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Abstract: Defect detection using thermal infrared images is used in nondestructive evaluation and
testing because it is easy to use. Thermal infrared images recorded the surface temperatures of the
target with a thermal infrared camera. Image segmentation is a technique to group those pixels with
similar surface temperatures to form thermal patterns. Defects can be identified by the segmented
patterns having different surface temperatures in their neighborhoods. In this study, a hybrid
approach combining fitting energy is proposed for describing the contamination illustrated in the
recorded surface temperatures and regional constants averaging the surface temperatures of the
segmented regions. The numerical implementation is completed by applying the level set functions
on an iteration scheme. The initial level sets evolve till a convergence can be reached. The processed
results demonstrate that the hybrid approach can be used for defect detection.

Keywords: image segmentation; fitting energy; regional constant; level sets

1. Introduction

Defect detection is an essential issue in nondestructive testing (NTD). Thermal infrared
images are widely employed by identifying the recorded surface temperatures presented in
the given thermal infrared images. Defects are usually identified by finding the differences
in surface temperatures. However, the recorded surface temperatures presented in the
thermal infrared images can be contaminated by sunlight refraction and environmental
deficiencies like shadows. Those contaminations make the pixels of the thermal infrared
image contain not only the surface temperature but also extra information related to
those contaminations.

Removing the intensity inhomogeneity presented in the given thermal infrared images
is an important issue in analyzing thermal infrared images. Huang et al. modeled the
shadow effects in a multiplicative way, and the shadow effects can be approximated by
implementing level sets and iteration schemes [1]. Traditionally, Li et al. introduced the local
fitting energy to model the intensity inhomogeneity in their segmentation algorithm [2].
Zhang et al. employed regional standards and regional constants to limit the segmentation
regions [3]. Zhang et al. proposed a hybrid approach combining the fitting energy and
regional constants to segment the given images [4].

Image segmentation grouping those pixels with similar surface temperatures is em-
ployed to identify the defects by finding the differences in the surface temperature. The
authors used their algorithms to approximate the intensity inhomogeneity and simultane-
ously segment the given images. Huang et al. successfully used Zhang’s regional standard
deviations and regional constants to locate those potential defects [1]. They employed a
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hybrid approach combining the local fitting energy and regional parameters (like stan-
dard deviations and regional constants) to approximate intensity inhomogeneity. The
processed results demonstrated that the proposed hybrid approach can be used for defect
detection. The paper is organized as follows. Section 2 introduces the hybrid system,
Section 3 presents a series of thermal infrared images of the side wall of the Administra-
tion Building, Chaoyang University of Technology, Taichung, Taiwan, as the test target to
verify the robustness of the proposed approach, and Section 4 provides the discussions
and conclusions.

2. Hybrid System
2.1. Principal Component Analysis

Principal component analysis (PCA) is widely used to analyze a series of images by
projecting the original data onto a low-dimension space. The projected data can inherit the
major properties from the original data. In doing so, the template image extracted from the
projected data can be analyzed instead of analyzing each given image. Suppose a given
data matrix M can be decomposed as a low-dimension space L and a sparse space S. Then,
M can be given as follows.

M = L + S (1)

Equation (1) needs to satisfy the given condition as follows.

min‖M− L‖ st.rank(L) ≤ k (2)

where k < rank(M). The singular value decomposition (SVD) is applied to find the optimal
approximation.

2.2. Hybrid Systems

The proposed hybrid system contains the local fitting energy and regional parameters
(including regional standard deviations and regional constants). The local fitting energy as-
sumes that the intensity inhomogeneity illustrated in the given image can be approximated
by the local fitting energy [2]. Hence, the local fitting energy can be given as follows [2].

E1(Φ, F, C) =
4

∑
i=1

x
Kσ(x− y)|I(y)− fi(x)|2Mi(y)dydx (3)

where Kσ(x− y) is Gaussian filter with the parameter σ, I is the given image, fi is the local
fitting energy and Mi are the combinations of two-level set functions. Mi is presented
as follows.

M1(φ1, φ2) = H(φ1)H(φ2)

M2(φ1, φ2) = H(φ1)(1− H(φ2))

M3(φ1, φ2) = (1− H(φ1))H(φ2)

M3(φ1, φ2) = (1− H(φ1))(1− H(φ2))

(4)

where φ1, φ2 are level set functions, and H indicates the Heaviside function, shown as
follows [5].

Hε(x) =
1
2

[
1 +

2
π

tan−1
( x

ε

)]
(5)

where ε > 0.
The image model containing the intensity inhomogeneity is incorporated in a multi-

plicative way and regional constants. The image model is illustrated as follows [3].

I =
4

∑
i=1

BCi (6)
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where B is the intensity inhomogeneity, and C_i is the regional constant. The regional
constants are the average values of the segmented regions. Zhang et al. introduced the
standard deviations of the segmented regions into the segmentation algorithm, and the
algorithm can be presented as follows [3].

E2(σ, c, B) =
∫ ( 4

∑
i=1

∫
K(y, x)

(
logσi +

(I− BCi)
2

2σ2
i

)
Mi(Φ)dx

)
dy (7)

where σi are the regional standard deviations of the segmented regions. The hybrid system
is the linear combination of Equations (3) and (7) and is given as follows.

E = ωE1 + (1−ω)E2

+ν
∫
|∇H(φ1)|dx

+ν
∫
|∇H(φ2)|dx + µ

∫ 1
2 (|∇φ1| − 1)2dx

+µ
∫ 1

2 (|∇φ2| − 1)2dx

(8)

where ω, ν, and µ are positive constants.
Then, the local fitting energy can be obtained and given as follows.

fi(x) =
Kσ(x− y)

⊗
(IMi(Φ))

Kσ(x− y)
⊗

Mi(Φ)
(9)

where
⊗

is the convolution operator. Similarly, the regional constants, regional standard
deviations, and the intensity inhomogeneity illustrated in the image can be given as follows.

Ci =

∫
Kσ(y, x)

⊗
(IBMi(Φ))dxdy∫

Kσ(y, x)
⊗
(B2Mi(Φ))dxdy

(10)

σ2
i =

∫
K(y, x)

⊗(
(I − BCi)

2Mi(Φ)
)

dxdy∫
K(y, x)

⊗
Mi(Φ)dxdy

(11)

B =
∑4

i=1
∫

Kσ(y, x)
⊗(

IMi(Φ) Ci
σ2

i

)
dxdy

∑4
i=1
∫

K(y, x)
⊗(

Mi(Φ)
C2

i
σ2

i

)
dxdy

(12)

The iteration scheme is applied such that the level set functions can evolve till the
convergence is reached. Firstly, several parameters are defined as follows.

e1 =
s

Kσ(x− y)|I(y)− f1(x)|2dydx

e2 =
s

Kσ(x− y)|I(y)− f2(x)|2dydx

e3 =
s

Kσ(x− y)|I(y)− f3(x)|2dydx

e4 =
s

Kσ(x− y)|I(y)− f4(x)|2dydx

F1 =
∫

K(y, x)
(

log σ1 +
(I−B(x)C1)

2

2σ2
1

)
dxdy

F2 =
∫

K(y, x)
(

log σ2 +
(I−B(x)C2)

2

2σ2
2

)
dxdy

F3 =
∫

K(y, x)
(

log σ3 +
(I−B(x)C3)

2

2σ2
3

)
dxdy

F4 =
∫

K(y, x)
(

log σ4 +
(I−B(x)C4)

2

2σ2
4

)
dxdy

(13)

The level set functions are rewritten for the time parameter and can be presented
as follows.
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∂φ1
∂t = ωδ(φ1)H(φ2)(e3 − e1) + ωδ(φ1)(1− H(φ2))(e4 − e2) + (1−ω)δ(φ1)H(φ2)(F3 − F1)

+(1−ω)δ(φ1)(1− H(φ2))(F4 − F2) + νδ(φ1)div
(
∇φ1
|∇φ1|

)
+ µ

(
∇2φ1 − div

(
∇φ1
|∇φ1|

)) (14)

∂φ2
∂t = ωδ(φ2)H(φ1)(e2 − e1) + ωδ(φ2)(1− H(φ1))(e4 − e3) + (1−ω)δ(φ2)H(φ1)(F2 − F1)

+(1−ω)δ(φ2)(1− H(φ1))(F4 − F3) + νδ(φ2)div
(
∇φ2
|∇φ2|

)
+ µ

(
∇2φ2 − div

(
∇φ2
|∇φ2|

)) (15)

In doing so, the intensity inhomogeneity can be approximated. Furthermore, the
image can be calibrated by removing the intensity inhomogeneity.

3. Materials for Evaluation

A series of thermal infrared images were taken on 30 January 2019. Those thermal
infrared images were recorded by NEC InfReC R500Pro, and the image sizes of each
recorded image are 480 by 640 pixels. The accuracy of the recorded surface temperature
reached 0.01 ◦C. The test target is the side wall of the Administration Building, Chaoyang
University of Technology, Taichung, Taiwan. There were 80 frames recorded by NEC
InfReC R500Pro, and the highest surface temperature and the average surface temperature
in each recorded thermal infrared image are presented in Figure 1. Figure 2 shows the
images recorded by NEC InfReC R500Pro and a digital camera installed on the thermal
infrared camera.
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Figure 1. Surface temperature ranges of recorded thermal infrared images.

Then, PCA was applied to the recorded thermal infrared images, and the first image
was extracted from the low-dimension space. The extracted image is illustrated in Figure 3.
It is obvious that the information on the surface temperatures was lost because the projected
data onto a low-dimension space could not keep the temperature information. However,
the thermal patterns remained.
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Figure 3. The first image was extracted from the low-dimension space generated by using PCA.

The proposed hybrid system with settings ω = 0.1, µ = 0.00001× 256× 256, ν = 1,
and ∆t = 0.1 was used on the results by employing PCA. The approximated intensity
inhomogeneity is presented in Figure 4. The segmented results are shown in Figure 5. The
calibrated image with removing intensity inhomogeneity is illustrated in Figure 6. The
convergence is given in Figure 7.
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4. Discussions and Conclusions

The proposed hybrid system can segment the given thermal infrared images such that
the differences in the recorded surface temperatures can be identified. From Figure 5, it is
evident that those segmented regions colored in yellow can be potential defects. Different
NDT techniques can be employed to verify the results.

The proposed hybrid system employs the Gaussian function to assume that the in-
tensity inhomogeneity is illustrated at location x and in its neighborhoods. The Gaussian
function shows that for those neighborhoods, their influences decrease while their locations
are far away from location x. With the specified σ, the Gaussian function with different
window sizes is applied in the hybrid system. The window sizes are 5× 5, 15× 15, 25× 25,
and 35× 35. The performance is presented in Table 1. The processing times were calculated
by taking the averages after running the same program ten times. The processing time was
increased with the window sizes. The estimated intensity inhomogeneity is presented in
Figure 8a–d.

Table 1. Performances of Employing Different Window sizes.

Window Sizes Processing Time (s)

5 × 5 256.37

15 × 15 334.43

25 × 25 457.79

35 × 35 610.10
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Figure 8. Estimated intensity inhomogeneity by employing 5 × 5 window sizes.

The intensity inhomogeneity does exist in the thermal infrared images, and its ranges
are in the [0, 1.4]. The small window sizes, like 5× 5, seem to have bigger ranges than those
larger window sizes because the small window sizes give the influences from the neigh-
borhoods such that the ranges are increased. Shadows illustrated in the thermal infrared
images have intensity inhomogeneity, and the effects can be approximated. Furthermore,
the intensity inhomogeneity can be removed. The estimated intensity inhomogeneity
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enhances the original image, while the intensity inhomogeneity is less than 1.0. Otherwise,
the image is smoothed while the intensity inhomogeneity is larger than 1.0. As for that
intensity inhomogeneity equal to 1.0, nothing can be done on the images.

Eventually, the conclusions are given as follows.

(1) Image segmentation can be employed to find potential defects by segmenting the
given thermal infrared images.

(2) PCA can project the given data onto a low-dimension space such that the prop-
erties of the given data can be inherited from the images extracted from the low-
dimension space.

(3) Intensity inhomogeneity does exist, and it needs to be estimated such that the thermal
infrared images can be calibrated.

The proposed hybrid system seems to work well in analyzing thermal infrared images.
Different methods to remove intensity inhomogeneity will be compared in the future.
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