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Abstract: In the present study, we investigated the catalytic power of boric acid used for the
synthesis of 2-alkylidene/arylidene derivatives resulting from active methylene compounds and
4-chlorobenzaldehyde in the presence of 10 mol% of boric acid in ethanol under conventional condi-
tions. We achieved good-to-excellent yields of synthesized products and then characterized them
using conventional spectroscopic techniques.
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1. Introduction

The Knoevenagel condensation, which involves the reaction of aldehydes with active
methylene compounds, is a highly significant chemical conversion with broad application
potential in organic synthesis [1]. It serves as a fundamental method for creating carbon–
carbon bonds, playing a crucial role in the production of pharmaceutically and biologically
active compounds [2,3]. In various organic transformations, boric acid has proven to be
an effective catalyst (Figure 1) [4–10]. Its catalytic properties have been exploited in nu-
merous reactions, including decarboxylation, bromination, amidation, esterification, trans-
esterification, β-acetamido ketone synthesis, condensation reactions, ipso-hydroxylation,
Mannich reactions, aza-Michael addition, and Biginelli reactions, among others. The versa-
tility of boric acid as a catalyst underscores its importance in facilitating diverse synthetic
processes [4–10].
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Figure 1. Different chemical conversion catalyzed by boric acid.
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Multiple mechanisms involving Bronsted acid catalysis have been proposed for the
Knoevenagel condensation process (Figure 2) [4]. The commonly utilized active methylene
compounds include acyclic 1,3-dicarbonyls, as well as analogous compounds such as
malononitrile, acetonitrile, acetyl acetone, acetoacetates, malonates, and others. Various
cyclic compounds, such as oxazepanediones, Meldrum’s acid, etc., were also found to be
employed. In certain instances, isolating the Knoevenagel product becomes challenging
due to the rapid Michael addition of adduct with a second molecule of the active methylene
compound. β, γ-unsaturated products were often observed as part of the isomerization of
α, β-unsaturated products. Various catalysts have been reported, including phase transfer
catalysts (PTCs), KF, Bronsted acids, Lewis acids, and amines and their corresponding
ammonium salts, among others. Further, we did not notice any utilization of metal salts of
such methylene compounds. Consequently, numerous mechanisms have been proposed to
explain the reaction (Figure 2). In addition, our lab has recently explored some biologically
active compounds with the use of various catalysts and theoretical methods [11,12].

Eng. Proc. 2023, 56, 135  2 of 7 
 

 

Figure 1. Different chemical conversion catalyzed by boric acid. 

Multiple mechanisms involving Bronsted acid catalysis have been proposed for the 
Knoevenagel condensation process (Figure 2) [4]. The commonly utilized active meth-
ylene compounds include acyclic 1,3-dicarbonyls, as well as analogous compounds such 
as malononitrile, acetonitrile, acetyl acetone, acetoacetates, malonates, and others. Various 
cyclic compounds, such as oxazepanediones, Meldrum’s acid, etc., were also found to be 
employed. In certain instances, isolating the Knoevenagel product becomes challenging 
due to the rapid Michael addition of adduct with a second molecule of the active meth-
ylene compound. β, γ-unsaturated products were often observed as part of the isomeriza-
tion of α, β-unsaturated products. Various catalysts have been reported, including phase 
transfer catalysts (PTCs), KF, Bronsted acids, Lewis acids, and amines and their corre-
sponding ammonium salts, among others. Further, we did not notice any utilization of 
metal salts of such methylene compounds. Consequently, numerous mechanisms have 
been proposed to explain the reaction (Figure 2). In addition, our lab has recently explored 
some biologically active compounds with the use of various catalysts and theoretical 
methods [11,12]. 

O
B

O

O
H

H H + 2 H2O
O

B
OOH H

H
+

OH H
O
H

H

X
Y

Z

O O
H

X
Y

Z

O O

X
Y

Z

O O

H O
H

H
H O H

X
Y

Z

HO O
+

R O H
O
H

H H O H

O
B

O

O
H

H H
+

H O H

X
Y

Z

O O

O R
H

H
O

B
OOH H

HOH OH
B

HO

OH
X

Y
Z

O O

O R
H H

H
O
H

H H O H
X

Y
Z

O O

O R
H H

H

O
B

OOH H
HOH

OH
B

HO

OH
X

Y
Z

O O

R

boric acid

 
Figure 2. Possible mechanism of Knoevenagel condensation in the presence of boric acid catalysts 
in ethanol. 

The ethanol used to contain small amounts of water reacted with boric acid B(OH)4- 
following the release of H+ in the solution. Based on this, the possible mechanism is shown 
in Figure 2. Initially, an enolate of the activated methylene compound was added to a 
carbonyl group of aldehydes, initially activated by H+, which led to the formation of tet-
rahedral intermediates. It further underwent acid-catalyzed dehydration in response to 
the condensed unsaturated product. The reaction was carried out in a limited amount of 
water; otherwise, under aqueous conditions, the starting material or product would dis-
solve in water or in absence of water, as boric acid does not act as catalyst. Considering 
the potential of boric acid as a catalyst, we developed a new methodology for the synthesis 
of Knoevenagel condensation products (3a–j) (Scheme 1). This methodology utilizes boric 
acid as a catalyst and involves the condensation of active methylene compounds (1a–j) 
with 4-chlorobenzaldehyde (2) in aqueous ethanol at room temperature. 
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Figure 2. Possible mechanism of Knoevenagel condensation in the presence of boric acid catalysts
in ethanol.

The ethanol used to contain small amounts of water reacted with boric acid B(OH)4
-

following the release of H+ in the solution. Based on this, the possible mechanism is
shown in Figure 2. Initially, an enolate of the activated methylene compound was added
to a carbonyl group of aldehydes, initially activated by H+, which led to the formation of
tetrahedral intermediates. It further underwent acid-catalyzed dehydration in response
to the condensed unsaturated product. The reaction was carried out in a limited amount
of water; otherwise, under aqueous conditions, the starting material or product would
dissolve in water or in absence of water, as boric acid does not act as catalyst. Considering
the potential of boric acid as a catalyst, we developed a new methodology for the synthesis
of Knoevenagel condensation products (3a–j) (Scheme 1). This methodology utilizes boric
acid as a catalyst and involves the condensation of active methylene compounds (1a–j)
with 4-chlorobenzaldehyde (2) in aqueous ethanol at room temperature.
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2. Materials and Methods

The synthesis experiments were conducted using commercially available p-Chloro-
benzaldehyde, active methylene compounds, and solvents obtained from commercial
chemical sources. These chemicals were utilized in their as-purchased state without under-
going any purification procedures. The reactions took place in a reaction vessel equipped
with a condenser under atmospheric pressure and magnetic stirring. Melting points re-
ported herein were uncorrected and checked using traditional methods. All synthesized
compounds were tested for their 1H-NMR spectra, with CDCl3 as a solvent on a Bruker
NMR machine. Shimatzu GCMS was used to analyze the molecular masses of synthesized
compounds. A Bruker Tensor 2 model was used to record the Fourier transform infrared
spectroscopy (FTIR) of compounds.

Synthesis

To perform the synthesis, 1 mmol of p-chlorobenzaldehyde and 1 mmol of active
methylene compounds were dissolved in 5 mL of aqueous ethanol at room temperature.
Then, 10 mol% of boric acid catalyst was added and the solution was stirred on a magnetic
stirrer until the reaction was complete (reaction time recorded in the following table). The
completion of the reaction was monitored by performing TLC in a mixture of 10 parts of
ethyl acetate and 1 of part hexane. After the reaction was complete, the contents were
cooled in an ice bath; the solid product was filtered and then it was either washed with
cold ethanol or the product was extracted in ethyl acetate. The yield and melting point
were recorded, and the product was characterized by performing spectral analysis.

3. Results and Discussion

For the synthesis of various heterocyclic compounds from active methylene com-
pounds, the Knoevenagel condensation product was obtained as an intermediate or it was
deemed one of the major impurities formed during the reaction due to a slight excess
of reagents [4–10]. Therefore, synthesizing such an intermediate is crucial. To identify a
suitable catalyst for the Knoevenagel condensation between 4-chlorobenzaldehyde and
malononitrile in aqueous ethanol at room temperature, we conducted the reaction in the
presence of various organic compounds and salts, including diethylamine, morpholine,
ammonium chloride, sodium bicarbonate, copper sulfate, ferric chloride, nickel chloride,
nanomaterials, sodium bicarbonate, boric acid, L-proline, etc.

Our research unveiled boric acid as a highly efficient catalyst, demonstrating remark-
able catalytic activity, a high product yield, and facile purification via cold ethanol washing.
To enhance the scope of boric acid’s catalytic applications, we conducted Knoevenagel
condensation reactions between 4-chlorobenzaldehyde and various acyclic and cyclic ac-
tive methylene compounds. The results unequivocally established boric acid as a potent
Bronsted acid catalyst for this reaction. In the characterization of unknown compounds,
infrared spectroscopy emerged as a valuable tool, particularly for identifying functional
groups. However, extracting comprehensive structural information solely from an infrared
spectrum can be challenging due to the presence of multiple absorption bands.

Notably, the carbonyl group, indicative of a carbon–oxygen double bond, manifested
distinct and localized vibrations in numerous interacting compounds. Within esters and
ketones, the absorption range for the carbonyl group was observed between 1753 and
1674 cm−1. Furthermore, the C-O stretching vibrations of esters and ethers were evident
within the 1300–1100 cm−1 region. Characterizing aromatic compounds frequently revealed
strong bands below 1000 cm−1. Regarding the aromatic ring’s C=C bonds, absorption bands
were observed in the range of 1600–1500 cm−1. Moreover, the cyanide group of compounds
3a-b exhibited prominent stretching vibrations at 2222–2225 cm−1, while the newly formed
olefinic bond was characterized by stretching vibrations in the range of 1564–1609 cm−1.
The formed olefinic bond showed a strong absorption band around 1485 cm−1 in 3i-3r. The
product formation was confirmed by recording the GC-MS of the molecules. In the mass
spectra of (3a) and (3f), two peaks (M and M + 2) were observed with an intensity ratio of
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3:1. The yield of the product depends on the reactivity and stability of the active methylene
group, rather than the electronic nature of the group attached to the aldehydes (Table 1)
(Please refer Supplementary Material for spectral data).

Table 1. Reaction time, yield, color, physical constant, and IR stretching wavenumbers of Knoevenagel
condensation adduct (3a-j).

Active Methylene
Compounds Product Color Yield (%) Reaction

Time (min) m.p. (◦C)
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4. Conclusions 
In conclusion, the synthesis of heterocyclic compounds using the Knoevenagel con-

densation reaction involving active methylene compounds is a valuable method in organic 
chemistry. The Knoevenagel condensation product serves as an intermediate or a major 
impurity in the reaction due to the excess use of reagents, highlighting the importance of 
synthesizing and understanding such intermediates. Through extensive experimentation, 
boric acid has been identified as an effective catalyst for Knoevenagel condensation, ex-
hibiting good catalytic activity and high yields, and facilitating the easy purification of 
products. The reaction between 4-chlorobenzaldehyde and various acyclic and cyclic ac-
tive methylene compounds has demonstrated the versatility and efficiency of boric acid 
as a Bronsted acid catalyst. The characterization of synthesized compounds through spec-
tral analysis techniques, including proton magnetic resonance (PMR) spectroscopy, mass 
spectrometry (GC-MS), and infrared spectroscopy (FTIR), has provided insights into the 
structural features and functional groups present in the products. Overall, the findings of 
this study help to improve our understanding of boric acid and its application as a catalyst 
in the synthesis of heterocyclic compounds using the Knoevenagel condensation reaction. 
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active methylene compounds has demonstrated the versatility and efficiency of boric acid
as a Bronsted acid catalyst. The characterization of synthesized compounds through spec-
tral analysis techniques, including proton magnetic resonance (PMR) spectroscopy, mass
spectrometry (GC-MS), and infrared spectroscopy (FTIR), has provided insights into the
structural features and functional groups present in the products. Overall, the findings of
this study help to improve our understanding of boric acid and its application as a catalyst
in the synthesis of heterocyclic compounds using the Knoevenagel condensation reaction.
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