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Abstract: In order to plan and manage low-carbon investments in wide real estate assets, in this
research, a strategic approach is developed to act on building stocks as a whole, with the aim of
overcoming the single-building perspective and identifying the energy retrofit level leading to the
maximum possible benefit. It is shown how artificial intelligence (AI) and optimization computing
are essential to the creation of the decision-making process. In fact, energy improvement consists of
an optimization problem in which conflicting objectives and constraints are balanced, and several
techniques are integrated to achieve a unified result, including machine learning, economics, building
energy simulation, computer programming, optimization, and risk analysis. This target is achieved
by means of Artificial Neural Networks (ANNs) for energy consumption assessment, an Analytic
Hierarchy Process for energy retrofit compatibility assessment, and an evolutionary optimization
algorithm for the achievement of the optimal configuration of intervention on the stock, maximizing
the energy and economic performance of the investment. The proposed procedure is validated on the
case study of a building asset located in Northern Italy. Since the developed model relies on AI-based
algorithms, it has a consequent limitation: the developed ANNs can work only for the building types,
occupation profiles and climatic areas that were used in the training phase. In further development
of this research, the aim will be to expand the generalization properties of the forecasting tool.

Keywords: artificial neural networks; artificial intelligence; machine learning; optimization; energy
retrofit; buildings; real estate

1. Introduction

The present research discusses the integration of artificial intelligence (AI) and opti-
mization computing to sustain energy retrofit investments in complex real estate assets.

It is well known that, during the last few years, the efforts dedicated to achieving
energy sustainability in the building sector have exponentially increased, promoting deep
retrofit cycles, district approaches [1] and cost-optimal strategies [2]. A focused analysis
of the state of the art highlighted that research and practice struggle to act on building
portfolios as a whole, preferring to conduct tailored studies on one building at a time
due to the huge complexity of the process and the high level of reliability of the forecasts
required [3]. This, however, leads to the loss of the optimized and strategic benefits that
could be generated by a unified programming, targeted to reach the maximum possible ben-
efit. The single-building perspective should be overtaken, and new methodologies should
be able to handle built assets as a whole in order to implement energy retrofit programs
to obtain the maximum benefits in a domain of economic and technical constraints [4–7].
In this direction, artificial intelligence, machine learning and computing algorithms can
be extremely useful for mass appraisal energy assessments [8–10], building energy retrofit
designs [11], decisional criteria [12], optimization processes [13,14] and decision-making
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procedures [15–18]. Artificial Neural Networks (ANNs) have been successfully employed
in this research field, obtaining very accurate results [15].

2. Materials and Methods

This paper employs an AI-driven approach to optimize the definition of building
energy retrofitting at a district scale. The scope of going beyond the single-building
perspective is to identify the set of energy retrofit actions that can provide the greatest
possible benefit in terms of economic, environmental, and architectural targets [19]. For
this purpose, it is necessary to collect a huge amount of data on buildings’ energy profiles,
produce an energy demand AI-based simulation tool, suggest and test several energy
retrofit interventions, assess the associated retrofit costs and the respective energy savings,
define the domini of feasibility of the analysis, perform iterative project simulations on the
given building asset in tandem with an optimization tool, and identify the most convenient
energy retrofit configuration for each building of the given asset. Specifically, the AI-based
procedure applied in this paper can be split into the following phases:

• The first problem the research faces is the assessment of energy uses and energy-
efficiency potentials for a building asset counting a plethora of premises, which ends up
being a problem of mass appraisal [20] and screening evaluation [21]. To address this
first issue, 100,000 parametric simulations are run in Energy Plus and validated on real
case studies. Such simulations associate the varying building characteristics (envelope,
installations, dimension, etc.) with the corresponding primary energy consumption.
As illustrated in Figure 1, this allows the planner to harness the availability of a
detailed database to train a set of ANNs to forecast the building energy consumption
as a function of the building’s features. In particular, the ANNs produced calculate
the yearly primary energy demand for heating, cooling, hot water, and electricity in
residential buildings, depending on building size, envelope properties and several
energy plants parameters.
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• The second phase of the research is dedicated to the definition of different energy
retrofit options that can be differently implemented on the built asset [11]. Among
them are the installation of thermostatic valves, mechanical ventilation, heat recov-
ery systems, condensing boiler, low-emission windows, high-efficiency illumination
systems, and internal/external wall/roof insulation. In particular, every possible com-
bination of the retrofit options on the buildings of the stock represents an alternative
scenario of intervention.

• In order to understand which could be the best retrofit scenario to be implemented on
every building of a stock, three performance indexes are introduced [12]. The three
indexes measure the impact produced in terms of energy, monetary and architectural
aspects. The energy savings (ES) are assessed using the neural networks, comparing
the energy consumption before and after the retrofit. The net monetary savings (NS)
are estimated based on a Life Cycle Costing approach. The architectural compatibility
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of the retrofit measure on the building is assessed by means of an Analytic Hierarchy
Process (AHP), presented in Figure 2, developed by interviewing a commission of
ten experts in the fields of energy retrofit, architecture, restoration, technology, and
economics. The AHP allows us to quantify the architectural compatibility of the
interventions through the assessment of a restoration score (RS).

Eng. Proc. 2023, 56, x 3 of 6 
 

 

compatibility of the retrofit measure on the building is assessed by means of an An-
alytic Hierarchy Process (AHP), presented in Figure 2, developed by interviewing a 
commission of ten experts in the fields of energy retrofit, architecture, restoration, 
technology, and economics. The AHP allows us to quantify the architectural compat-
ibility of the interventions through the assessment of a restoration score (RS). 

 
Figure 2. AHP structure. 

• After the three decisional indexes, ES, NS, and RS, have been established, an evolu-
tionary algorithm is launched to test out the overall benefits produced by every sce-
nario if applied to the buildings of a stock and select the best scenario. As in Figure 
3, the algorithm iteratively calculates the indexes for every scenario of intervention 
inside the feasibility domain, as a sum of the benefits/costs for each building. The 
target is the optimal configuration of interventions over the stock, i.e., the one that 
simultaneously maximizes the three indexes within the declared constraints [13,14]. 

 
Figure 3. Optimization process. 

• In the final part of the research, a risk analysis studies how the uncertainty factors 
may impact the results of the chosen configuration of interventions [22]. 
The overall methodology is finally resumed in Figure 4. The procedure described 

above is supported by a tailored calculation tool made of the following components: (I) 
Input file construction. (II) Tool for the assessment of yearly energy consumption by 
means of the Artificial Neural Networks, of the costs of investment for the energy retrofit 
intervention, and of the restoration score. Such parameters are iteratively assessed using 
the calculation tool for each building and each retrofit configuration. (III) Optimization 
process aimed at identifying the most convenient combination of energy retrofit scenarios 
for the entire asset of buildings, based on the simultaneous maximization of ES, NS, RS. It 
consists of a single-objective evolutionary algorithm, namely an algorithm where the cost 
function is equal to the sum of normalized ES, NS and RS, for each combination of energy 
retrofit configurations. (IV) A risk analysis tool investigating how uncertainty factors may 
vary the results of the chosen configuration of interventions, defining the most probable 
outcome, the worst-case scenario, and the optimal case scenario. 

Figure 2. AHP structure.

• After the three decisional indexes, ES, NS, and RS, have been established, an evolution-
ary algorithm is launched to test out the overall benefits produced by every scenario
if applied to the buildings of a stock and select the best scenario. As in Figure 3, the
algorithm iteratively calculates the indexes for every scenario of intervention inside the
feasibility domain, as a sum of the benefits/costs for each building. The target is the
optimal configuration of interventions over the stock, i.e., the one that simultaneously
maximizes the three indexes within the declared constraints [13,14].
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• In the final part of the research, a risk analysis studies how the uncertainty factors
may impact the results of the chosen configuration of interventions [22].

The overall methodology is finally resumed in Figure 4. The procedure described
above is supported by a tailored calculation tool made of the following components:
(I) Input file construction. (II) Tool for the assessment of yearly energy consumption by
means of the Artificial Neural Networks, of the costs of investment for the energy retrofit
intervention, and of the restoration score. Such parameters are iteratively assessed using
the calculation tool for each building and each retrofit configuration. (III) Optimization
process aimed at identifying the most convenient combination of energy retrofit scenarios
for the entire asset of buildings, based on the simultaneous maximization of ES, NS, RS. It
consists of a single-objective evolutionary algorithm, namely an algorithm where the cost
function is equal to the sum of normalized ES, NS and RS, for each combination of energy
retrofit configurations. (IV) A risk analysis tool investigating how uncertainty factors may
vary the results of the chosen configuration of interventions, defining the most probable
outcome, the worst-case scenario, and the optimal case scenario.
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3. Results Discussion and Conclusions

The procedure proposed by the authors was tested in an exemplary case study to
test the feasibility of the procedure itself, as well as the consistency of the results. For this
purpose, a building asset placed in Bologna was considered to verify the reliability of the
ANNs forecasts, as well as the ES, NS and RS parameters assessments, and the effectiveness
of the optimization algorithm in the identification of the most convenient combination of
energy retrofit configurations. A residential building stock of a total of 34,411 sqm was
considered, and the primary energy consumption before retrofit was assessed by the ANNs
to be 1808.55 kWh/sqm. After the implementation of the model, the optimal configuration
of intervention led to a total primary energy consumption of 1169.88 kWh/sqm. The total
investment brought a net benefit of EUR 967,140 after 20 years.

In conclusion, the proposed procedure takes advantage of AI in a way that is able to
automate complex calculations and decision-making processes. In fact:

• The developed Artificial Neural Networks can calculate the yearly primary energy, gas
and electricity consumption in about 1/1000th of the time needed by usual building
energy simulation software.

• The introduction of AHP automates compatibility decisions.
• The optimization algorithm automatically seeks the best solution, being able to launch

and guide the search for the optimum solution among millions of available combina-
tions of energy retrofit configurations on a large building stock.

Finally, the authors recall the purpose of the proposed calculation tool: it is aimed
at assessing the best combination of energy retrofit configurations at a stock level, i.e.,
when there are too many options available for a manual trial-and-error approach and a
guide to the most convenient scenario can greatly increase the speed and reliability in
the further design refinements of the energy retrofit interventions. As such, the main
contribution of this study is the attempt to fill the lack in the research and practice in
the application of a methodology for energy retrofit assessment to wide building stocks,
thus overcoming the single-building perspective. The model shows high flexibility when
comparing multiple scenarios, thanks to the use of AI-integrated tools. This approach can
be useful for real estate investors and stakeholders, helping to determine the optimal set
of interventions for a multiplicity of buildings supported by this decisional model. The
methodology produced allows the planner to pursue multiple targets at once, in agreement
with recent EU Directives: maximum energy savings, economic savings and compatibility,
within a domino of feasibility constraints like budget availability, technical incompatibilities,
timings, and pre-set energy/monetary minimum benchmarks.
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On the other hand, algorithms which, like this one, are based on a highly numerical
procedure might be difficult to check and control. For this purpose, the authors plan to
assist the user by means of a series of intermediate output diagrams to control the results.
Moreover, the developed ANNs can be used only for assessing the energy demand of
residential buildings with occupancy profiles similar to the ones used for the training.
Therefore, in future releases, more refined algorithms will be used, in order to implement
additional features and make the tool more flexible for other building typologies.

The research will be also improved by the Authors by testing it on other building
stocks and enlarging the domains of building energy simulations, thus increasing the
interventions options covered and the building characteristics considered. Moreover, the
Authors are also working on the collection of a large database of building market values
in Italy, paying special attention to the energy class of the premises. This database will be
integrated in the model developed here in order to assess the market value of buildings
after their energy refurbishment.
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