which is S(4)

(
σ30

t,1, σ30
t,6, σ30

t,6, σ30
t,6

)
= 7.561× 104. As shown in Table 9, for a

0.05% change in both parameters σ
g=30
t,1 and σ

g=30
t,6 , the finite difference method causes a very

large error of 5659% by comparison to the exact value S(4)
(

σ30
t,1, σ30

t,6, σ30
t,6, σ30

t,6

)
= 7.561× 104.

A 0.125% change in both parameters σ
g=30
t,1 and σ

g=30
t,6 reduces the error to −0.44%, which

yields the smallest error among the various trails, as highlighted by the bold numbers in
Table 9. The combination of step-sizes hj1 = 0.5%× σ30

t,1 and hj2 = 0.25%× σ30
t,6 yields an

error of−1.10%, which is also very close to the exact value. However, further increasing the
step-sizes for hj1 and hj2 causes the errors to increase. For instance, a 0.5% change in both

parameters σ
g=30
t,1 and σ

g=30
t,6 increases the error to 22.9%; a 1.0% change in both parameters

σ
g=30
t,1 and σ

g=30
t,6 increases the error to−124%; the combination of 3.0% change in σ

g=30
t,1 and

1.0% change in σ
g=30
t,6 increases the error to a very large value of 5204%. Any combination
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of hj1 > 3%× σ30
t,1 and hj2 > 2%× σ30

t,6, causes the PARTISN forward computation of the
last term in Equation (8), Lj1−1,j2−3 , L

(
tj1 − hj1, tj2 − 3hj2

)
, to diverge, so the 4th-order

mixed sensitivity S(4)
(

σ30
t,1, σ30

t,6, σ30
t,6, σ30

t,6

)
cannot be obtained by using the “second-order

accurate” finite difference formula provided in Equation (8).

Table 9. Computations of S(4)
(

σ30
t,1, σ30

t,6, σ30
t,6, σ30

t,6

)
using Equation (8) with various step-sizes.

Step-Size for hj1 Step-Size for hj2
S(4)

(
σ30

t,1,σ30
t,6,σ30

t,6,σ30
t,6

)
FD-Method

FD − 4th CASAM
4th CASAM

0.05% × σ
g=30
t,1 0.05% × σ

g=30
t,6 4.350 × 106 5659%

0.125 × σ
g=30
t,1 0.125 × σ

g=30
t,6 7.521 × 104 −0.44%

0.50% × σ
g=30
t,1 0.25% × σ

g=30
t,6 7.471 × 104 −1.10%

0.50% × σ
g=30
t,1 0.50% × σ

g=30
t,6 9.283 × 104 22.9%

1.00% × σ
g=30
t,1 1.00% × σ

g=30
t,6 −1.835 × 104 −124%

3.00% × σ
g=30
t,1 1.00% × σ

g=30
t,6 4.007 × 106 5204%

>3.0% × σ
g=30
t,1 >2.0% × σ

g=30
t,6 − −

4. Finite-Difference Computations of the 4th-Order Unmixed Relative Sensitivities

As has been discussed in Section 3 above, the unmixed sensitivities do not possess
the symmetries inherent in the mixed sensitivities, so they can be verified within the
4th-CASAM framework only indirectly, via verification of the accuracy of the adjoint
functions which enter in their expressions. The only independent means of verifying the
unmixed sensitivities is to compute them approximately by using finite-difference formulas
in conjunction with forward re-calculations using “judiciously altered” parameter values.
The following finite-difference formula is the simplest formula for computing 4th-order
unmixed sensitivities, being accurate to second-order errors in the step-size hj:

∂4L(α)(
∂αj
)4 ≈

1
hj

4

(
Lj+2 − 4Lj+1 + 6Lj − 4Lj−1 + Lj−2

)
+ O

(
hj

2
)

, j = 1, . . . , TP, (9)

where Lj+2 , L
(
αj + 2hj

)
, Lj+1 , L

(
αj + hj

)
, Lj−1 , L

(
αj − hj

)
, Lj−2 , L

(
αj − 2hj

)
, and

where the value of the variation hj must be chosen by “trial and error” for each parameter
αj.

Two representative 4th-order unmixed relative sensitivities were selected to illustrate
the use of the finite-difference formula provided in Equation (9), namely:

(i) the overall largest 4th-order unmixed relative sensitivity, namely, S(4)(σ
g=30
t,6 , σ

g=30
t,6 ,

σ
g=30
t,6 , σ

g=30
t,6 ) = 2.720× 106, which occurs for group 30 of isotope 6 (1H);

(ii) the largest 4th-order unmixed relative sensitivity shown in Table 2, which is the

sensitivity S(4)
(

σ
g=16
t,1 , σ

g=16
t,1 , σ

g=16
t,1 , σ

g=16
t,1

)
= 2.020 × 102 of the leakage response

with respect to the microscopic total cross section for group 16 of isotope 1 (239Pu).
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For the computation of S(4)
(

σ
g=30
t,6 , σ

g=30
t,6 , σ

g=30
t,6 , σ

g=30
t,6

)
using Equation (9), several

trials were performed using various step-sizes hj, ranging from 0.125% to 2% of σ
g=30
t,6 . The

results of these trials are summarized in Table 10, below.

Table 10. Computations of S(4)
(

σ
g=30
t,6 , σ

g=30
t,6 , σ

g=30
t,6 , σ

g=30
t,6

)
using Equation (9) with various step-sizes.

Step-Size hj
S(4)

(
σ30

t,6, σ30
t,6, σ30

t,6, σ30
t,6

)
FD-Method

FD − 4thCASAM
4thCASAM

0.125% × σ
g=30
t,6 −1.607 × 108 −6010%

0.25% × σ
g=30
t,6 −7.488 × 106 −375%

0.50% × σ
g=30
t,6 2.239 × 106 −17.7%

0.60% ×σ
g=30
t,6 2.708 × 106 −0.45%

0.65% × σ
g=30
t,6 2.838 × 106 4.3%

0.75% × σ
g=30
t,6 3.063 × 106 12.6%

1.00% × σ
g=30
t,6 3.574 × 106 31.4%

2.00% × σ
g=30
t,6 2.171 × 107 698%

>2.5% × σ
g=30
t,6 − −

As shown in Table 10, when using a step-size equal to a 0.125% change in the micro-
scopic total cross section σ

g=30
t,6 , the finite difference method causes an error of ca. −6010%

by comparison to the exact value S(4)
(

σ
g=30
t,6 , σ

g=30
t,6 , σ

g=30
t,6 , σ

g=30
t,6

)
= 2.720× 106 obtained

using the 4th-CASAM method. However, for a 0.5% change in σ
g=30
t,6 , the error is reduced

to −17.7%. The smallest error between the FD-formula and the exact result produced by
the 4th-CASAM were attained using a 0.60% change in σ

g=30
t,6 ; the error was just −0.45%,

as highlighted by the bold numbers in the table. On the other hand, a 1.0% change in σ
g=30
t,6

increased the error to 31.4%, while a 2.0% change in σ
g=30
t,6 further increased the error of the

FD-formula (by comparison to the exact result produced by the 4th-CASAM) to 698%. For
hj > 2.5%× σ30

t,6, the PARTISAN forward re-computation did not converge.
Similarly, Table 11 shows comparisons of the value produced by the 4th-CASAM

for S(4)
(

σ
g=16
t,1 , σ

g=16
t,1 , σ

g=16
t,1 , σ

g=16
t,1

)
versus the values produced for this sensitivity us-

ing the finite difference formula provided in Equation (9). After several trials, it was
found that using the value hj = 3.0% × σ

g=16
t,1 in Equation (9) yields a value of 205.7

for S(4)
(

σ
g=16
t,1 , σ

g=16
t,1 , σ

g=16
t,1 , σ

g=16
t,1

)
, which is the best finite-difference approximation, just

1.8% away from the exact value S(4)
(

σ
g=16
t,1 , σ

g=16
t,1 , σ

g=16
t,1 , σ

g=16
t,1

)
= 202.03 obtained using

the 4th-CASAM method, as highlighted using bold numbers in Table 11. The results
provided in Table 11 also indicate that for a small step size of hj = 0.5%× σ

g=16
t,1 , the value

obtained from the FD-method is ca. −2695% away from the exact value, while for a large
step size of hj = 10%× σ

g=16
t,1 , the FD-method causes a 30.1% error by comparison to the

exact value.
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Table 11. Computations of S(4)
(

σ16
t,1, σ16

t,1, σ16
t,1, σ16

t,1

)
using Equation (9) with various step-sizes.

Step-Size hj
S(4)

(
σ16

t,1, σ16
t,1, σ16

t,1, σ16
t,1

)
FD-Method

FD − 4thCASAM
4thCASAM

0.50% × σ
g=16
t,1 −5.243 × 103 −2695%

1.00% × σ
g=16
t,1 −1.618 × 102 −505%

1.50% × σ
g=16
t,1 8.035 × 101 −60.2%

1.75% × σ
g=16
t,1 1.488 × 102 −26.4%

1.85% × σ
g=16
t,1 1.929 × 102 −4.51%

3.00% ×σ
g=16
t,1 2.057 × 102 1.80%

5.00% × σ
g=16
t,1 2.137 × 102 5.77%

10.0% × σ
g=16
t,1 2.628 × 102 30.1%

5. Comparison of Computational Requirements for the 4th-Order Sensitivities

Using a DELL computer (AMD FX−8350) with an 8-core processor, the CPU-time
for a typical adjoint computation using PARTISN with an angular quadrature of S32 is
ca. 24 s, and the CPU-time for computing the integrals over the various adjoint functions
which appear in the definition of the respective sensitivity in Equation (2) is ca. 0.004 s.
The CPU-time for a typical PARTISN forward computation with an angular quadrature
of S32 is ca. 45 s. Thus, the computational times needed for obtaining all of the distinct
1st-, 2nd-, 3rd- and 4th-order sensitivities of the PERP leakage response with respect to the
180 microscopic total cross sections using the 4th-CASAM are as follows:

(i) To compute the 180 first-order sensitivities, one adjoint PARTISN large-scale com-
putation is needed in order to obtain the 1st-level adjoint function ψ(1)(r, Ω). Thus,
the CPU-time needed is ca. 24 s [for computing ψ(1)] plus ca. 1 s for computing
the integrals over this adjoint function. By comparison, ca. 270 min are needed to
compute these 1st-order sensitivities using the FD-formula.

(ii) To compute the 180(180 + 1)/2 = 16, 290 distinct second-order sensitivities,
180× 2 = 360 adjoint PARTISN large-scale computations are needed to obtain the 2nd-
level adjoint functionsψ(2)

1 (j1; r, Ω) andψ(2)
2 (j1; r, Ω), j1 = 1, . . . , 180. Thus, the CPU-

time needed is ca. 2.4 h [for computingψ(2)
1 (j1; r, Ω) andψ(2)

2 (j1; r, Ω), j = 1, . . . , 180]
plus ca. 3 min for computing the integrals over these adjoint functions. By comparison,
ca. 810 h are needed to compute these 2nd-order sensitivities using the FD-formula.

(iii) To compute the 180(180 + 1)(180 + 2)/3! = 988, 260 distinct third-order sensitivities,
32,940 adjoint PARTISN large-scale computations are needed to obtain the 3rd-level
adjoint functions ψ(3)

i (j1; j2; r, Ω), i = 1, . . . , 4; j1, j2 = 1, . . . , 180. Thus, the CPU-time

needed is ca. 220 h [for computing ψ(3)
i (j1; j2; r, Ω), i = 1, . . . , 4; j1, j2 = 1, . . . , 180]

plus ca. 0.6 h for computing the integrals over these adjoint functions. By comparison,
98,817 h are needed to compute these 3rd-order sensitivities using the FD-formula.

(iv) To compute the 180(180 + 1)(180 + 2)(180 + 3)/4! = 45, 212, 985 distinct fourth-
order sensitivities, 2,042,040 adjoint PARTISN large-scale computations are needed to
obtain the 4th-level adjoint functions ψ

(4)
i (j1; j2; j3; r, Ω), i = 1, . . . , 8; j1, j2,

j3 = 1, . . . , 180. Thus, the CPU-time needed is ca. 25,525 h [for computing ψ(4)
i

(j1; j2; j3; r, Ω), i = 1, . . . , 8; j1, j2, j3 = 1, . . . , 180] plus ca. 50 h for computing the
integrals over these adjoint functions. By comparison, ca. 1015 years are needed to
compute these 4th-order sensitivities using the FD-formula.
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6. Conclusions

By applying the 4th-CASAM expression developed in [13], this work has presented the
numerical results for the most important 4th-order sensitivities of the PERP benchmark’s
leakage response with respect to the benchmark’s microscopic group total cross sections,
including 180 4th-order unmixed sensitivities and 360 4th-order mixed sensitivities corre-
sponding to the largest 3rd-order sensitivities. The magnitudes of the 4th-order sensitivities
were compared with the corresponding 1st-, 2nd- and 3rd-order ones. In addition, the
numerical results obtained for the 4th-order sensitivities were independently verified with
the values obtained using the 4th-order finite difference method, as well as with the values
of the corresponding symmetric sensitivities. The following conclusions can be drawn
from the results reported in this work:

(1) The number of 4th-order unmixed relative sensitivities that have large values (e.g.,
greater than 1.0) is far greater than the number of large 1st-, 2nd- and 3rd-order
sensitivities. The majority of the large sensitivities involve the isotopes 1H and 239Pu
of the PERP benchmark, as shown in Tables 2 and 7.

(2) All of the important 4th-order relative sensitivities of the PERP leakage response with
respect to the microscopic total cross sections have positive values. By comparison,
all of the important 1st-order and 3rd-order relative sensitivities have negative values,
while all of the important 2nd-order relative sensitivities have positive values.

(3) For most energy groups for isotopes 1H and 239Pu, the values of the 4th-order unmixed
relative sensitivities are significantly larger than the corresponding values of the 1st-,
2nd- and 3rd-order unmixed sensitivities. The overall largest 4th-order unmixed
relative sensitivity is S(4)

(
σ

g=30
t,6 , σ

g=30
t,6 , σ

g=30
t,6 , σ

g=30
t,6

)
= 2.720× 106, which is around

291,000 times, 6350 times and 90 times larger than the corresponding largest 1st-order,
2nd-order and 3rd-order sensitivities, respectively.

(4) All of the 1st-order through 4th-order unmixed relative sensitivities that involve the
microscopic total cross sections of isotopes 240Pu, 69Ga, 71Ga and C have values of the
order of 10−2 or less (except for isotope C at g = 30). For each of these isotopes, within
the same energy group, the value of the 1st-order relative sensitivity is generally the
largest, followed by the 2nd-order and 3rd-order sensitivities, while the 4th-order
sensitivity is the smallest.

(5) The majority of the 180 4th-order mixed relative sensitivities S(4)
(

σ30
t,6, σ30

t,6, σ30
t,6, σ

g
t,i

)
,

i = 1, . . . , 6; g = 1, . . . , 30, which correspond to the largest unmixed 3rd-order
sensitivity S(3)

(
σ30

t,6, σ30
t,6, σ30

t,6

)
, have values greater than 1.0. Moreover, the mixed

sensitivities S(4)
(

σ30
t,6, σ30

t,6, σ30
t,6, σ

g
t,i=1

)
and S(4)

(
σ30

t,6, σ30
t,6, σ30

t,6, σ
g
t,i=6

)
, which involve the

microscopic total cross sections of isotopes 1 (239Pu) and 6 (1H), are larger than those
involving the microscopic total cross sections of isotopes 2, 3 and 4 (i.e.,240Pu, 69Ga,
and 71Ga).

(6) The overall largest mixed 4th-order relative sensitivity is S(4)
(

σ30
t,6, σ30

t,6, σ30
t,6, σ30

t,5

)
=

2.279 × 105, involving the microscopic total cross sections for isotope 6 (1H) and
isotope 5 (C) in the 30th energy (thermalized neutrons) group. The sensitivity
S(4)

(
σ30

t,6, σ30
t,6, σ30

t,6, σ30
t,5

)
= 2.279× 105 is much larger than the largest 2nd-order and

3rd-order mixed sensitivities.
(7) The numerical results obtained using the 4th-CASAM for the sensitivities ∂4L(α)/

(
∂αj
)4

and ∂4L(α)/∂αj1∂αj2∂αj3∂αj4 have been compared with the results obtained for these
quantities by using finite difference formulas that were accurate to the second-order in
the respective step-size(s). The finite-difference formulas turned out to be extremely
sensitive to the step-size: when the step-sizes were too large or too small, the results
produced by the finite-difference formulas were far off from the exact values of
the derivatives ∂4L(α)/

(
∂αj
)4 and ∂4L(α)/∂αj1∂αj2∂αj3∂αj4. This finding further

highlights the importance of the 4th-CASAM framework for computing accurately
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and efficiently the 1st-, 2nd-, 3rd-, and 4th-order sensitivities of model responses with
respect to model parameters.

Subsequent work [17] will use the 4th-order sensitivity results obtained in this work
to perform a 4th-order uncertainty analysis of the PERP benchmark’s leakage response.
The impact of the 4th-order sensitivities on the PERP leakage response’s expected value
and variance will be compared [17] to the corresponding impact stemming from the
corresponding 1st-, 2nd- and 3rd-order sensitivities.

The formulas presented in this work for computing the 4th-order sensitivities of the
leakage response to the benchmark’s cross sections, along with the formulas presented
in [3–13] for computing the 1st-, 2nd- and 3rd-order sensitivities of the PERP benchmark
to cross sections can be implemented in both deterministic and Monte-Carlo codes for
solving the neutron transport equations. These formulas could be used for sensitivity
analysis of reaction-rate responses in subcritical reactors and for subsequent quantification
of uncertainties induced in such responses by the uncertainties in the underlying cross
sections. The 4th-order sensitivity analysis methodology used to produce the results pre-
sented in this work, along with the previous sensitivity analysis results reported in [3–13],
cannot be obtained by any other methods. The computational times that would be required
even by simple-minded finite-difference schemes have been shown to be prohibitive for
problems involving as many parameters (21,976) as involved in the PERP benchmark.
Statistical methods, e.g., based on Latin hypercubes and/or Monte-Carlo, simply cannot
produce the results obtained by applying the 4th-order adjoint sensitivity analysis method
for large-scale systems, since statistical methods require order-of-magnitude more compu-
tations than the simple finite-difference schemes (which already need inordinate amounts
of CPU-time). While statistical (e.g., Latin hypercube and/or Monte-Carlo) methods will
always produce “numbers,” the adjoint sensitivity analysis method (e.g., 4th-CASAM)
is the only way to verify that the numbers produced by these methods are correct. To
summarize: the adjoint sensitivity analysis method can produce high-order sensitivities for
responses in large-scale problems and can also verify results produced by statistical (e.g.,
Latin hypercube and/or Monte-Carlo) methods, but not the other way around.
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Appendix A. Mathematical Expression for Computing the 4th-Order Sensitivities

The mathematical expression of the 4th-order mixed sensitivities ∂4L(α)/∂tj1∂tj2∂tj3∂tj4,
j1 = 1, . . . JTX; j2 = 1, . . . j1; j3 = 1, . . . j2; j4 = 1, . . . , j3, of the PERP leakage re-
sponse with respect to the group-averaged microscopic total cross sections are provided
in Equation (2), but the detailed expressions of the terms which appear in this expression
were not provided there since such details were not essential at that point. For the sake of
completeness, however, the expressions of the various terms which appear in Equation (2)
are provided below:〈

ψ
(4)
1 (j3; j2; j1; r, Ω), S(j4;α)ϕ(r, Ω)

〉
(1)

= Ni4
G
∑

g=1

∫
dV
∫

4π

dΩ δg,g4ψ
(4),g
1 (j3; j2; j1; r, Ω) ϕg(r, Ω),

(A1)



J. Nucl. Eng. 2021, 2 305

〈
ψ

(4)
2 (j3; j2; j1; r, Ω), S(j4;α)ψ(1)(r, Ω)

〉
(1)

= Ni4
G
∑

g=1

∫
dV
∫

4π

dΩ δg,g4ψ
(4),g
2 (j3; j2; j1; r, Ω) ψ(1),g(r, Ω),

(A2)

〈
ψ

(4)
3 (j3; j2; j1; r, Ω), S(j4;α)ψ(2)

1 (j1; r, Ω)
〉
(1)

= Ni4
G
∑

g=1

∫
dV
∫

4π

dΩ δg, g4ψ
(4),g
3 (j3; j2; j1; r, Ω) ψ

(2),g
1 (j1; r, Ω),

(A3)

〈
ψ

(4)
4 (j3; j2; j1; r, Ω), S(j4;α)ψ(2)

2 (j1; r, Ω)
〉
(1)

= Ni4
G
∑

g=1

∫
dV
∫

4π

dΩ δg,g4ψ
(4),g
4 (j3; j2; j1; r, Ω) ψ

(2),g
2 (j1; r, Ω),

(A4)

〈
ψ

(4)
5 (j3; j2; j1; r, Ω), S(j4;α)ψ(3)

1 (j2; j1; r, Ω)
〉
(1)

= Ni4
G
∑

g=1

∫
dV
∫

4π

dΩ δg,g4ψ
(4),g
5 (j3; j2; j1; r, Ω) ψ

(3),g
1 (j2; j1; r, Ω),

(A5)

〈
ψ

(4)
6 (j3; j2; j1; r, Ω), S(j4;α)ψ(3)

2 (j2; j1; r, Ω)
〉
(1)

= Ni4
G
∑

g=1

∫
dV
∫

4π

dΩ δg,g4ψ
(4),g
6 (j3; j2; j1; r, Ω) ψ

(3),g
2 (j2; j1; r, Ω),

(A6)

〈
ψ

(4)
7 (j3; j2; j1; r, Ω), S(j4;α)ψ(3)

3 (j2; j1; r, Ω)
〉
(1)

= Ni4
G
∑

g=1

∫
dV
∫

4π

dΩ δg,g4ψ
(4),g
7 (j3; j2; j1; r, Ω) ψ

(3),g
3 (j2; j1; r, Ω),

(A7)

〈
ψ

(4)
8 (j3; j2; j1; r, Ω), S(j4;α)ψ(3)

4 (j2; j1; r, Ω)
〉
(1)

= Ni4
G
∑

g=1

∫
dV
∫

4π

dΩ δg,g4ψ
(4),g
8 (j3; j2; j1; r, Ω) ψ

(3),g
4 (j2; j1; r, Ω).

(A8)

The forward multigroup neutron fluxes ϕg(r, Ω) are the solutions [4,13] of the follow-
ing multigroup transport equation with a spontaneous fission source:

Bg(α)ϕg(r, Ω) = Qg(r), g = 1, . . . , G, (A9)

ϕg(rd, Ω) = 0, Ω · n < 0, g = 1, . . . , G, (A10)

where rd is the radius of the PERP sphere, and where:

Bg(α)ϕg(r, Ω) , Ω·∇ϕg(r, Ω) + Σg
t (α; r) ϕg(r, Ω)

−
G
∑

g′=1

∫
4π

dΩ
′
ϕg′
(

r, Ω
′
)[

Σg′→g
s

(
α; r, Ω

′ → Ω
)
+ χg(α; r)(νΣ)g′

f (α; r)
]

, (A11)

Qg(r) ,
N f

∑
k=1

λk Nk,1FSF
k νSF

k

(
2√

πak
3bk

e−
akbk

4

)∫ Eg

Eg+1
dE e−E/ak sinh

√
bkE. (A12)
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The multigroup adjoint fluxes ψ(1),g(r, Ω) are the solutions of the following 1st-Level
Adjoint Sensitivity System (1st-LASS), which was solved in [4]:

Ag(α)ψ(1),g(r, Ω) = Ω · nδ(r− rd), g = 1, . . . , G, (A13)

ψ(1),g(rd, Ω) = 0, Ω · n > 0, g = 1, . . . , G. (A14)

The 2nd-level adjoint fluxes ψ(2),g
1 (j1; r, Ω) and ψ(2),g

2 (j1; r, Ω), j1 = 1, . . . , JTX;
g = 1, . . . , G are the solutions of the following 2nd-Level Adjoint Sensitivity System
(2nd-LASS), which were solved in [4]:

Ag(α)ψ
(2),g
1 (j1; r, Ω) = −δg,g1Ni1ψ

(1),g(r, Ω), j1 = 1, . . . , JTX; g = 1, . . . , G, (A15)

ψ
(2),g
1 (j1; rd, Ω) = 0, Ω · n > 0; j1 = 1, . . . , JTX; g = 1, . . . , G, (A16)

Bg(α)ψ
(2),g
2 (j1; r, Ω) = −δg,g1Ni1ϕ

g(r,Ω), j1 = 1, . . . , JTX; g = 1, . . . , G, (A17)

ψ
(2),g
2 (j1; rd, Ω) = 0, Ω · n < 0; j1 = 1, . . . , JTX; g = 1, . . . , G. (A18)

The 3rd-level adjoint fluxes ψ(3),g
1 (j1, j2; r, Ω), ψ(3),g

2 (j1, j2; r, Ω), ψ(3),g
3 (j1, j2; r, Ω)

and ψ(3),g
4 (j1, j2; r, Ω) are the solutions of the following 3rd-Level Adjoint Sensitivity

System (3rd-LASS), which was derived in [10]:

Ag(α) ψ
(3),g
1 (j1, j2; r, Ω) = −

[
δg,g2Ni2ψ

(2),g
1 (j1; r, Ω) + δg,g1Ni1ψ

(3),g
4 (j1, j2; r, Ω)

]
, (A19)

ψ
(3),g
1 (j1, j2; rd, Ω) = 0, Ω · n > 0, j1 = 1, . . . , JTX, ; j2 = 1, . . . , j1, (A20)

Bg(α)ψ
(3),g
2 (j1, j2; r, Ω) = −

[
δg,g2Ni2ψ

(2),g
2 (j1; r, Ω) + δg,g1Ni1ψ

(3),g
3 (j1, j2; r, Ω)

]
, (A21)

ψ
(3),g
2 (j1, j2; rd, Ω) = 0, Ω · n < 0, j1 = 1, . . . , JTX; j2 = 1, . . . , j1, (A22)

Bg(α)ψ
(3),g
3 (j1, j2; r, Ω) = −δg,g2Ni2ϕ

g(r, Ω), (A23)

ψ
(3),g
3 (j1, j2; rd, Ω) = 0, Ω · n < 0, j1 = 1, . . . , JTX; j2 = 1, . . . , j1, (A24)

Ag(α)ψ
(3),g
4 (j1, j2; r, Ω) = −δg,g2Ni2ψ

(1),g(r, Ω), (A25)

ψ
(3),g
4 (j1, j2; rd, Ω) = 0, Ω · n > 0, j1 = 1, . . . , JTX; j2 = 1, . . . , j1. (A26)

The 4th-level adjoint fluxes ψ(4),g
i (j3, j2, j1; r, Ω), i = 1, . . . , 8 are the solutions of the

following 4th-Level Adjoint Sensitivity System [13]:

Bg(α)ψ
(4),g
5 (j3, j2, j1; r, Ω) = −δg,g3Ni3ϕ

g(r, Ω), (A27)

ψ
(4),g
5 (j3, j2, j1; rd, Ω) = 0, Ω · n < 0, j1 = 1, . . . , JTX; j2 = 1, . . . , j1; j3 = 1, . . . , j2, (A28)

Ag(α)ψ
(4),g
6 (j3, j2, j1; r, Ω) = −δg,g3Ni3ψ

(1),g(r, Ω), (A29)

ψ
(4),g
6 (j3, j2, j1; rd, Ω) = 0, Ω · n > 0, j1 = 1, . . . , JTX; j2 = 1, . . . , j1; j3 = 1, . . . , j2, (A30)

Ag(α)ψ
(4),g
7 (j3, j2, j1; r, Ω) = −δg,g1Ni1ψ

(4),g
6 (j3, j2, j1; r, Ω) + δg,g3Ni3ψ

(2),g
1 (j1; r, Ω), (A31)

ψ
(4),g
7 (j3, j2, j1; rd, Ω) = 0, Ω · n > 0, j1 = 1, . . . , JTX; j2 = 1, . . . , j1; j3 = 1, . . . , j2, (A32)

Bg(α)ψ
(4),g
8 (j3, j2, j1; r, Ω) = −δg,g1Ni1ψ

(4),g
5 (j3, j2, j1; r, Ω)− δg,g3Ni3ψ

(2),g
2 (j1; r, Ω), (A33)

ψ
(4),g
8 (j3, j2, j1; rd, Ω) = 0, Ω · n < 0, j1 = 1, . . . , JTX; j2 = 1, . . . , j1; j3 = 1, . . . , j2, (A34)
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Bg(α)ψ
(4),g
3 (j3, j2, j1; r, Ω) = −δg,g2Ni2ψ

(4),g
5 (j3, j2, j1; r, Ω)− δg,g3Ni3ψ

(3),g
3 (j2, j1; r, Ω), (A35)

ψ
(4),g
3 (j3, j2, j1; rd, Ω) = 0, Ω · n < 0, j1 = 1, . . . , JTX; j2 = 1, . . . , j1; j3 = 1, . . . , j2, (A36)

Ag(α)ψ
(4),g
4 (j3, j2, j1; r, Ω) = −δg,g2Ni2ψ

(4),g
6 (j3, j2, j1; r, Ω)− δg,g3Ni3ψ

(3),g
4 (j2, j1; r, Ω), (A37)

ψ
(4),g
4 (j3, j2, j1; rd, Ω) = 0, Ω · n > 0, j1 = 1, . . . , JTX; j2 = 1, . . . , j1; j3 = 1, . . . , j2, (A38)

Ag(α)ψ
(4),g
1 (j3, j2, j1; r, Ω) = −δg,g1Ni1ψ

(4),g
4 (j3, j2, j1; r, Ω) − δg,g2Ni2ψ

(4),g
7 (j3, j2, j1; r, Ω)

−δg,g3Ni3ψ
(3),g
1 (j2, j1; r, Ω),

(A39)

ψ
(4),g
1 (j3, j2, j1; rd, Ω) = 0, Ω · n > 0, j1 = 1, . . . , JTX; j2 = 1, . . . , j1; j3 = 1, . . . , j2, (A40)

Bg(α)ψ
(4),g
2 (j3, j2, j1; r, Ω) = −δg,g1Ni1ψ

(4),g
3 (j3, j2, j1; r, Ω) − δg,g2Ni2ψ

(4),g
8 (j3, j2, j1; r, Ω)

−δg,g3Ni3ψ
(3),g
2 (j2, j1; r, Ω),

(A41)

ψ
(4),g
2 (j3, j2, j1; rd, Ω) = 0, Ω · n < 0, j1 = 1, . . . , JTX; j2 = 1, . . . , j1; j3 = 1, . . . , j2. (A42)
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