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Abstract: This work quantifies the impact of the most important 4th-order sensitivities of the leakage
response of a polyethylene-reflected plutonium (PERP) reactor physics benchmark with respect to
the benchmark’s 180 group-averaged microscopic total cross sections, on the expected value, variance
and skewness of the benchmark’s leakage response. This work shows that, as the standard deviations
of the cross sections increase, the contributions of the 4th-order sensitivities to the response’s expected
value and variance become significantly larger than the corresponding contributions stemming from
the 1st-, 2nd- and 3rd-order sensitivities. Considering a uniform 5% relative standard deviation for all
microscopic total cross sections, the contributions from the 4th-order sensitivities to the expected value
and variance of the PERP leakage response amount to 56% and 52%, respectively. Considering 10%
uniform relative standard deviations for the microscopic total cross sections, the contributions from
the 4th-order sensitivities to the expected value increase to nearly 90%. Consequently, if the computed
value L(a) were considered to represent the actual expected value of the leakage response and the
4th-order sensitivities were neglected, the computed value would represent the actual expected value
with an error of 3400%. Furthermore, uniform relative standard deviations of 5% and larger (10%)
for the microscopic total cross sections cause the higher-order sensitivities to contribute increasingly
higher amounts to the response standard deviation: the contributions stemming from the 4th-order
sensitivities are larger than the contributions stemming from the 3rd-order sensitivities, which in turn
are larger than those stemming from the 2nd-order sensitivities, which are themselves larger than the
contributions stemming from the 1st-order sensitivities. This finding evidently underscores the need
for computing sensitivities of order higher than first-order. The results obtained in this work also
indicate that the 4th-order sensitivities produce a positive response skewness, causing the leakage
response distribution to be skewed towards the positive direction from its expected value. Increasing
the parameter standard deviations tends to decrease the value of the response skewness, causing
the leakage response distribution to become more symmetrical about the mean value. The results
presented in this work highlight the finding that the microscopic total cross section for hydrogen
(H) in the lowest (“thermal”) energy group is the single most important parameter among the 180
microscopic total cross sections of the PERP benchmark, as it contributes most to the various response
moments.

Keywords: 1st-order uncertainty; 2nd-order uncertainty; 3rd-order uncertainty; 4th-order uncer-
tainty; higher order uncertainty analysis; total leakage response; microscopic total cross sections;
response moments

1. Introduction

The previous works [1,2] on 2nd-order and 3rd-order uncertainty analysis for a
polyethylene-reflected plutonium (PERP) OECD/NEA reactor physics benchmark [3]
revealed that the uncertainties stemming from the 3rd-order sensitivities of the bench-
mark’s leakage response with respect to the total cross sections are significantly larger than

J. Nucl. Eng. 2022, 3, 1–16. https://doi.org/10.3390/jne3010001 https://www.mdpi.com/journal/jne

https://doi.org/10.3390/jne3010001
https://doi.org/10.3390/jne3010001
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jne
https://www.mdpi.com
https://orcid.org/0000-0002-1445-8325
https://orcid.org/0000-0001-5417-5701
https://doi.org/10.3390/jne3010001
https://www.mdpi.com/journal/jne
https://www.mdpi.com/article/10.3390/jne3010001?type=check_update&version=2


J. Nucl. Eng. 2022, 3 2

the uncertainties stemming from the 2nd-order sensitivities, which, in turn, were larger
than the uncertainties stemming from the 1st-order sensitivities. These results indicate
that a Taylor series expansion of the leakage response up to 3rd-order sensitivities to the
total cross sections may be an inadequately accurate representation of the leakage response
distribution, which implies that the contributions stemming from 4th-order sensitivities
would also need to be quantified in order to assess their relative importance in contributing
to the overall uncertainties induced in the leakage response. These 4th-order contributions
have now been quantified and their impact on the expectation, variance and skewness of
the PERP benchmark’s leakage response are reported in this work.

The accompanying work [4], which is designated as Part I, has reported the exact
computation of the most important 4th-order sensitivities of the PERP benchmark’s total
leakage response with respect to the benchmark’s 180 group-averaged microscopic total
cross sections. The 4th-order sensitivities obtained in [4] are used in this work to compute
the contributions of the 4th-order terms, and compare their impact on the leakage response’s
expected value, variance and skewness with the corresponding impact stemming from the
1st-, 2nd- and 3rd-order sensitivities.

This work is organized as follows: Section 2 presents the various expressions used
for the 4th-order uncertainty analysis of the leakage response for the PERP benchmark.
Section 3 presents the numerical results for the 4th-order uncertainty analysis and compares
the 4th-order sensitivity contributions with the contributions from the corresponding 1st-,
2nd- and 3rd-order sensitivities. Section 4 discusses the key findings obtained in this work.

2. Expressions Used in the Fourth-Order Uncertainty Analysis of the PERP Leakage
Response

The expressions for computing the expectation, variance and skewness of a response,
up to and including the 4th-order sensitivities, are provided in Appendix A. The first six
moments of the unknown multivariate distribution pt(t) of the microscopic total cross
sections (which are the model parameters considered in this work) are used in these
expressions; these moments are formally defined as follows:

1. The expected value of a model parameter tj1, denoted as t0
j1, is defined as follows:

t0
j1 ,

〈
tj1
〉

t ,
∫
Dt

tj1 pt(t)dt, j1 = 1, . . . , JTX. (1)

The expected values t0
j1 are considered to be the components of the following vector of

mean (expected) values:

t0 ,
(

t0
1, . . . , t0

JTX

)†
(2)

2. The covariance, cov
(
tj1, tj2

)
, of two parameters, tj1 and tj2, is defined as follows:

µ2
(
tj1, tj2

)
, cov

(
tj1, tj2

)
,
〈(

tj1 − t0
j1

)(
tj2 − t0

j2

)〉
t
, j1, j2 = 1, . . . , JTX. (3)

The variance, var
(
tj1
)
, of a parameter tj1, is defined as follows:

var
(
tj1
)
,
〈(

tj1 − t0
j1

)2
〉

t
, j1 = 1, . . . , JTX. (4)

The standard deviation, σj1, of parameter tj1, is defined as follows: σj1 ,
√

var(tj1);
the correlation, ρj1j2, between two parameters tj1 and tj2, is defined as follows:

ρj1j2 , cov
(
tj1, tj2

)
/
(
σj1σj2

)
, j1, j2 = 1, . . . , JTX. (5)
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3. The third-order moment (skewness), µ3
(
tj1, tj2, tj3

)
, and the associated third-order

correlation, τj1j2j3, among three parameters are defined as follows:

µ3
(
tj1, tj2, tj3

)
,
〈(

tj1 − t0
j1

)(
tj2 − t0

j2

)(
tj3 − t0

j3

)〉
t
, τj1j2j3σj1σj2σj3, j1, j2, j3 = 1, . . . , JTX. (6)

4. The fourth-order moment (kurtosis), µ4
(
tj1, tj2, tj3, tj4

)
, and the associated fourth-

order correlation, qj1j2j3j4, among four parameters, are defined as follows:

µ4
(
tj1, tj2, tj3, tj4

)
,
〈(

tj1 − t0
j1

)(
tj2 − t0

j2

)(
tj3 − t0

j3

)(
tj4 − t0

j4

)〉
t

, qj1j2j3j4σj1σj2σj3σj4, j1, j2, j3, j4 = 1, . . . , JTX.
(7)

5. The fifth-order moment, µ5
(
tj1, tj2, tj3, tj4, tj5

)
, and the associated fifth-order correla-

tion, pj1j2j3j4j5, among five parameters are defined as follows:

µ5
(
tj1, tj2, tj3, tj4, tj5

)
,
〈(

tj1 − t0
j1

)(
tj2 − t0

j2

)(
tj3 − t0

j3

)(
tj4 − t0

j4

)(
tj5 − t0

j5

)〉
t

, pj1j2j3j4j5σj1σj2σj3σj4σj5, j1, j2, j3, j4, j5 = 1, . . . , JTX.
(8)

6. The sixth-order parameter moment, µ6
(
tj1, tj2, tj3, tj4, tj5, tj6

)
, and the associated sixth-

order correlation, sj1j2j3j4j5j6, among six parameters are defined as follows:

µ6
(
tj1, tj2, tj3, tj4, tj5, tj6

)
,
〈(

tj1 − t0
j1

)(
tj2 − t0

j2

)(
tj3 − t0

j3

)(
tj4 − t0

j4

)(
tj5 − t0

j5

)(
tj6 − t0

j6

)〉
t

, sj1j2j3j4j5j6σj1σj2σj3σj4σj5σj6, j1, j2, j3, j4, j5, j6 = 1, . . . , JTX.

(9)

Only the mean (nominal) values are actually known for the group-averaged micro-
scopic total cross sections involved in the computation of the PERP benchmark leakage
response. As has been discussed in [1,2] for the 2nd-order and 3rd-order uncertainty
analyses of the leakage response of the PERP benchmark, the second-order moments (i.e.,
the standard deviations and correlations) for the group-averaged microscopic total cross
sections are unavailable for this benchmark. Therefore, the effects on the uncertainties in
the leakage response which would stem from the actual correlations among the group-
averaged microscopic total cross sections cannot be exactly quantified [1,2]. When only
nominal (mean values) and assumed standard deviations are available, the maximum
entropy principle ensures that the least biased distribution that can be assumed for the
respective parameters (in the present case: the group-averaged microscopic total cross
sections) is the uncorrelated multivariate normal distribution. For uncorrelated normally
distributed parameters, the following relations hold:

qj1j2j3j4 = ρj1j2ρj3j4 + ρj1j3ρj2j4 + ρj1j4ρj2j3, (10)

µ2
(
tj1, tj2

)
= δj1j2ρj1j2σj1σj2 = σj1

2, (11)

µ3
(
tj1, tj2, tj3

)
= 0, (12)

µ4
(
tj1, tj2, tj3, tj4

)
=
(
δj1j2δj3j4 + δj1j3δj2j4 + δj1j4δj2j3

)
σj1σj2σj3σj4, (13)

µ5
(
tj1, tj2, tj3, tj4, tj5

)
= 0, (14)

µ6
(
tj1, tj2, tj3, tj4, tj5, tj6

)
= 15σj1

4, i f tj1 = tj2 = tj3 = tj4 = tj5 = tj6. (15)

For uncorrelated and normally-distributed microscopic total cross sections, the ex-
pected value of the leakage response takes the following particular expression:

[E(L)](U,N)
t = L

(
α0
)
+ [E(L)](2,U,N)

t + [E(L)](3,U,N)
t + [E(L)](4,U,N)

t , (16)
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where the superscript “U,N” indicates contributions from uncorrelated and normally-
distributed parameters, the subscript t indicates group-averaged microscopic “total” cross
section. In Equation (16), the quantity L

(
α0) represents the leakage response computed

using the expected cross section values, and [E(L)](2,U,N)
t , [E(L)](3,U,N)

t and [E(L)](4,U,N)
t

are the contributions from the 2nd-order, 3rd-order and 4th-order response sensitivities,
respectively, which are defined as follows:

[E(L)](2,U,N)
t =

1
2

JTX

∑
j1=1

∂2L(α)
∂2tj1

σj1
2, JTX = G × I = 180; (17)

[E(L)](3,U,N)
t =

1
6

JTX

∑
j1=1

JTX

∑
j2=1

JTX

∑
j3=1

∂3L(α)
∂tj1∂tj2∂tj3

µ3
(
tj1, tj2, tj3

)
= 0, JTX = G × I = 180; (18)

[E(L)](4,U,N)
t = 1

4!

JTX
∑

j1=1

JTX
∑

j2=1

JTX
∑

j3=1

JTX
∑

j4=1

∂4L(α)
∂tj1∂tj2∂tj3∂tj4

µ4
(
tj1, tj2, tj3, tj4

)
, JTX = G × I = 180, (19)

where JTX = G × I = 180 denotes the total number of microscopic total cross sections for
G = 30 groups and I = 6 isotopes contained in the PERP benchmark [4].

In particular, when only the contributions from the un-mixed 4th-order sensitivities
are considered, Equation (19) reduces to the following expression:

[E(L)](4,U,N)
t =

1
8

JTX

∑
j1=1

∂4L(α)
∂4tj1

σj1
4, JTX = G × I = 180. (20)

When the group-averaged microscopic total cross sections are uncorrelated and
normally-distributed, the expected value of the leakage response does not depend on
the 3rd-order and any other odd-order sensitivities.

When the group-averaged microscopic total cross sections are uncorrelated and
normally-distributed, the variance of the leakage response for the PERP benchmark takes
on the following particular form:

[var (L)](U,N)
t = [var (L)](1,U,N)

t + [var (L)](2,U,N)
t + [var (L)](3,U,N)

t + [var (L)](4,U,N)
t , (21)

where [var (L)](1,U,N)
t , [var (L)](2,U,N)

t , [var (L)](3,U,N)
t and [var (L)](4,U,N)

t denote the 1st-

order through 4th-order contributions terms to the variance [var (L)](U,N)
t , respectively,

which are defined as follows,

[var (L)](1,U,N)
t ,

JTX

∑
j1=1

[
∂L(α)

∂tj1

]2(
σj1
)2, JTX = G × I = 180; (22)

[var (L)](2,U,N)
t ,

1
2

JTX

∑
j1=1

JTX

∑
j2=1

[
∂2L(α)
∂tj1∂tj2

σj1σj2

]2

, JTX = G × I = 180; (23)

[var (L)](3,U,N)
t =

JTX
∑

j1=1

JTX
∑

j2=1

[
∂3L(α)

∂tj1∂tj1∂tj2

∂L(α)
∂tj2

]
σj1

2σj2
2

+ 15
36

JTX
∑

j1=1

[
∂3L(α)

∂tj1∂tj1∂tj1

]2
σj1

6; JTX = G × I = 180;
(24)

[var (L)](4,U,N)
t =

1
2

JTX

∑
j1=1

[
∂4L(α)(

∂tj1
)4

∂2L(α)(
∂tj1
)2

]
σj1

6, JTX = G × I = 180. (25)
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When the group-averaged microscopic total cross sections are uncorrelated and
normally-distributed, the 3rd-order moment of the leakage response for the PERP bench-
mark takes on the following particular form:

[µ3 (L)](U,N)
t = [µ3 (L)](1,U,N)

t + [µ3 (L)](2,U,N)
t + [µ3 (L)](3,U,N)

t + [µ3 (L)](4,U,N)
t , (26)

where [µ3 (L)](1,U,N)
t , [µ3 (L)](2,U,N)

t , [µ3 (L)](3,U,N)
t and [µ3 (L)](4,U,N)

t denote the 1st-order

through 4th-order contributions terms to [µ3 (L)](U,N)
t , respectively, which are defined as

follows,

[µ3 (L)](1,U,N)
t ,

JTX

∑
j1=1

JTX

∑
j2=1

JTX

∑
j3=1

∂L(α)
∂tj1

∂L(α)
∂tj2

∂L(α)
∂tj3

τj1j2j3σj1σj2σj3 = 0, JTX = 180; (27)

[µ3 (L)](2,U,N)
t , 3

JTX
∑

j1=1

JTX
∑

j2=1

∂L(α)
∂tj1

∂L(α)
∂tj2

∂2L(α)
∂tj1∂tj2

(
σj1σj2

)2
+

JTX
∑

j1=1

[
∂2L(α)

(∂tj1)
2

]3
σj1

6, JTX = 180; (28)

[µ3 (L)](3,U,N)
t = 6

JTX

∑
j1=1

∂L(α)
∂αj1

∂2L(α)(
∂tj1
)2

∂3L(α)(
∂tj1
)3 σj1

6, JTX = 180; (29)

[µ3 (L)](4,U,N)
t =

3
2

JTX

∑
j1=1

[
∂L(α)

∂tj1

]2
∂4L(α)(

∂tj1
)4 σj1

6, JTX = 180. (30)

The skewness, denoted as γ1(L) of a single response L(α), which indicates the degree
of the distribution’s asymmetry with respect to its mean, is defined as follows [2]:

[γ1(L)](U,N)
t = [µ3(L)](U,N)

t /
{
[var (L)](U,N)

t

}3/2
. (31)

3. Numerical Results for Fourth-Order Uncertainty Analysis of the PERP Leakage
Response

Using Equations (16)−(31), the effects of the fourth-order sensitivities on the response’s
expectation, variance and skewness can be quantified by considering uniform standard
deviations of 1% (small), 5% (moderate), and 10% (large) of the group-averaged microscopic
total cross sections, respectively.

3.1. The Effects of the Fourth-Order Sensitivities on the Response Expectation

The effects of the fourth-order sensitivities on the expected value of the leakage
response are computed using Equations (16)−(20). The results thus obtained are presented
in Table 1.

Table 1. Comparison of Expected Values for Various Relative Standard Deviations (RSD) of the
Normally-Distributed and Uncorrelated Microscopic Total Cross Sections.

Expected Value RSD = 1% RSD = 5% RSD = 10%

L
(
α0) 1.765 × 106 1.765 × 106 1.765 × 106

[E(L)](2,U,N)
t 4.598 × 104 1.149 × 106 4.598 × 106

[E(L)](3,U,N)
t 0.0 0.0 0.0

[E(L)](4,U,N)
t 6.026 × 103 3.766 × 106 6.026 × 107

[E(L)](U,N)
t = L

(
α0)+ 4

∑
i=2

[E(L)](i,U,N)
t

1.817 × 106 6.681 × 106 6.662 × 107

As shown in Table 1, when considering a small relative standard deviation of 1%
for each of the uncorrelated microscopic total cross sections of the isotopes included in
the PERP benchmark, the effects of the 2nd-order and 4th-order sensitivities through
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[E(L)](2,U,N)
t ≈ 2.5% × [E(L)](U,N)

t and [E(L)](4,U,N)
t ≈ 0.3% × [E(L)](U,N)

t to the expected

response value [E(L)](U,N)
t are both negligibly small.

For a moderate relative standard deviation of 5% for each of the uncorrelated micro-
scopic total cross sections, the results presented in Table 1 show that [E(L)](2,U,N)

t ≈ 65% ×
L
(
α0) ≈ 17% × [E(L)](U,N)

t , indicating the contributions from the 2nd-order sensitivities to
the expected response are around 65% of the computed leakage value L

(
α0), and contribute

around 17% to the expected value [E(L)](U,N)
t of the leakage response. By comparison, the

results presented in Table 1 show that [E(L)](4,U,N)
t ≈ 213% × L

(
α0) ≈ 56% × [E(L)](U,N)

t ,
indicating that the contributions from the 4th-order sensitivities to the expected response are
about 2.1 times larger than the computed leakage value L

(
α0), and contribute around 56%

to the expected value [E(L)](U,N)
t . Therefore, if the computed value, L

(
α0), is considered

to be the actual expected value of the leakage response, neglecting 4th-order sensitivities
would be about 210% in error for 5% relative standard deviations for uncorrelated total
cross sections.

For a large relative standard deviation of 10% for each of the uncorrelated microscopic
total cross sections, the 2nd- and 4th-order sensitivities cause a significantly larger discrep-
ancy between the leakage response’s expected value and its computed value. As shown in
the last column of Table 1, the relation [E(L)](2,U,N)

t ≈ 260% × L
(
α0) ≈ 7% × [E(L)](U,N)

t
indicates that contributions of the 2nd-order term are about 2.6 times larger than the com-
puted leakage value L

(
α0), and contribute around 7% to the expected value [E(L)](U,N)

t .

For the 4th-order term, the results in Table 1 show that [E(L)](4,U,N)
t ≈ 3414% × L

(
α0) ≈

90% × [E(L)](U,N)
t , indicating that the contributions from the 4th-order sensitivities to the

expected response are around 34 times larger than the computed leakage value L
(
α0) and

contribute about 90% to the expected value [E(L)](U,N)
t . Thus, for 10% relative standard

deviations for uncorrelated total cross sections, the computed value L
(
α0) would be ca.

3400% in error by comparison to the actual expected value of the leakage, if the 4th-order
sensitivities were neglected.

Among the 180 microscopic total cross sections, it was found that the parameter σ
g=30
t,6 ,

namely, the total cross sections of isotope #6 (H) for the 30th group (i.e., the lowest energy
group) is the most important parameter affecting the expected value of the leakage response.
For example, for a relative standard deviation of 5% for the uncorrelated microscopic
total cross sections, the contribution from the parameter σ

g=30
t,6 to the 2nd-order term

[E(L)](2,U,N)
t is ca. 82.5%. More notably, this parameter contributes 99.8% to the 4th-order

term [E(L)](4,U,N)
t , which means that the remaining 179 parameters contribute less than

0.2%. The parameter σ
g=30
t,6 contributes most to the expected value because the 2nd-order

unmixed relative sensitivity of the leakage response with respect to this parameter, i.e.,[
∂2L(α)/

(
∂σ30

t,6

)2
][(

σ30
t,6

)2
/L(α)

]
= 4.29 × 102, is the largest among all of the 2nd-order

sensitivities, being ca. 2 orders of magnitudes larger than the values of other 2nd-order
unmixed relative sensitivities, as was reported in [1]. Furthermore, the 4th-order unmixed

relative sensitivity,
[

∂4L(α)/
(

∂σ30
t,6

)4
][(

σ30
t,6

)4
/L(α)

]
= 2.72 × 106, is the largest among

all of the 4th-order unmixed sensitivities, being ca. 4 orders of magnitudes larger than
the values of other 4th-order unmixed relative sensitivities [4]. Through Equations (17)
and (20), these large sensitivities lead to significant contributions to the 2nd-order and
4th-order expected values, respectively. Therefore, the total cross section σ

g=30
t,6 is identified

as the most important parameter that significantly affects the expected value of the leakage
response for the PERP benchmark.
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3.2. The Effects of the Fourth-Order Sensitivities on the Response’s Variance

The effects of the fourth-order sensitivities on the variance of the leakage response are
computed using Equations (21)−(25), considering parameter relative standard deviations
of 1%, 5% and 10%, respectively. The results thus obtained are presented in Table 2.

Table 2. Comparison of Variances for Various Relative Standard Deviations (RSD) of the Normally-
Distributed and Uncorrelated Microscopic Total Cross Sections.

Variances RSD = 1% RSD = 5% RSD = 10%

[var (L)](1,U,N)
t 3.419 × 1010 8.549 × 1011 3.419 × 1012

[var (L)](2,U,N)
t 2.879 × 109 1.799 × 1012 2.879 × 1013

[var (L)](3,U,N)
t 9.841 × 109 2.338 × 1013 1.236 × 1015

[var (L)](4,U,N)
t 1.825 × 109 2.852 × 1013 1.825 × 1015

[var (L)](U,N)
t =

4
∑

i=1
[var (L)](i,U,N)

t
4.874 × 1010 5.456 × 1013 3.093 × 1015

For the relative standard deviation of 1% of the uncorrelated microscopic total cross sec-
tions, the results presented in Table 2 indicate that [var (L)](1,U,N)

t ≈ 70% × [var (L)](U,N)
t ,

[var (L)](2,U,N)
t ≈ 6%× [var (L)](U,N)

t , [var (L)](3,U,N)
t ≈ 20%× [var (L)](U,N)

t , and [var (L)]
(4,U,N)
t ≈ 4% × [var (L)](U,N)

t . These results indicate that, for very small relative standard
deviations (e.g., 1%), the contributions from the 1st-order sensitivities to the response
variance are significantly larger (ca. 70%) than those from higher order sensitivities. By
comparison, the 2nd-order sensitivities contribute about 6% to the response variance, the
3rd-order sensitivities contribute about 20% to the response variance, while the 4th-order
ones only contribute about 4% to the response variance.

Figure 1 depicts the uncertainties of the leakage response arising solely from the 1st,
2nd-, 3rd- and 4th-order sensitivities, respectively, assuming 1% uniform relative standard
deviation for all of the uncorrelated microscopic total cross sections. In Figure 1, the
following quantities are plotted:

(i) the leakage response L
(
α0) of the PERP benchmark;

(ii) the expected value [E(L)](U,N)
t of the leakage response;

(iii) the standard deviation, SD(1), for the leakage response arising solely from the 1st-
order sensitivities;

(iv) the standard deviation, SD(2), for the leakage response arising solely from the 2nd-
order sensitivities;

(v) the standard deviation, SD(3), for the leakage response stemming solely from the
3rd-order sensitivities; and

(vi) the standard deviation, SD(4), for the leakage response stemming solely from the
4th-order sensitivities.
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Figure 1. Comparison of L
(
α0)± SD(1) (in green), [E(L)](U,N)

t ± SD(1), SD(2), SD(3), SD(4) (in red),
due to 1% standard deviations of the uncorrelated microscopic total cross sections.

In Figure 1, the green-colored plots involve solely 1st-order sensitivities, while the
red-colored plots depict the contributions from 1st-, 2nd-, 3rd- and 4th-order sensitivities.

The results presented in Figure 1 show that for small relative standard deviations
(e.g., 1%) of the uncorrelated microscopic total cross sections, the values of the standard
deviations of the leakage response do not decrease monotonically as their respective order
increases, but display the following oscillatory pattern: SD(1) � SD(3) > SD(2) > SD(4).
For a typical relative standard deviation of 5% for the uncorrelated microscopic total cross
sections, the results presented in Table 2 indicate that [var (L)](1,U,N)

t ≈ 2%× [var (L)](U,N)
t ,

[var (L)](2,U,N)
t ≈ 3%× [var (L)](U,N)

t , [var (L)](3,U,N)
t ≈ 43%× [var (L)](U,N)

t , and [var (L)]
(4,U,N)
t ≈ 52% × [var (L)](U,N)

t , which means the contributions from the 3rd- and 4th-
order sensitivities to the response variance are remarkably larger than those from the
1st- and 2nd-order ones. The effects of the 1st-, 2nd-, 3rd- and 4th-order sensitivities on
the quantities L

(
α0)± SD(1) and [E(L)](U,N)

t ± SD(1), SD(2), SD(3), SD(4), for 5% relative
standard deviations of the uncorrelated microscopic total cross sections, are illustrated in
Figure 2. As shown in the figure, SD(4) > SD(3) � SD(2) > SD(1), which indicates that
the standard deviations of the leakage response are diverging as the order of sensitivity
increases. Hence, neglecting the fourth-order sensitivities would cause a significant error
in quantifying the standard deviation of the leakage response for the PERP benchmark.

Figure 2. Comparison of L
(
α0)± SD(1) (in green), [E(L)](U,N)

t ± SD(1), SD(2), SD(3), SD(4) (in red),
due to 5% standard deviations of the uncorrelated microscopic total cross sections.

For a large relative standard deviation of 10% of the uncorrelated microscopic total cross
sections, the results presented in the last column of Table 2 indicate that [var (L)](1,U,N)

t ≈
0.1% × [var (L)](U,N)

t , [var (L)](2,U,N)
t ≈ 0.9% × [var (L)](U,N)

t , [var (L)](3,U,N)
t ≈ 40% ×

[var (L)](U,N)
t , and [var (L)](4,U,N)

t ≈ 59% × [var (L)](U,N)
t . Thus, the contributions from the
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3rd- and 4th-order sensitivities amount to ca. 99% of the total contribution to the response
variance while the contributions stemming from the 1st- and 2nd-order sensitivities are
negligibly small by comparison. The effects of the 1st-, 2nd-, 3rd- and 4th-order sensitivities
on the standard deviations of the leakage response can also be visually seen from the plots
for L

(
α0)± SD(1) and [E(L)](U,N)

t ± SD(1), SD(2), SD(3), SD(4), for 10% relative standard
deviations of the uncorrelated microscopic total cross sections, as illustrated in Figure 3.
Similar to the “5% case” above, the plots shown in Figure 3 for the “10% case” also present a
diverging trend for the standard deviations of the leakage response as the order of sensitivity
increases, namely, SD(4) > SD(3) � SD(2) > SD(1), but with much larger amplitudes.

Figure 3. Comparison of L
(
α0)± SD(1) (in green), [E(L)](U,N)

t ± SD(1), SD(2), SD(3), SD(4) (in red),
due to 10% standard deviations of the uncorrelated microscopic total cross sections.

The negative value of L
(
α0)− SD(1) shown in Figure 3 suggests that 10% relative

standard deviations of the microscopic total cross sections may yield unphysical values for
the standard deviation of the response distribution, as was discussed in [2].

The parameter σ
g=30
t,6 , namely, the 30th group (i.e., the lowest energy group) of the total

cross sections of isotope #6 (H) contained in the PERP benchmark, was found to provide the
largest contributions to the response variance. Specifically, for a relative standard deviation
of 5% for all of the uncorrelated microscopic total cross sections, the contributions from
the parameter σ

g=30
t,6 to the various response variance terms [var (L)](1,U,N)

t , [var (L)](2,U,N)
t ,

[var (L)](3,U,N)
t , [var (L)](4,U,N)

t and [var (L)](U,N)
t , are 80%, 99.8%, 99.99%, 99.999% and

99.97%, respectively.

3.3. The Effects of the Fourth-Order Sensitivities on the 3rd-Order Response Moment and
Skewness

The effects of the fourth-order sensitivities on the 3rd-order moment and skewness of
the PERP leakage response are computed using Equations (26)−(31), also considering rela-
tive standard deviations of 1%, 5% and 10%, respectively, for all the normally-distributed
and uncorrelated microscopic total cross sections. The results are summarized in Table 3.
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Table 3. Comparison of the 3rd-Order Response Moment and Skewness for Various Relative Standard
Deviations (RSD) of the Normally-Distributed and Uncorrelated Microscopic Total Cross Sections.

3rd-Order Moment and Skewness RSD = 1% RSD = 5% RSD = 10%

[µ3 (L)](1,U,N)
t 0 0 0

[µ3 (L)](2,U,N)
t 6.663 × 1015 1.070 × 1019 4.982 × 1020

[µ3 (L)](3,U,N)
t 3.948 × 1015 6.169 × 1019 3.948 × 1021

[µ3 (L)](4,U,N)
t 1.973 × 1015 3.083 × 1019 1.973 × 1021

[µ3 (L)](U,N)
t =

4
∑

i=1
[µ3 (L)](i,U,N)

t
1.258 × 1016 1.032 × 1020 6.419 × 1021

[γ1(L)](U,N)
t 1.169 0.256 0.037

Considering 1% relative standard deviations for the uncorrelated microscopic to-
tal cross sections, the results presented in Table 3 indicate that [µ3 (L)](2,U,N)

t ≈ 53% ×
[µ3 (L)](U,N)

t , [µ3 (L)](3,U,N)
t ≈ 31%× [µ3 (L)](U,N)

t , and [µ3 (L)](4,U,N)
t ≈ 16%× [µ3 (L)](U,N)

t .
Thus, for small (1%) relative standard deviations, the contributions from the 2nd-order
sensitivities to the 3rd-order response moment [µ3 (L)](U,N)

t are the largest (e.g., around
53% in this case), followed by the contributions stemming from the 3rd-order sensitivities,
while the contributions stemming from the 4th-order sensitivities are the smallest.

Considering 5% relative standard deviations for the uncorrelated microscopic to-
tal cross sections, the results in Table 3 show that [µ3 (L)](2,U,N)

t ≈ 10% × [µ3 (L)](U,N)
t ,

[µ3 (L)](3,U,N)
t ≈ 60% × [µ3 (L)](U,N)

t , and [µ3 (L)](4,U,N)
t ≈ 30% × [µ3 (L)](U,N)

t . In this
case, the contributions from the 3rd-order sensitivities are the largest (e.g., around 60%),
followed by the contributions from the 4th-order sensitivities, which contribute about 30%;
the smallest contributions stem from the 2nd-order sensitivities.

Considering 10% relative standard deviations for the uncorrelated microscopic total
cross sections, the results in Table 3 indicate that [µ3 (L)](2,U,N)

t ≈ 8% × [µ3 (L)](U,N)
t ,

[µ3 (L)](3,U,N)
t ≈ 61% × [µ3 (L)](U,N)

t , and [µ3 (L)](4,U,N)
t ≈ 31% × [µ3 (L)](U,N)

t . These
results display the same trends as the results for the “RSD = 5%” case, but the magnitudes
of the respective contributions are significantly larger by comparison to the corresponding
results for the “RSD = 5%” case.

For the skewness [γ1(L)](U,N)
t , the results shown in Table 3 indicate that all the 2nd-,

3rd- and 4th-order sensitivities produce a positive response skewness, which causes the
leakage response distribution to be skewed towards the positive direction from its expected
value [E(L)](U,N)

t . Moreover, the results shown in the last row of Table 3 also indicate
that, as the relative standard deviation of the uncorrelated microscopic total cross sections
increases from 1% to 10%, the value of the skewness decreases, thus causing the leakage
response distribution to become increasingly more symmetrical about the mean value
[E(L)](U,N)

t .
In addition, it is noticed that neglecting the 4th-order sensitivities would cause a

significant error in the skewness. For example, for the case RSD = 5%, if the 4th-order
sensitivities were neglected, the contributions from the 1st-, 2nd- and 3rd-order sensitivities
to the skewness would have the value [γ1(L)](U,N)

t = 0.109, as was reported in [2], which
would be 135% smaller than the more accurate result obtained in this work by including
the contributions of the 4th-order sensitivities.

Similarly, the parameter σ
g=30
t,6 is identified as the most important parameter among the

180 microscopic total cross sections, as it provides the largest contribution to the skewness.
For instance, considering the case for RSD = 5%, the contribution stemming from the
parameter σ

g=30
t,6 to the skewness [γ1(L)](U,N)

t is 99.991%, which is one order of magnitude
larger than the combined contributions from all of other microscopic total cross sections in
the PERP benchmark.
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4. Conclusions

This work has quantified the impact of the most important 4th-order sensitivities of the
leakage response of a polyethylene-reflected plutonium (PERP) reactor physics benchmark
with respect to the benchmark’s 180 microscopic group-averaged total cross sections, on
the response’s expected value, variance and skewness. By considering 1% (small), 5%
(moderate) and 10% (large) values of the relative standard deviations (RSD) for each of the
normally-distributed and uncorrelated microscopic total cross sections, the contributions
stemming from the 4th-order sensitivities to the various response moments (e.g., expected
value, variance and skewness) were compared with those stemming from the 1st-, 2nd-
and 3rd-order ones. The following conclusions emerge from this work:

(1) The impact of the 4th-order sensitivities on the expected value of the leakage response
varies with the value of the standard deviation of the uncorrelated microscopic total
cross sections. Generally, the larger the standard deviations of the microscopic total
cross sections, the higher the impact of the 4th-order sensitivities will be on the
expected value. For a small relative standard deviation of 1% for the parameters
under consideration, the impact of the 4th-order sensitivities on the expected response
value [E(L)](U,N)

t is smaller than the impact of the lower-order sensitivities. However,
for a moderate relative standard deviation of 5%, the contributions from the 4th-
order sensitivities are around 56% of the expected value. When the relative standard
deviation is increased to 10%, the contributions from the 4th-order sensitivities to the
expected value increase to nearly 90%. Notably, for the “RSD = 10%” case, neglecting
the 4th-order sensitivities would cause a large error (ca. 3400%) if the computed value
L
(
α0) were considered to be the actual expected value of the leakage response.

(2) The effects of the 4th-order sensitivities on the variance of the leakage response
also depends on the value of the standard deviation considered for the microscopic
total cross sections. Specifically, if the microscopic total cross sections have small
relative standard deviations (e.g., RSD = 1%), the 4th-order sensitivities would only
contribute about 4% to the response variance [var (L)](U,N)

t . For moderate relative
standard deviations of 5%, the contributions from the 4th-order sensitivities increase
to 52%. For large relative standard deviations of 10%, the contributions from the
4th-order sensitivities to the response variance [var (L)](U,N)

t amounts to 59%, which
is significantly larger than the contributions from the corresponding 1st-, 2nd- and
3rd-order sensitivities.

(3) The impact of the 4th-order sensitivities on the standard deviation of the leakage
response is as follows: (i) for small relative standard deviations (e.g., 1%) of the
microscopic total cross sections, the uncertainty of the leakage response arising solely
from the 1st-order sensitivities are significantly larger than the uncertainties arising
solely from the 2nd-, 3rd- and 4th-order sensitivities, respectively, but the follow-
ing oscillating pattern has been observed: SD(1) � SD(3) > SD(2) > SD(4); (ii)
when considering moderate and large relative standard deviations (e.g., 5% and
10%, respectively) for the microscopic total cross sections, the standard deviations
of the leakage response appear to diverge as the order of sensitivity increases, i.e.,
SD(4) > SD(3) � SD(2) > SD(1).

(4) The 4th-order sensitivities produce a positive response skewness, causing the leakage
response distribution to be skewed towards the positive direction from its expected
value. The impact of the 4th-order sensitivities on the skewness of the leakage response
also changes with the value of the standard deviation of the microscopic total cross
sections: larger parameter standard deviations tend to decrease the value of the
skewness, causing the leakage response distribution to become more symmetrical
about the mean value [E(L)](U,N)

t .
(5) It was found that, among the 180 microscopic total cross sections, the parameter

σ
g=30
t,6 namely, the 30th group (i.e., the lowest energy group) of the total cross sections

of isotope #6 (H) contained in the PERP benchmark, is the single most important
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parameter affecting the PERP benchmark’s leakage response, as it has the largest
impact on the various response moments. For example, considering that all of the
microscopic total cross sections are uncorrelated and have a 5% relative standard
deviation, the 5% relative standard deviation of σ

g=30
t,6 contributes around 99.8% to

the expected value [E(L)](4,U,N)
t , 99.97% to the variance [var (L)](U,N)

t and 99.99% to

the skewness [γ1(L)](U,N)
t .

(6) Because the correlations among the group-averaged microscopic total cross sections
are not available for the PERP benchmark under consideration, it was not possible to
quantify in this work the impact of the mixed 4th-order sensitivities. As discussed
in [2], correlations among the microscopic total cross sections would provide addi-
tional contributions to the various response moments (e.g., expected value, variance
and skewness).

(7) While the general mathematical expressions presented in this work can be applied to
any nuclear reactor system, the numerical results reported in this work are evidently
specific to the PERP benchmark.

(8) The general methodology underlying the specific computations of the 4th-order sen-
sitivities used in this work has been presented in [5]. This 4th-order methodology
has been recently generalized [6,7] to enable the most efficient computation of exactly
obtained mathematical expressions of arbitrarily-high-order (nth-order) sensitivities
of a generic system response with respect to all of the parameters (including uncertain
domain boundaries) underlying the respective forward/adjoint systems. The math-
ematical framework underlying this arbitrarily-high order methodology, called the
“nth-CASAM-L” methodology, is developed in linearly increasing higher-dimensional
Hilbert spaces, as opposed to the exponentially increasing “parameter-dimensional”
spaces in which response sensitivities are computed by other methods, thus providing
the basis for overcoming the “curse of dimensionality” in sensitivity analysis and all
other fields (uncertainty quantification, predictive modeling, etc.) which need such
sensitivities. Thus, for the response of a model which comprises a total number of
TP-parameters—and hence admits TP first-order sensitivities—the 1st-CASAM-L
requires 1 additional large-scale adjoint computation (as opposed to at least TP large-
scale computations, as required by other methods) for computing exactly all of the
1st-order response sensitivities. All of the TP2 second-order response sensitivities
are computed exactly by the 2nd-CASAM-L in at most TP computations, as opposed
to at least 3TP(TP + 1)/2 computations required by finite-difference and/or other
methods, and so on. For every lower-order sensitivity of interest, the nth-CASAM-L
computes the TP “next-higher-order” sensitivities in one adjoint computation per-
formed in a linearly increasing higher-dimensional Hilbert space, thus providing a
leap forward in the quest to overcome the “curse of dimensionality” in sensitivity
analysis, uncertainty quantification and predictive modeling.

(9) The need for computing higher-order (i.e., higher than first-order) sensitivities (func-
tional derivatives) of model responses with respect to the model parameters has been
underscored in [8,9]. Using an analytically solvable model of neutron scattering in
a hydrogenous medium for which all of the response’s relative sensitivities had the
same absolute value of unity, it was shown in [9] that the wider the distribution of
model parameters, the higher the order of sensitivities needed to achieve a desired
level of accuracy in representing the response and in computing the response’s expec-
tation, variance, skewness and kurtosis. If only first-order sensitivities are considered,
the third-order moment of the response is always zero. Hence, a “first-order sensitiv-
ity and uncertainty quantification” will always produce an erroneous third moment
(and, hence, skewness) of the predicted response distribution, unless the unknown
response distribution happens to be symmetrical. At least second-order sensitivities
must be used in order to estimate the third-order moment (and, hence, the skewness)
of the response distribution. With pronounced skewness, standard statistical inference
procedures such as constructing a confidence interval for the mean (expectation) of
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a computed/predicted model response will be not only incorrect, in the sense that
the true coverage level will differ from the nominal (e.g., 95%) level, but the error
probabilities will be unequal on each side of the predicted mean. Thus, the truncation
of Taylor expansion of the response (as a function of parameters) depends both on
the magnitudes of the response sensitivities to parameters and the parameter uncer-
tainties involved: if the uncertainties are small, then a 4th-order expansion suffices, in
most cases, for obtaining relatively accurate results. In any case, the truncation error
of a convergent Taylor-series can be quantified a priori. If the parameter uncertainties
are large, the Taylor series may diverge, so one would need to consider asymptotic
expansions. Of course, if the parameter uncertainties are large, all statistical methods
are doomed to produce unreliable results for large-scale, realistic problems, involving
many uncertain parameters.
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Appendix A. General Expressions for the Expectation, Variance, and Third-Order
Response Moment, up to Fourth-Order Response Sensitivities

Appendix A.1. General Expression for the Expectation

Up to 4th-order response sensitivities, the 1st-order moment, i.e., the expectation
E(Rk), of a response Rk has the following expression:

E(Rk) = Rk
(
t0)+ 1

2

TP
∑

j1=1

TP
∑

j2=1

∂2Rk(t0)
∂tj1∂tj2

ρj1j2σj1σj2 +
1
6

TP
∑

j1=1

TP
∑

j2=1

TP
∑

j3=1

∂3Rk(t0)
∂tj1∂tj2∂tj3

τj1j2j3σj1σj2σj3

+ 1
4!

TP
∑

j1=1

TP
∑

j2=1

TP
∑

j3=1

TP
∑

j4=1

∂4Rk(t0)
∂tj1∂tj2∂tj3∂tj4

qj1j2j3j4σj1σj2σj3σj4.
(A1)

Appendix A.2. General Expressions for the Response Variance

Up to 4th-order response sensitivities, the 2nd-order moment, i.e., the covariance
between two responses Rk and Rl has the following expressions:

The 1st-order sensitivity contribution, cov
(

R(1)
k , R(1)

l

)
, to the covariance cov(Rk, Rl)

is defined as follows:

cov
(

R(1)
k , R(1)

l

)
=

TP

∑
j1=1

TP

∑
j2=1

∂Rk
(
t0)

∂tj1

∂Rl
(
t0)

∂tj2
ρj1j2σj1σj2. (A2)
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The 2nd-order sensitivity contribution, cov
(

R(2)
k , R(2)

l

)
, to the covariance cov(Rk, Rl)

is defined as follows:

cov
(

R(2)
k , R(2)

l

)
= 1

2

TP
∑

j1=1

TP
∑

j2=1

TP
∑

j3=1

(
∂2Rk(t0)
∂tj1∂tj2

∂Rl(t0)
∂tj3

+
∂Rk(t0)

∂tj1

∂2Rl(t0)
∂tj2∂tj3

)
τj1j2j3σj1σj2σj3

+ 1
4

TP
∑

j1=1

TP
∑

j2=1

TP
∑

j3=1

TP
∑

j4=1

∂2Rk(t0)
∂tj1∂tj2

∂2Rl(t0)
∂tj3∂tj4

(
qj1j2j3j4 − ρj1j2ρj3j4

)
σj1σj2σj3σj4 .

(A3)

The 3rd-order sensitivity contribution, cov
(

R(3)
k , R(3)

l

)
, to the covariance cov(Rk, Rl)

is defined as follows:

cov
(

R(3)
k , R(3)

l

)
= 1

6

TP
∑
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TP
∑

j2=1

TP
∑
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(A4)

The 4th-order sensitivity contribution, cov
(

R(4)
k , R(4)

l

)
, to the covariance cov(Rk, Rl) is

defined as follows:

cov
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sj1j2j3j4j5j6 − qj1j2j3j4ρj5j6

)
σj1σj2σj3σj4σj5σj6

+ 1
48

TP
∑

j1=1

TP
∑

j2=1

TP
∑

j3=1

TP
∑

j4=1

TP
∑

j5=1

TP
∑

j6=1

∂2Rk(t0)
∂tj1∂tj2

∂4Rl(t0)
∂tj3∂tj4∂tj5∂tj6

(
sj1j2j3j4j5j6 − ρj1j2qj3j4j5j6

)
σj1σj2σj3σj4σj5σj6.

(A5)

Appendix A.3. General Expressions for the Third-Order Response Moment

Up to 4th-order response sensitivities, the 3rd-order moment between three responses
Rk, Rl and Rm has the following expressions:

The 1st-order sensitivity contribution, µ
(1)
3 (Rk, Rl , Rm), to the 3rd-order moment

µ3(Rk, Rl , Rm) is defined as follows:

µ
(1)
3 (Rk, Rl , Rm) =

TP

∑
j1=1

TP

∑
j2=1

TP

∑
j3=1

∂Rk
(
t0)

∂tj1

∂Rl
(
t0)

∂tj2

∂Rm
(
t0)

∂tj3
τj1j2j3σj1σj2σj3. (A6)

The 2nd-order sensitivity contribution, µ
(2)
3 (Rk, Rl , Rm), to the 3rd-order moment

µ3(Rk, Rl , Rm) is defined as follows:
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µ
(2)
3 (Rk, Rl , Rm) =

1
2

TP
∑

j1=1

TP
∑

j2=1

TP
∑

j3=1

TP
∑

j4=1

∂Rk(t0)
∂tj1

∂Rl(t0)
∂tj2

∂2Rm(t0)
∂tj3∂tj4

(
qj1j2j3j4 − ρj1j2ρj3j4

)
σj1σj2σj3σj4

+ 1
2

TP
∑

j1=1

TP
∑

j2=1

TP
∑

j3=1

TP
∑

j4=1

∂Rk(t0)
∂tj1

∂2Rl(t0)
∂tj2∂tj3

∂Rm(t0)
∂tj4

(
qj1j2j3j4 − ρj1j4ρj2j3

)
σj1σj2σj3σj4

+ 1
2

TP
∑

j1=1

TP
∑

j2=1

TP
∑

j3=1

TP
∑

j4=1

∂2Rk(t0)
∂tj1∂tj2

∂Rl(t0)
∂tj3

∂Rm(t0)
∂tj4

(
qj1j2j3j4 − ρj1j2ρj3j4

)
σj1σj2σj3σj4

+ 1
4

TP
∑

j1=1

TP
∑

j2=1

TP
∑

j3=1

TP
∑

j4=1

TP
∑

j5=1

∂Rk(t0)
∂tj1

∂2Rl(t0)
∂tj2∂tj3

∂2Rm(t0)
∂tj4∂tj5

σj1σj2σj3σj4σj5

×
(

pj1j2j3j4j5 − τj1j2j3ρj4j5 − τj1j4j5ρj2j3
)

+ 1
4

TP
∑

j1=1

TP
∑

j2=1

TP
∑

j3=1

TP
∑

j4=1

TP
∑

j5=1

∂2Rk(t0)
∂tj1∂tj2

∂Rl(t0)
∂tj3

∂2Rm(t0)
∂tj4∂tj5

σj1σj2σj3σj4σj5

×
(

pj1j2j3j4j5 − ρj1j2τj3j4j5 − τj1j2j3ρj4j5
)

+ 1
4

TP
∑

j1=1

TP
∑

j2=1

TP
∑

j3=1

TP
∑

j4=1

TP
∑

j5=1

∂2Rk(t0)
∂tj1∂tj2

∂2Rl(t0)
∂tj3∂tj4

∂Rm(t0)
∂tj5

σj1σj2σj3σj4σj5

×
(

pj1j2j3j4j5 − ρj1j2τj3j4j5 − τj1j2j5ρj3j4
)

+ 1
8

TP
∑

j1=1

TP
∑

j2=1

TP
∑

j3=1

TP
∑

j4=1

TP
∑

j5=1

TP
∑

j6=1

∂2Rk(t0)
∂tj1∂tj2

∂2Rl(t0)
∂tj3∂tj4

∂2Rm(t0)
∂tj5∂tj6

σj1σj2σj3σj4σj5σj6

×
(
sj1j2j3j4j5j6 + 2ρj1j2ρj3j4ρj5j6 − ρj1j2qj3j4j5j6 − qj1j2j5j6ρj3j4 − qj1j2j3j4ρj5j6

)
.

(A7)

The 3rd-order sensitivity contribution, µ
(3)
3 (Rk, Rl , Rm), to the 3rd-order moment µ3(Rk, Rl , Rm)

is defined as follows:

µ
(3)
3 (Rk, Rl , Rm) =

1
6

TP
∑

j1=1

TP
∑

j2=1

TP
∑

j3=1

TP
∑

j4=1
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∑

j5=1

∂Rk(t0)
∂tj1

∂Rl(t0)
∂tj2

∂3Rm(t0)
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(
pj1j2j3j4j5 − ρj1j2τj3j4j5
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+ 1
6
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∑
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∑
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∑

j1=3
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∑

j1=4
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∑
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∂Rl(t0)
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(
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+ 1
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∑
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∂tj1

∂2Rl(t0)
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+ 1
6
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∑
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∂tj1
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∂tj2∂tj3∂tj4
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(
pj1j2j3j4j5 − ρj1j5τj2j3j4

)
σj1σj2σj3σj4σj5

×
(
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)
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σj1σj2σj3σj4σj5σj6

×
(
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σj1σj2σj3σj4σj5σj6

×
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sj1j2j3j4j5j6 − τj1j2j3τj4j5j6 − ρj1j2qj3j4j5j6

)
+ 1
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TP
∑
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TP
∑

j2=1

TP
∑

j3=1

TP
∑

j4=1

TP
∑

j5=1

TP
∑

j6=1

∂2Rk(t0)
∂tj1∂tj2

∂3Rl(t0)
∂tj3∂tj4∂tj5

∂Rm(t0)
∂tj6

σj1σj2σj3σj4σj5σj6

×
(
sj1j2j3j4j5j6 − τj1j2j6τj3j4j5 − ρj1j2qj3j4j5j6

)
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TP
∑
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TP
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TP
∑

j3=1
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∑
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∂3Rl(t0)
∂tj1∂tj2∂tj3
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∂tj5∂tj6

σj1σj2σj3σj4σj5σj6

×
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)
.

(A8)
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The 4th-order sensitivity contribution, µ
(4)
3 (Rk, Rl , Rm), to the 3rd-order moment

µ3(Rk, Rl , Rm) is defined as follows:

µ
(4)
3 (Rk, Rl , Rm) =

1
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TP
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TP
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TP
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∂Rl(t0)
∂tj2

∂4Rm(t0)
∂tj3∂tj4∂tj5∂tj6

×
(
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)
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