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Abstract: With the increasing global population and agriculture facing numerous challenges due to
climate change, finding sustainable solutions to food insecurity is crucial, as hunger and undernutri-
tion continue to be a global challenge. Plant tissue culture has emerged as a promising technology for
improving and multiplying crops rapidly. However, this technique produces extensive data due to
the intricate interactions between genetic and environmental components, challenging traditional
statistical methods. To address this, researchers are now employing machine learning techniques
which excel in handling large, intricate datasets. Thus, current machine learning applications in plant
tissue culture research are presented in this mini review.
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1. Introduction

Scientific and technological progress has revolutionized every aspect of human ex-
istence in the modern era. From personal well-being to agriculture, innovation has been
critical in meeting the ever-increasing demands of the world’s growing population [1]. As
the global population continues to rise, the urgent need for a consistent supply of basic
essentials, particularly food, becomes more apparent. This demand has pushed agricultural
advancement to the forefront, where higher yields, superior traits, and resistance to biotic
and abiotic stress and other desired agronomic traits have become critical. In this context,
plant tissue culture has emerged as a technique for achieving these goals [2].

Plant tissue culture often referred to as micropropagation or in vitro culture is a method
of growing plants in a nutrient-rich medium under regulated and sterile environment [3].
Explants, such as leaves, roots, and stems, are used to start plant cultures. Exploiting the
totipotentiality of plant cells, these explants can generate into complete plants, yielding
numerous plantlets. All the necessary prerequisites for the growth of the explants are
supplied by the nutrient media [4]. Plant cultures find diverse applications, including the
mass production of superior plants, genetic modification, preservation of germplasm, and
production of disease-free plants [5].

The development of plants in cultures is influenced by factors such as the composition
of the nutrient media, plant genotype, age and explant type, plant growth regulators (PGRs),
and level of phytohormones, among others [6]. The complexity and unpredictability of data
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resulting from these variables pose challenges for analysis using conventional statistical
methods like linear regression and ANOVA [7]. Machine learning (ML) techniques have
come to be an effective technique for addressing this challenge [8], allowing computers
to learn from data and experience, facilitating predictions and classifications [9]. These
techniques include supervised learning in which models are intentionally trained on la-
belled datasets for accurate classification and prediction [9], unsupervised learning which
discovers patterns in unlabeled data for analysis and clustering [10], and reinforcement
learning which learns through action [11]. Recent advances in plant tissue culture research
have employed ML models to interpret complex and nonlinear plant culture data [12].
Hybrid approaches that combine ML and optimization algorithms have been used to study
the relationship between variables such as culture medium composition and plant growth
traits, enabling researchers to identify optimal inputs for maximizing plant biomass [12,13].
This paper offers a succinct summary of the current and potential applications of ML algo-
rithms in plant tissue culture research, laying the framework for applying this technology
in plant improvement through plant culturing.

2. Review of Related Machine Learning-Based Approaches in Plant Tissue
Culture Processes

Artificial neural networks (ANNs) such as neuro fuzzy logic, generalized regression
neural network (GRNN), probabilistic neural network (PNN), radial basis function (RBF),
and Adaptive Neuro-fuzzy Inference System (ANFIS) are commonly applied in plant
tissue culture research. Apart from ANNs, other ML algorithms such as support vector
machine (SVM), random forest, and multilayer perceptron (MLP) are also used. These ML
models can be improved using varying optimization algorithms like Symbiotic Organisms
Search (SOS), Genetic Algorithm (GA), fast Nondominated Sorting Genetic Algorithm
II (NSGA-II), Nondominated Sorting Genetic Algorithm (NSGA), and Multi-Objective
Genetic Algorithm (MOGA).

2.1. Application of Machine Learning in Modelling and Optimizing Plant Culture Mediums

The Murashige and Skoog medium (MS) has long been used as a foundational medium
for starting plant cultures [4]. Its use has, however, been reported to result in certain phys-
iological challenges, potentially stemming from the concentrations of carbohydrate [14],
PGRs [15], or other constituents of the basal media. Consequently, some cultures and plants
are incompatible with MS, necessitating changes to its components [16]. Nevertheless,
modifying the components of the culture medium can be challenging due to its complexity.
Employing ML models streamlines this process, saving time and reducing costs. Several
studies have employed ML algorithms to model and optimize plant culture media, offering
the potential to enhance plant growth and productivity. These algorithms can forecast the
ideal composition of culture media and can undergo further optimization using various
techniques to boost their effectiveness. To optimize and forecast the most optimal hormonal
combination for enhancing the growth of Garnem (G × 15) rootstock in vitro, ref. [13]
employed an ANN paired with a GA to evaluate the impact of varying concentrations
of different PGRs on certain growth parameters. Notably, the ANN-GA model attained
98% accuracy in predicting the optimal hormonal combination. Furthermore, the model
suggested a combination of 1.02 mg/L of 6-Benzyleaminopurine (BAP) and 0.098 mg/L of
Indole-Butyric Acid (IBA) for the maximum proliferation of Garnem rootstock. Similarly,
ref. [17] conducted a comparative assessment of multiple ML models to model and forecast
the in vitro development of cannabis as influenced by carbohydrate concentration and
light quality. These included GRNN, MLP, and ANFIS. Each of these models was paired
with four distinct optimization algorithms and although the disparities among the models
were minimal, the GRNN-SOS pair outperformed all others across all assessed parameters.
Likewise, in ref. [18], MLP was used to predict the optimal medium composition for the
germination of some plum and apricot varieties. The MLP demonstrated a strong corre-
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lation between the expected and experimental result of all assessed growth parameters,
underscoring the model’s high level of performance.

Adequate mineral nutrition plays a crucial role in promoting the growth of cultured
plants. Inadequate mineral supply can lead to morphological abnormalities and reduced
survival rates [19]. Thus, finding the right mix of minerals is of paramount importance.
Numerous studies have been conducted to refine this strategy. Employing ANN-GA, [12]
developed an innovative nutritional medium, Yadollahi, Arab and Shojaeiyan medium
(YAS), for enhancing the in vitro growth of Garnem. This optimized medium, when
compared with the traditional MS and woody plant (WP) mediums, yielded significantly
greater fresh weight, shoot length, and dry weight. In another study, ANN-GA was utilized
to build a new optimized medium (R medium) that promoted Kiwi berry in vitro growth
and reduced physiological abnormalities better than previously used media. The GA
predicted the optimal mineral mix to maximize all measured output [19]. The utilization
of ML and optimization algorithms has brought about a transformation in the analysis of
large datasets, enabling researchers to reveal detailed patterns and hidden links between
plant growth parameters and culture medium composition. This has enabled the tailoring
of culture medium compositions to the unique needs of various plants.

2.2. Machine Learning Application in In Vitro Sterilization

It is critical in the field of plant in vitro culture to ensure the development of healthy
and viable plant material. However, the continuous problem of microbial contamination
is a serious impediment to the healthy growth of plant tissue cultures. Therefore, in vitro
sterilization is critical, involving the use of physical and chemical procedures to remove
impurities [20]. Before now, in vitro sterilization was performed using traditional tech-
niques that were prone to errors, time-consuming, and labor-intensive. Researchers have
begun to explore the use of ML to enhance the efficiency and precision of the sterilization
process, which involves the development of predictive models that can assist in selecting
and combining sterilization agents and conditions optimally. This is achieved through the
analysis of extensive datasets containing experimental outcomes. Numerous studies have
showcased the effectiveness of ML and optimization techniques in elevating the quality
of plant tissue culture sterilization, underscoring their potential to expedite and enhance
the production of top-tier plant materials. In [21], a GRNN-GA approach was employed to
forecast and enhance the concentration of disinfectants and immersion duration required
for the sterilization of cannabis, aiming to improve its in vitro growth. The model exhibited
strong performance, achieving an accuracy score exceeding 90%. During the validation
process, the forecasted optimal combination of 0.008% hydrogen peroxide, 4.6% sodium
hypochlorite, with an immersion time of 16.81 min, effectively eliminated contamination,
yielding a contamination rate of 0%. In a similar context, ref. [22] applied an MLP-NSGAII
approach to optimize the in vitro sterilization process of chrysanthemum. Seven variables,
encompassing AgNO3, Nano-silver, HgCl2, Ca (ClO)2, NaOCl, H2O2, with immersion
durations were the input parameters used for predicting the contamination frequency
and explant viability. The model exhibited an accuracy rate of over 94%. Furthermore, it
indicated that using a NaOCl concentration of 1.62% and immersing it for 13.96 min can
result in 0% contamination frequency and 99.98% explant viability.

2.3. Machine Learning Applications in Somatic Embryogenesis

Somatic embryogenesis is the process of growing embryos from plant cells that are
not typically involved in reproduction (leaf, stem, root, or epidermal cells). This process
eliminates the requirement for sexual reproduction. The presence of somatic embryos
signifies the capacity of plant cells to exhibit totipotency [23]. These somatic embryos find
utility in a range of applications, including the cloning of superior cultivars, the creation
of artificial seeds, genetic enhancement, and the production of secondary metabolites,
among other uses. In [15], a comparison was made between MLP and support vector
regression (SVR) to assess their predictive accuracy for studying the impact of PGRs on
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the somatic embryogenesis of chrysanthemum. SVR consistently outperformed MLP in
all aspects. The greatest number of somatic embryos per explant (56.24) and the highest
embryogenesis rate (99.09%) were achieved using a medium containing 4.70 M kinetin
(KIN), 9.10 M 2,4-dichlorophenoacetic acid (2,4-D), and 18.73 M sodium nitroprusside [24],
which employed an image-processing approach along with an MLP model to forecast the
optimal input combinations (sucrose concentration, 2,4-D concentration, and explant age)
for obtaining the best physical characteristics of embryogenic calluses (perimeter, area, true
density, roundness, and Feret diameter) and the highest count of ajowan somatic embryos.
The most effective parameters were found to be 1.5 mg/L of 2,4-D, 2.5% (w/v) sucrose,
0.5 mg/L of KIN, and 15-day-old explants, both in measured and predicted somatic embryo
production, highlighting the model’s accuracy.

Somatic embryos undergo different developmental stages, including globular, elon-
gated, heart-shaped, expanded, torpedo-shaped, and cotyledonal phases. Due to the
challenging, costly, and time-consuming process of selecting somatic embryos in embryo
cultures, machine learning models are utilized to automate the classification of these em-
bryos into various stages [24]. Techniques like image recognition are applied to streamline
the identification of somatic embryos that are biologically suitable for transfer to another
growth medium, as well as to determine which embryos should be excluded from further
cultivation, as demonstrated in the research presented by [25]. Similarly, ref. [26] used a
penalized logistic regression model to classify the somatic embryos of some based on their
transmittance, absorption, reflectance, or excitation spectra, predicting which ones had
the potential to develop into healthy plants. The model demonstrated strong performance
when applied to previously unseen somatic embryos with diverse genetic backgrounds.

2.4. Machine Learning Applications in Rooting and Acclimatization

Acclimatization and the process of in vitro rooting play pivotal roles in plant tissue
culture [27]. Rooting is a crucial factor for the growth of plants [28]. Acclimatization
happens when cultivated plants adapt to greenhouse or field conditions. Plantlets growing
in controlled in vitro environments are exposed to specialized conditions designed to
reduce stress and enhance plant growth. This results in plantlets with altered anatomy,
physiology, and morphology, necessitating gradual exposure to external conditions [29].
Rooting and acclimatization primarily rely on the levels of auxin and sucrose [29]. In [30],
an MLP-GA combination was utilized to predict and optimize the combination of inputs
that would yield the best composition for promoting an optimal number of roots, nodes per
plantlet, ex vitro leaves, and height during grapevine acclimatization. The model performed
well with a correlation between observed and predicted values close to one. In another
study detailed in [31], neuro-fuzzy logic was applied to model the impact of light intensity
and sucrose content/concentration on kiwifruit acclimatization. The model successfully
identified optimum levels and combinations of inputs to achieve maximum growth and
development during in vitro rooting and acclimatization. In [32], a design of experiments
(DOE) approach was used to create a five-dimensional IV-design space, coupled with a
hybrid of artificial neural networks (ANN) and fuzzy logic to assess the effects of varying
mineral concentrations in a Hoagland mineral solution on growth parameters (newly
formed shoot length, total leaf number, leaf area, leaf chlorophyll content, and hardening
efficiency) and three physiological disorders during the ex vitro acclimatization of Actinidia
arguta. The neuro-fuzzy logic effectively modeled all growth metrics and the occurrence
of a physiological disorder known as leaf necrosis, showing a strong correlation between
observed and predicted values. The ‘IF-THEN’ rule of the model also revealed that Mg2+

and Ca2+ played a positive role in enhancing certain growth parameters and preventing
leaf necrosis but had opposing effects on leaf chlorophyll content. The addition of NO3 to
the media had a detrimental impact on some parameters, while NH4+ in combination with
Cu2+ or Mg2+ positively influenced several growth aspects.
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3. Conclusions

This research looks into the various applications of machine learning and optimiza-
tion algorithms in plant tissue culture. Multiple approaches have been used to optimize
various parameters in plant tissue culture, which can be attributed to the processes’ non-
deterministic and complex nature. The use of ML is this field is attributed to its demon-
strated success in analyzing massive amounts of datasets, which allows the optimization of
the process with fewer resources and less time. Future research could look into creating
ML-based virtual simulations of tissue culture processes to reduce experimental time and
cost, and also integrating ML with gene-editing techniques to accelerate the development
of new varieties.
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