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Abstract: Fluorescent staining of microplastics as a detection method is consistently gaining im-
portance in microplastics research, as it is fast, easy to use, and requires low technical effort. In
this study, a complete procedure was developed, from sample collection to sample processing and
detection, to measure microplastics with low cost and time requirements. The developed procedure
was tested by measuring the microplastics in the effluent of a German wastewater treatment plant
over a period of one year. The results show that the process is especially well suited to investigate
temporal variations of microplastic contamination, which requires a large number of samples to
be processed. Further, the precision and selectivity of the detection process could be improved by
applying newly developed Nile red derivatives for fluorescent staining. A low budget modification
of a microscope for fluorescent imaging is compared to a modification with precise optical bandpass
filters. A script enabling automated microplastic detection and counting was developed, improving
the accuracy and comparability of the process.
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1. Introduction

One of the biggest challenges in microplastics research is the lack of standardized and
affordable methods for microplastic detection [1–4]. Microplastic detection is essential to
evaluate risk potentials and transport pathways of microplastics in the environment and in
food or beverages for human consumption [2,4].

In environmental samples, natural particles exceed the number of microplastics by
several orders of magnitude [1,5]. As they can have a similar appearance and carbon-based
chemical structures, it is challenging to differentiate them from microplastics. In addition,
microplastics comprise a high variety of plastic types with different chemical and structural
compositions, making detection more complex [5,6]. The large variation of applied methods
and lack of standardization make it almost impossible to compare results among different
studies [4,7].

The detection of microplastics is divided into three main steps: sampling, sample
preparation and detection [1–3]. Samples can be taken from different environmental
compartments, such as water, air, soil, sediments, or biota. Water samples are mainly taken
by pulling plankton nets through water or pumping water through sieve or filter cartridges.
As there is no standardized procedure for sampling, mesh sizes can range from 1–500 µm.
For example, when samples are taken with a 330 µm mesh net, the resulting microplastic
contamination measured is much lower than when using a 10 µm filter cartridge, as smaller
particles are not caught in the sample. Studies conducted using different sampling methods
are thus hardly comparable [4,7].
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In the sample preparation process, the number of natural particles is reduced while
preserving microplastics in the sample [1–4]. Natural organic particles are reduced through
a digestion step, primarily hydrogen peroxide, alkaline, or enzymatic digestion. Enzymatic
digestion is the most gentle process, but requires a high processing time [8]. Thus, hydrogen
peroxide is typically used for water or sediment samples and alkaline digestion for biota
samples [9]. But there is no standardized digestion procedure, and a variety of methods
are applied.

Density separation is used to remove sediment particles from the sample [1–3]. Sam-
ples are placed in high-concentration salt solutions; this causes the lighter microplastics to
float and the heavy sediments (typical density of 2.4 g/cm3) to sink. Typical salt solutions
are NaCl (1.2 kg/L), ZnCl2 (1.6 kg/L), or NaI (1.8 kg/L). Density separation can be applied
using simple setups, such as separation funnels, but for higher separation efficiencies, more
complex methods are required. One example is the “Munich Plastic Sediment Separator”.
This applies air bubbles in a stainless-steel column equipped with different valves and fil-
ters. resulting in a much higher separation efficiency for small microplastics from sediment
samples [10]. This demonstrates that the levels of microplastic contamination measured
also depend on the density separation method used.

For the final detection, the most used methods are Py-GC/MS (Pyrolysis–gas chromatography-
mass spectrometry), FTIR (Fourier-transform infrared spectroscopy) microscopy, and Ra-
man microscopy [1–4]. FTIR and Raman microscopy can chemically characterize the
particles in the sample and analyze both the particle number and polymer type. For Py-
GC/MS, the sample is pyrolyzed and the resulting gases are chemically analyzed, yielding
the polymer type and mass of the respective microplastics. These methods are well suited
for microplastic analytics, but disadvantages include a high investment and operating cost,
the fact that they require trained staff to operate them, and that they have long measure-
ment times. Thus, there is a need for an inexpensive and fast method for the detection
of microplastics.

Fluorescent staining of microplastics is one technique that is becoming increasingly
popular in research, as it requires a low cost and low technical effort [11]. The fluorescent
dye Nile red is the most used; it is a lipophilic fluorescent dye commonly used for the in-
situ staining of lipids [12,13]. Nile red was successfully applied for staining microplastics
in environmental samples for the first time in 2016 [14–16]. When stained with Nile
red, microplastics show good fluorescence signals under a fluorescent microscope, while
natural particles show weak fluorescence and do not glow. However, due to several
drawbacks, fluorescent staining for microplastic detection is a highly debated method
(Table 1) [11,17,18].

Table 1. Advantages and disadvantages of fluorescent staining for microplastic detection.

Advantage Disadvantage

• Easy to apply, only basic laboratory and
fluorescent imaging tools are required

• No strong background
knowledge necessary

• Cheap and low processing time
for detection

• Risk of false positives due to
natural particles

• Underestimation of polymers with weak
fluorescence (e.g., PVC)

• Possible quenching by color pigments.
• Not standardized (e.g., solvents, times for

staining, fluorescent
imaging, thresholding)

The biggest drawback of the method is the risk of false positives by natural polymers,
which can also show a strong fluorescence when stained with Nile red [11,17]. Further,
color pigments in microplastics can cause quenching and certain polymer types (e.g., PVC)
are hardly detectable due to weak fluorescence signals.

Fluorescent staining of microplastics has already been used in several studies to
measure microplastics in the environment and biota [19–22]. Additionally, it is well suited
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for contamination control in food and beverages [23–25]. Current research is addressing
advanced processes such as automated particle counting, in-situ detection, or polymer type
identification using fluorescence microscopy combined with phasor imaging [26–28]. This
highlights the large potential of this method.

In this study, a standardized procedure for sampling, sample preparation, and mi-
croplastics detection using fluorescent imaging is developed and tested over a period of
one year in a German wastewater treatment plant to determine its potential for producing
comparable data. For fluorescent imaging, a low budget modification of the microscope
using colored foils and a UV-flashlight was compared to an expensive modification using
precise optical bandpass filters. To improve the fluorescent staining, chemically adapted
Nile red derivatives were tested that improve fluorescence analysis, resulting in a higher
selectivity for microplastics and a reduction in the risk of false positives by natural particles.

2. Materials and Methods
2.1. Modification of Microscope for Fluorescent Imaging

For fluorescent imaging the optical microscope Leica DMS300 (Leica Mikrosysteme
Vertrieb GmbH, Wetzlar, Germany) together with the software LAS-X 3.0.1423224 was
modified based on Labbe et al. 2020 (Figure 1) [29]. For fluorescence excitation, LED-
Flashlights were used; the used flashlights can be found in Table 2. The flashlights were
mounted using a flexible arm on a solid base plate (Flexklemme ROTILABO, Carl Roth
GmbH + Co. KG, Karlsruhe, Germany).

Analytica 2023, 4, FOR PEER REVIEW 3 
 

 

Fluorescent staining of microplastics has already been used in several studies to 

measure microplastics in the environment and biota [19–22]. Additionally, it is well suited 

for contamination control in food and beverages [23–25]. Current research is addressing 

advanced processes such as automated particle counting, in-situ detection, or polymer 

type identification using fluorescence microscopy combined with phasor imaging [26–28]. 

This highlights the large potential of this method. 

In this study, a standardized procedure for sampling, sample preparation, and mi-

croplastics detection using fluorescent imaging is developed and tested over a period of 

one year in a German wastewater treatment plant to determine its potential for producing 

comparable data. For fluorescent imaging, a low budget modification of the microscope 

using colored foils and a UV-flashlight was compared to an expensive modification using 

precise optical bandpass filters. To improve the fluorescent staining, chemically adapted 

Nile red derivatives were tested that improve fluorescence analysis, resulting in a higher 

selectivity for microplastics and a reduction in the risk of false positives by natural parti-

cles. 

2. Materials and Methods 

2.1. Modification of Microscope for Fluorescent Imaging 

For fluorescent imaging the optical microscope Leica DMS300 (Leica Mikrosysteme 

Vertrieb GmbH, Wetzlar, Germany) together with the software LAS-X 3.0.1423224 was 

modified based on Labbe et al. 2020 (Figure 1) [29]. For fluorescence excitation, LED-Flash-

lights were used; the used flashlights can be found in Table 2. The flashlights were 

mounted using a flexible arm on a solid base plate (Flexklemme ROTILABO, Carl Roth 

GmbH + Co. KG, Karlsruhe, Germany). 

 

Figure 1. Modified digital microscope for fluorescent imaging. (1) Mounting bracket for emission 
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Table 2. List of flashlights used for fluorescence excitation. 

Flashlight Peak Wavelength Supplier 

UV 365 nm TATTU U3S, Tattu, unknown, Germany 

Blue 470 nm 
ULTRAFIRE H-B3, Hakka Trade US Inc 

Suwanee, GA 30024, USA 

Green 520–535 nm 
Ultrafire H-G3, Hakka Trade US Inc Su-

wanee, GA 30024, USA 

Figure 1. Modified digital microscope for fluorescent imaging. (1) Mounting bracket for emission
filters. (2) Emission filter in holder. (3) Modified digital microscope with emission filter mounting
bracket and LED flashlight.

To block the reflected light from the flashlights and only allow the light resulting
from fluorescence to pass to the microscope, optical filters were mounted in front of the
microscope lens using a custom-made mount (Bartmann Maschinenbau GmbH, Ruelzheim,
Germany) (Figure 1). The performance of inexpensive color filters for photography was
compared with expensive optical bandpass filters that are used in commercial fluorescent
microscopes (Table 3).

The combination of lamps and filters and the respective microscope settings can be
seen in Table 4. The green and blue flashlights required an additional excitation filter, as
their wide range of emission wavelengths ranged beyond the transmissive area of the
emission filter.
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Table 2. List of flashlights used for fluorescence excitation.

Flashlight Peak Wavelength Supplier

UV 365 nm TATTU U3S, Tattu, unknown, Germany
Blue 470 nm ULTRAFIRE H-B3, Hakka Trade US Inc Suwanee, GA 30024, USA

Green 520–535 nm Ultrafire H-G3, Hakka Trade US Inc Suwanee, GA 30024, USA

Table 3. Overview of tested emission filters.

Filter Transmissive Area Supplier

Yellow-colored foil See Transmission Spectra Figure S1 Shenzhen Neewer Technology Co., Ltd.,
Shenzhen, China

Blue bandpass filter 420–470 nm

Edmund Optics GmbH, Mainz, GermanyGreen bandpass filter 500–570 nm
Orange bandpass filter 570–540 nm

Red bandpass filter 660–710 nm

Table 4. Combination of lamps and filters used for fluorescent imaging.

Combination Flashlight Excitation Filter Emission Filter Microscope Setting

1—Low Budget modification UV None Yellow-colored foil

Exposure time 0.5 s
Gain: 4

2—Blue fluorescence UV None Blue bandpass
3—Green fluorescence Blue Blue bandpass Green bandpass
4—Orange fluorescence Green Green bandpass Orange bandpass
5—Red fluorescence Green Orange bandpass Red bandpass

2.2. Investigation of Fluorescent Dyes for Microplastics Detection

Nile red and Nile red derivatives as well as process chemicals were purchased from
abcr GmbH (Germany, Karlsruhe).

To investigate the suitability of NR0 and NR1 for the selective detection of microplas-
tics, a selection of microplastic particles based on five different polymer types and three
natural particles were stained and the resulting fluorescence properties examined by taking
fluorescent images with the different filters. Table 5 shows the list of polymers and natural
particles used in the experiment. Chitin, wood, and calcite (shell lime) were selected as ex-
amples for natural particles as they are particularly resistant to common digestion methods
and are present in most environmental samples.

Table 5. List of chemicals used in the experiments.

Name AB Number Purchased From

NR 0 (Nile red) AB 139346 abcr GmbH
NR 1 (abcr eco Wasser 3.0 detect mix MP-1) AB 930015 abcr GmbH

Hydrogen peroxide (35%) AB 171423 abcr GmbH
Acetone AB 178997 abcr GmbH

For the particle staining, 10 mg of the respective particles were put into 10 mL glass
vials. The solution of NR0 or NR1 in water (1 mg/L) was added, shaken by hand for 5 min
and left to rest at room temperature (RT) for 24 h. The sample was then transferred onto a
Petri dish and the remaining water soaked up carefully with a pipet.

2.3. Recovery Rates—Comparison of Automated and Manual Particle Detection

To determine the recovery rates, a fixed amount of microplastics or natural particles
(Table 6) were added to filtered water. Subsequently, the sample preparation and staining
process were performed (see Section 2.4).
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Table 6. Microplastics and natural particles used for the investigation of the selectivity of the new
Nile red derivatives.

Polymer Abbreviation Mean Size [µm] Supplier/Preparation

Polyethylene PE 303 ± 249 LyondellBasell, Basell Polyolefine GmbH,
Frankfurt, Germany

Polypropylene PP 337 ± 301 LyondellBasell, Basell Polyolefine GmbH,
Frankfurt, Germany

Copolyamide PA 357 ± 60 EMS-Grilltech, Switzerland
Copolyester PES 54 ± 87 EMS-Grilltech, Switzerland

Polyvinylchloride PVC 110 ± 25 Sigma-Aldrich, Germany
Wood - Fine shavings of Quercus spec.
Calcite - Ground shell of Mytilidae
Chitin - Ground exoskeleton of Pandalus borealis

For manual particle counting, the microplastic particles in the images were counted
by hand. Reference images of the stained microplastics and natural particles served as
orientation for the brightness threshold. Automated particle counting was performed
using the microscope software LAS-X 3.0.1423224. Thresholding for the particles was based
on the brightness (respective fluorescence intensity) of the stained particles in reference
images. With a pixel size of 2.5 × 2.5 µm, the minimum size for microplastic particles was
set to 16 pixels, equivalent to 100 µm2 or a particle with a size of 10 × 10 µm. This setting
was chosen, as the minimum retention size of the filter cartridge used in the sampling
process and therefore the detection limit is 10 µm. A script for open-source adaptation of
the particle counting using Image-J can be found in the supplementary materials.

2.4. Sampling

To develop, test and validate the sampling processes using environmental samples,
the effluent of the wastewater treatment plant (WWTP) Landau-Moerlheim was studied
over a period of one year. The WWTP Landau-Moerlheim has a capacity of 80,000 popu-
lation equivalents. The primary treatment applies rakes, a sand trap, and a fat separator.
This is followed by the secondary biological treatment and the tertiary phosphate elimi-
nation. The catchment area of the WWTP contains households, industry, and agriculture,
mainly viticulture.

The sampling process was conducted using a stainless-steel filter cartridge with a
mesh size of 10 µm (01WTGD, Wolftechnik Filtersysteme GmbH & Co., KG, Weil, Germany)
and a 0.9 kW centrifugal pump (MG80B C-B-CMS1B, Grundfos, Erkrath, Germany). A hose
with a pump strainer was put upstream into the WWTP effluent and connected to the pump
inlet (Figure 2). The pump outlet is connected to a valve, to prevent the backflow of water
after the pump has been switched off. The valve is then connected to a hose that is attached
to the inlet of the filter cartridge. At the filter cartridge outlet, a water meter is used to
measure the volume of sampled water, before the water is discharged through the outlet
hose, downstream in the water body. The inflow hoses are made of black polyvinylchloride
(PVC), which does not show a fluorescence signal when stained with Nile red and therefore
does not contaminate the sample. It is recommended to clean the filter cartridge with a
high-pressure cleaner when there is a noticeable decrease of the flowrate.

Before each sampling process, a tap water hose is connected to the outlet of the filter
cartridge; the entire system is backflushed for 3 min. Subsequently, the valve is closed, the
tap water hose removed, and the water meter and outlet hose are connected to the outlet
of the filter cartridge. The pump is subsequently switched on and the valve opened. As
the volume of tap water remaining in the system is 10 L, a total amount of 110 L water is
filtered to receive a sample volume of 100 L.

After the filtration process, the hoses are disconnected from the filter cartridge and
the water remaining in the filter cartridge is poured into a stainless-steel bowl. The filter is
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removed from the cartridge and rinsed into the stainless-steel bowl using a pressurized
spray bottle. For transport and storage, the sample is transferred into a 2.5 L glass bottle.
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Figure 2. Setup for sampling microplastics in water bodies.

2.5. Sample Preparation

Figure 3 shows the scheme of the sample preparation in the laboratory. 500 mL of the
sample are filtered over a 10 µm stainless steel sieve (custom-made, Ø 47 mm, Wolftechnik
Filtersysteme GmbH & Co., KG, Weil, Germany). The stainless-steel sieves are enclosed in
a metal ring so they can be sealed with black Viton sealing rings in the vacuum filtration
system (DURAN® Filtering Apparatus, Cat. No. 257106304, DWK Life Sciences GmbH,
Mainz, Germany), as shown in Figure S2.
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Figure 3. Scheme for the sample preparation procedure. The procedure consists of filtration steps
(1/3), hydrogen peroxide digestion (2), Nile red staining (4) and a transfer of the stained sample to a
black filter membrane (5).

To digest and reduce the number of natural particles in the sample, each sieve is placed
in a 250 mL beaker and covered with 20 mL hydrogen peroxide. A total of 3–5 grains iron
(II)-sulfate are added, and the hydrogen peroxide is heated up. As soon as it is brought to a
boil, it is reduced to 80 ◦C for 4 h and subsequently left at RT for an additional 20 h.

Subsequently, the stainless-steel sieves are removed and rinsed carefully into the
beaker containing the hydrogen peroxide. The mixture in the beaker is then filtered over
the 10 µm stainless steel sieve, and flushed with 100 mL of water, to remove the digested
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organic materials. The particles from the sieve are washed from the surface of the sieve
into the beaker and filled up to 100 mL with distilled water.

For the fluorescent staining, 100 µL of a 0.1 g/L Nile red stock solution in acetone is
added to each beaker (c = 0.1 mg/L). After 24 h the sample is filtered over black disc filters
(Metricel® Black PES Membrane Disc Filters, Pall Cooperation, Dreieich, Germany) and
stored in glass petri dishes.

2.6. Laboratory Requirements and Contamination Control

To prevent contamination of the samples, only glass and metal equipment was used in
the laboratory and beakers and vessels were always covered with aluminum foil [30]. The
laboratory is regularly cleaned with lint free cotton cloths and a HEPA filter is operated to
remove particles from the air. To prevent the entry of clothing fibers, a low-lint protective
suit (4510M, 3M Deutschland GmbH, Ness, Germany) is worn and cleaned with a lint brush
before entering the laboratory. Blanks were measured to control the contamination of the
samples. An average blank value of 5.17 microplastics/L was subtracted from all results.

3. Results
3.1. Low Budget Modification of the Fluorescent Microscope

As explained in Section 2.1, a low budget modification of the fluorescent microscope
is possible by applying a UV-Flashlight (365 nm) and a yellow-colored foil. This method
was originally developed for student experiments or citizen science, to raise awareness on
the topic of microplastics in the environment [29,31]. As seen in Figure S1, the colored foil
has characteristics of a bandpass filter, with a less sharp transition between transmissive
and blocked wavelength (edge steepness). This characteristic can vary strongly between
different-colored foils and only applies for the one tested in this study.

For reliable detection, the microplastics must emit a strong fluorescence signal. Natural
particles should fluoresce only weakly or not at all to prevent false positives [14]. Figure 4
shows the fluorescent images of microplastics, and natural particles stained with NR0
taken with the low budget modification of the microscope. With NR0, PA and PES show
the strongest fluorescence, while PES and PE show a weaker fluorescence. PE shows the
weakest fluorescence.

As natural particles show strong fluorescent signals, it is apparent that the detection
of microplastics without hydrogen peroxide treatment is not possible using this method.
For NR0, the digested natural particles shift their fluorescence to blue and lose their red
or orange signals, a phenomenon likely caused by autofluorescence rather than Nile red
staining [32–34]. Thus, it is easy to distinguish between microplastics and natural particles.
As reliable results require a hydrogen peroxide digestion, this approach is not practicable
without a basic laboratory, which makes it hardly applicable for citizen science.

3.2. Sampling, Sample Preparation and Fluorescent Staining

The sampling process was robust and easy to apply with the developed procedure.
Filtering 100 L of treated wastewater was possible even on days with high turbidity and
particle loads. The time needed per sample was between 10–15 min. The only disadvantage
of this method is that electricity is required.

For the sample preparation process, an essential element is a suitable filtration ap-
paratus. Normal membrane-based filters made from polymers or paper were unsuitable
in preliminary experiments, as particles and microplastics adhere strongly to the filter
surface and cannot be removed completely from the filter surface. Additionally, polymeric
or paper filters may contaminate the samples. Thus, stainless steel filters were imple-
mented. The filters must be rimmed to ensure they can be sealed properly to the vacuum
filtration apparatus.

For the hydrogen peroxide digestion, a relatively aggressive setting was chosen,
with 35% H2O2, iron (II)-sulfate as a catalyzer and a temperature of 80 ◦C, [9,35]. Lower
temperatures and hydrogen peroxide concentrations are less destructive to polymers
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sensitive to chemical digestion, such as polyamide, and for synthetic fibers [9,36]. But due
to the high particle loads in the sampled wastewater, and because Nile red staining is prone
to false positives caused by natural particles, the chosen setting was appropriate.
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Figure 4. Fluorescent images of microplastics and natural particles stained with NR0 (Nile red) taken
with the low budget modification of the microscope Additionally, for the natural particles, the effect
of the hydrogen peroxide treatment (see Section 2.5) is visualized.

The fluorescent staining was performed in an aqueous solution, as previous studies
have shown that this results in a better fluorescence intensity compared to organic sol-
vents [37,38]. Typically, fluorescent dyes are applied by dropping the solutions onto the
filters with the sample [11,39]. One major advantage of staining in water is a more even
contact of the particles with the staining solution, especially for larger particles that are
not evenly wetted when the staining solution is applied on the filter. Further, dropping
the staining solution on the filter risks flushing the particles off the filter. Current re-
search shows that higher staining temperatures could additionally increase the fluorescence
signal [38].

The total working time needed for the sample preparation process was 10–15 min. As
there is a 24-h waiting time for the hydrogen peroxide treatment and the staining process,
results can be obtained within 2 days. Reducing these times would strongly accelerate
the process.

3.3. Long Time Monitoring of Microplastics in the Wastewater Treatment Plant Effluent

To test the methodology, the microplastic concentrations in the effluent of the WWTP
Landau-Moerlheim were measured over a period of one year. For staining, NR0 was
applied. For detection, the low budget method using the yellow-colored foil, UV lamp and
manual counting was applied.

Looking at the images of the samples (Figures 5, S7 and S8) the Nile red staining is
helpful to identify microplastics, especially for samples with high particle numbers. Orange
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and yellow signals originate from microplastics, whereas blue signals are from digested
organic material or from cotton or cellulose fibers.
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Figure 5. Microscope image of the processed and stained wastewater samples from 10.02.2022: (A)
normal photo, (B) fluorescent image.

The results of the long-term monitoring (Figure 6) show a high temporal variation
in the microplastics abundance found in the WWTP effluent. The values range from
1 microplastic/L on 19 May 2022 to 145 microplastics/L on 24 September 2021. The mean
is 41 microplastics/L with a relatively high standard deviation of 38 microplastics/L, due
to the high variability of the microplastic contamination. The median of 24 microplastics/L
shows that there are more values below rather than above the average. This demonstrates
that single subsamples are unsuitable to control the microplastic emission of wastewater
treatment plants. Regular sampling with a high number of samples is necessary to observe
the temporal variations.
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The samples were measured in duplicates and the average was calculated.

With an average water discharge of 17,260 m3/day and 6.3 million m3/year the
average microplastic discharge amounts to 572 million microplastics/day and 209 billion
microplastics/year. With a total of 55,000 inhabitants in the catchment area, this averages to
10,409 microplastics/inhabitant per day and 3.9 million microplastics/inhabitant per year.
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Azizi et al. (2022) reviewed 407 studies of microplastics in wastewater treatment
plants [40]. Reported concentrations were in the range of 0.003–447 microplastics/L in the
effluent of tertiary wastewater treatment plants, with an average of 29 microplastics/L.
Our results fall in the range of the reported contamination levels for wastewater, but due to
the various sampling, sample preparation and detection methodologies across studies, the
results are difficult to compare [41]. This demonstrates the need for standardized sampling,
sample preparation and detection methods. Additional reasons for the observed variations
in the composition of the incoming wastewater may include geographical location, social
aspects, such as the use of plastics and microplastics of people living in the catchment area
and industrial discharges [42].

The results of this study show a higher microplastic contamination during cold weather
periods. However, seasonal variations are not yet fully understood. Some studies show
lower concentrations in rainy seasons due to the dilution of the wastewater with rain-
water [42,43]. Other studies reveal higher microplastic pollution in cold weather periods
related to a higher input of road (surface) runoff that is contaminated by microplastics and a
higher usage of washing machines [44,45]. Another factor affecting the microplastics found
in the effluent is the hetero-aggregation with organic matter and thus the incorporation
into the activated sludge, which affects the settling behavior [46]. The flock formation and
resulting settling behavior is typically better during periods of warm weather.

It was notable that most samples taken before 6 May 2022 were contaminated with
spherical microbeads, which were not detected after this date (Figure S6). These microbeads
are typical for industrial processes, such as polishing or sand blasting, or may be due to the
microbeads found within personal care products. Due to the abrupt change, whereby no
more microbeads were detected, it can be assumed that the contributing industrial process
was changed or shut down.

Temporal variations could also be seen within the sampling days. For example, the
sample taken on 10 October 2022 (Figure S9) shows a strong variation of the contamination
levels within a span of 15 min. Sample A (12:45) has a contamination of 13 microplastics/L
and sample B (13:00) 135 microplastics/L, which is 10 × higher. This demonstrates that the
temporal variations of microplastics also occur on a small-time scale, due to the heteroge-
neous distribution of suspended microplastics in water. Also, almost no fibers were found,
which is unusual for WWTP effluents, which might be caused by the digestion of fibers
during the hydrogen peroxide treatment [47,48]. Therefore, the concentrations are likely to
be underestimated.

3.4. Investigation of the New Nile Red Derivatives for Microplastics Detection

The new Nile red derivatives (NR1), which were developed to make the detection
process more precise through improved staining properties, are tested in Figure 7. Previous
studies have shown that green fluorescence is best suited to avoid false positives by natural
particles [37]. The NR1 show a strong increase in green fluorescence for PP, PA and PES, and
a slight increase for PVC is visible. But hydrogen peroxide treatment of the samples is still
necessary to avoid false positives by natural particles. NR0 with orange fluorescence also
shows good fluorescence for all microplastics except PP, the second most produced plastic
type, which shows only a weak fluorescence. For both NR0 and NR1, blue fluorescence is
unsuitable to differentiate between natural particles and microplastics. Thus, the NR1 with
green fluorescence show the best results for selective microplastic detection and the ability
to distinguish them from natural particles.

Figure S10 shows the results of the fluorescent images taken with the low-budget
modification. Compared to NR0, an increased fluorescence intensity can be observed
for PE. PP and PA have a weaker fluorescence. The digested natural particles maintain
their fluorescence color, but with a weaker signal. Thus, using the combination for the
chosen low budget modification of the microscope and the NR1 is not suitable for reliable
microplastics detection.
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Figure 7. Fluorescent images of microplastics and natural particles stained with Nile red (NR0) and
the new derivatives (NR1). Blue, green and orange fluorescence are compared. Additionally, the
effect of the hydrogen peroxide treatment on the natural particles (see Section 2.4) is visualized.
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The differences between the various polymer types and natural particles are caused
by the solvatochromic effect of the Nile red stain [49]. During the staining process the Nile
red adsorbs to the polymer surface or into the polymeric network [37]. Depending on its
polarity, the emission band of Nile red is altered. The emission of less polar polymers (PE,
PP) is shifted towards green/yellow fluorescence, while the emission of more polar poly-
mers (PA, PES, PVC) is shifted towards orange/red fluorescence. With modern fluorescent
microscopes capable of phasor imaging and fluorescence lifetime imaging, these shifts in
the emission spectra can also be used to determine the specific polymer type [26,50,51].

Previous studies have already shown that the chemical modification of Nile red can
lead to an improved interaction with microplastics and a better selectivity and better
fluorescence signals [37]. The modification of dyes offers an opportunity to significantly
increase the potential of microplastics detection using fluorescent markers and to make the
method more reliable. Also, other promising fluorescent dyes, such as 4-dimethylamino-
4′-nitrostilbene, Rhodamine B, or 4′,6-diamidino-2-phenylindole (DAPI), are currently
discussed in scientific literature, but less investigated than Nile red [52–54].

As microplastics can consist of a large number of polymer types, in further studies
more polymer types, such as polyurethane, polycarbonate, polystyrene, polyethylene
terephthalate or polytetrafluoroethylene should be tested [2,3,17]. It is expected that
polymer types with low polarity as polystyrene or intermediate polarity as polyurethane,
polycarbonate, polyethylene terephthalate are well detectable. Due to its halogenation
polytetrafluoroethylene could lead to similar difficulties in detection as PVC.

3.5. Recovery Rates and Comparison of Automated and Manual Particle Detection

To compare the performance and reliability of the developed methods, recovery rates
of the NR0 and the NR1 were compared (Figures 8, S3 and S4). Additionally, the more
expensive modification for fluorescent imaging of the microscopes using the bandpass
filters is compared with the low-budget method using color foils.
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Figure 8. Measured recovery rates of microplastic and natural particles stained with Nile red (NR0,
1 mg/L) and the newly developed derivatives NR1 (1 mg/L). Green fluorescence: Ex: 420–470 nm;
Em: 500–570 nm; yellow colored foil: Ex: UV-Lamp, Peak 365 nm; Em: Figure S1.
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When comparing the results between the green fluorescence and the yellow color foil
for the NR0 with manual counting, PE and PP can be well detected, while PES and PA are
underestimated, and PVC cannot be detected. The biggest drawback is the risk of false
positives by calcite. But comparing the two modifications (see Figure S5), the yellow-colored
foil and UV lamp are a valid alternative as a low budget method for microplastic detection.

Comparing this to the NR1 and manual detection, the NR1 show a much more precise
detection for PA und PES due to the improved fluorescence properties. Additionally, PVC
can be partially detected. Due to higher brightness differences with NR1, the risk of false
positives is reduced (see Figure 7). This illustrates the advantages of NR1 over the NR0.

Previous studies have shown that differences of the intensity of the fluorescence signals
respective the brightness differences are essential for automated particle detection [17,55,56].
Looking at the automated particle detection, the best and most reliable results are reached
using the NR1 with green fluorescence. Because of the improved fluorescence properties,
it is easier to determine a suitable threshold where the software can distinguish between
microplastics and natural particles [17,55].

For the fluorescence intensity or brightness, there are not only variations between
different polytypes, but also variations within polymer types and even within single
particles. This results in an uneven fluorescence emission and poses an additional challenge
to determine reliable thresholds [17]. Overestimations, for example for PE using the yellow-
colored foil and NR0, were caused by single particles with an uneven fluorescent brightness
being detected as various particles. This effect is visible in the fluorescent images of the
stained reference particles taken to determine the recovery rates (Figures S3 and S4).

The biggest advantage of automated particle counting is that it is a user-independent
process and therefore comparable. Further, automated microplastic detection can be im-
proved by combining different fluorescence wavelengths [56,57]. Currently, setups for
continuous microplastic detection using in-situ fluorescent staining and imaging in flow
cells are being tested [27,28]. This further highlights the potential of automated microplastic
detection using fluorescent staining. New and more reliable fluorescence markers with
improved fluorescence signals and better selectivity for microplastics are essential for this
process. The final goal for in-situ fluorescent detection is to have fluorescent markers which
have such a high selectivity for microplastics, but do not require a sample preparation or
hydrogen peroxide treatment.

3.6. Comparison of Nile Red with the New Derivatives on Wastewater Samples

To compare these results of the monitoring using NR0 with the low budget-fluorescent
microscope to the improved method using the NR1 with green fluorescence, the microplas-
tic levels of nine samples were measured with both methods (Figure 9). The results show
that on average, 3.1 times more microplastics are found when applying the NR1. Looking
at the linear correlation, the slope is 1.4 with an offset of 30.8 microplastics. This may be
due to the improved detection of polar polymers. Only five polymer types were investi-
gated in this study, but the positive effects should also be transferable to the many other
polymer types found in wastewaters and the environment, e.g., polystyrene, polyurethane,
polycarbonate, or polyethylene terephthalate [58,59].

The ratio between manual and automated particle counting is 1.2. This is mainly
caused by both smaller particles and particles with a brightness close to the threshold being
underestimated in the manual counting. This indicates that automated particle counting is
more reliable and comparable than manual particle counting.

Table 7 shows the amounts of microplastics which are extrapolated from the linear
regression. The average discharge increases from 41 microplastics/L to 103 microplastics/L
using the NR1 with green fluorescence and automated counting. Per day and per inhabitant,
it is an increase from 10,409 microplastics to 27,211 microplastics. The chosen fluorescent
dye, imaging and counting method all have a strong influence on the result. This shows
how important it is to have standards for microplastics detection with fluorescent staining
to obtain comparable results. Further research should focus on cross validation of this
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method, e.g., with Raman or FTIR microscopy to ensure its precision. Nevertheless, this
method can be recommended to obtain an estimation of the contamination level and to
investigate temporal variations, where high sample numbers are required. Also, it is
applicable for specific use cases with known polymer types and background contamination,
such as industrial wastewater or in beverages.
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Figure 9. Correlation between the microplastics found in wastewater samples (A) with the Nile
red (NR0) and the new Nile red derivatives (NR1) and (B) the new Nile red derivatives (NR1) with
automated and manual particle counting.

Table 7. Extrapolated results for the improved detection methods. Average values measured with
NR0, the low-budged modification of the microscope and manual counting in the long-term mon-
itoring of microplastics in the effluent of the WWTP Landau were extrapolated using the linear
regressions, as shown in Figure 9.

Average Discharge
NR0

Low Budged Modification,
Manual Counting

NR1
Green Fluorescence,
Manual Counting

NR1
Green Fluorescence,

Automated Counting

per liter 41 87 103
per day 572 million 1269 million 1497 million
per year 209 billion 351 billion 586 billion

Per day and inhabitant 10,409 23,067 27,211
Per year and inhabitant 3.9 million 8.4 million 9.9 million

4. Discussion

Fluorescent staining with Nile red and the low budget modification of the micro-
scope using the UV flashlight together with the yellow-colored foil is an alternative for
inexpensive microplastic monitoring. The modification can be done with materials for
less than EUR 30. The long-term monitoring at the WWTP showed that the sampling,
sample preparation and detection method can be applied to obtain comparable results
of microplastic contamination of waters. Including sampling, sample preparation and
detection, the total working time amounts to 45 min per sample.

To improve the detection process, newly developed Nile red derivatives were tested.
The results show that the chemical modification leads to an increased selectivity in the
staining of microplastics and to a better fluorescence intensity. The recovery rates confirm
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these results. By applying green fluorescence microcopy, microplastics can be detected
more reliably than with the NR0. WWTP effluent samples comparing the new derivatives
with the standard Nile red show on average 3.1 times more microplastics. In addition,
automated particle counting made the process more comparable and reliable, particularly
for smaller microplastics.

This method is especially well suited for routine monitoring of microplastics where
temporal variations need to be controlled and methods such as FTIR microscopy, Raman
microscopy, or Py -GC-MS would result in high costs. It is also well suited for cases where
the polymer composition and background contamination are known, e.g., beverages or
industrial effluents.
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determine the recovery rate of microplastic, and natural particles stained with Nile red derivatives
NR1; Figure S5: Comparison of the photos taken of processed wastewater samples stained with
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