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Abstract: This paper outlines the development of a high-performance maximum power point tracking
(MPPT)-based solar irradiance estimator for photovoltaic (PV) systems. The suggested estimator is
constructed around a simple current–voltage-based algebraic equation that hinges on the operation
of the PV system at its maximum power point (MPP). In the realm of MPP operation, the overall
system is driven by a nonlinear MPPT controller. To achieve this function, we integrated a hybrid
incremental conductance integral backstepping (H-INC-IBS) controller to effectively regulate the PV
system. This controller was specially chosen for its powerful potency in maximizing the dynamics of
the PV system, leading to heightened robustness against changing environmental conditions. The
simulation results are provided to showcase the suitability of the proposed estimator. Furthermore,
the estimator was verified under experimental conditions, highlighting its soundness and practicality.
Through evaluations and comparisons with the conventional irradiance estimator, this paper aimed
to emphasize the superiority of the proposed solar irradiance estimator in providing more accurate
estimations of solar irradiance for PV systems operating under MPPT supervision.

Keywords: PV; MPPT; solar irradiance estimator; hybrid incremental conductance integral backstep-
ping (H-INC-IBS)

1. Introduction

In recent years, nonconventional energy sources, such as solar energy, have gained
popularity due to growing energy demands and environmental constraints. Through
the use of photovoltaic (PV) cells, solar energy can easily be transformed into electrical
energy. PV sources offer several advantages, including low maintenance costs, no moving
or rotating parts, and pollution-free energy conversion. Despite such unique features, they
are still very expensive, and more innovative techniques are required to increase their
efficiency and reduce their final cost [1]. For example, maximum power point tracking
(MPPT) in PV systems has been identified as an important consideration for improving the
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operational efficiency of PV systems [2–5]. Operationally, solar irradiance is one of the most
important and functional parameters of every PV system. Monitoring the performance
of such systems requires information related to the state of solar irradiance. Monitoring
solar irradiance is not only important for PV systems, as the supervised parameter inter-
sects largely with many interdisciplinary fields, including agriculture and environmental
science [6]. When it comes to measurement, the Pyranometer is considered one of the most
commonly used instruments for directly measuring solar irradiance [7]. Pyranometers are
not cost-effective, have several sensors, and must be positioned in the direction of their
corresponding panels [8]. Rather than employing expensive direct measurement methods
for solar irradiance, numerous studies are resorting to estimating this intricate parameter.

The method presented in [9] makes use of the short-circuit current of the PV module,
which can be measured using a readily available current sensor. This is one of the simplest
and most cost-effective methods for estimating irradiance; however, it only provides
moderate accuracy. Furthermore, it requires periodic short-circuiting of the PV module
terminals, which, from an energy productivity point of view, represents a poor approach.
A similar work presented in [10] avoids the classical use of a solar irradiance sensor
(Pyranometer) to estimate irradiance. By using a low-cost microcontroller, information on
both the short-circuit current (Isc) and the open-circuit voltage (Voc) is supervised. With
these measurements, the method computes the electrical equation of the PV module using
a fixed-point iteration technique. The major limitation of the latter approach lies with
the fact that the load must be periodically disconnected from the PV panel to measure
the open-circuit voltage and short circuited to obtain the short-circuit current. When
conducting direct measurements, seeking both the Isc and the Voc of the solar panel
proves intricate. Hence, the accuracy involved would be conditioned by the degree of
asynchronization tolerated in measuring these parameters. In a PV-connected system, it is
crucial to estimate the irradiance without altering the system operating point. For instance,
a PV system composed of a solar panel and a maximum power point tracking (MPPT)
controller is supposed to operate at a unique point, the maximum power point (MPP).
Abruptly distorting this point with a short or open circuit can deteriorate the performance
of the MPPT controller, which can further negatively affect the whole PV system from an
energy point of view. This is the principal reason why the Isc and Voc methods in [9,10],
are not highly recommended for PV-connected systems. The method presented in [11]
makes use of the interpolated link between irradiance and voltage across a 50 Ω resistor to
mathematically calculate the former. The accuracy achieved by this method is moderate
due to the approximate expression between solar irradiance and output voltage across the
resistor. Furthermore, the major flaw in this method lies in its dependence on fitted data.

The method presented in [12] exploits the nonlinear electrical current–voltage (I–V)
equations of the PV cell and some suitable reparameterization to compute solar irradiance
with a guaranteed level of stability. However, this method is PV-model-based and demands
the use of some internal parameters of the PV module, which are not often readily available.
Although irradiance can be successfully computed with attractive stability, the accuracy
of this method is conditioned by the measurement of the PV array temperature, which
is often not easy to acquire. An improved version of the estimator in [12] is presented
in [13]. This work derives a nonlinear equation from which solar irradiance can be directly
computed, provided that accurate measurements of PV array temperature, current, and
voltage are available. Compared to the previously reported estimator of solar irradiance,
the latter work is superior due to the following reasons: it does not require changing the
PV operating point for sensing the Isc and Voc, as in [9,10], and it does not demand an
iterative algorithm, as in [10]. The method is void of approximate expressions or fitted
data, as in [11], and does not require the integration of data, as in [12]. However, the
accuracy of the method is conditioned by the measurement of temperature. In practice,
PV systems are conditioned by continually changing environmental conditions. These
varying conditions induce systematic variations in the maximum power point. To improve
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the performance of PV systems, MPPT controllers are usually improvised between the PV
system and the load [14].

In the realm of MPPT, numerous algorithms and controllers have been proposed in
the literature. A computational-intelligence-based MPPT method was developed in [15].
This method combines a modified invasive weed optimization algorithm, belonging to
the class of evolutionary algorithms, and the P&O algorithm in a hybrid scheme. The
hybrid technique is a pertinent improvement of the P&O algorithm as it enhances the
search performance for the maximum power output of the PV systems. However, its
principal limitation is the slow convergence of the tracking process attributed to the lengthy
optimization algorithm time. Furthermore, the algorithm does not tackle the problem of
oscillations around the MPP exhibited in the conventional P&O method. In a grid-connected
regime, a hybrid optimization MPPT algorithm was proposed in [16], which combines
fuzzy logic control and particle swarm optimization (PSO) applied to a buck-boost zeta
DC-DC converter. The MPPT method is applied to a grid-injected PV system. However, the
applicability of the algorithm for estimating solar irradiance was not investigated by the
authors. A hybrid MPPPT algorithm was proposed in [17], which combines a simplified
firefly and a neighborhood attraction firefly for maximum power point tracking. Using a
high-gain step-up SEPIC converter, the authors showed that the new algorithm is efficient
for MPPT operation and high step-up voltage applications, such as electric vehicle charging
systems. However, the algorithm was not applied to the estimation of solar irradiance in
PV systems. To address the problems of poor MPPT performance of MPPT algorithms
under variable solar insolation, [18] synthesized a novel learning algorithm based on the
TS-fuzzy Radial Basis Neural Network. Although the algorithm offers rapid PV power
tracking under fluctuating solar irradiance, its complexity moderates its practical feasibility.
Moreover, the suitability of the proposed MPPT method was not investigated for solar
irradiance in PV systems.

Although numerous maximum power point tracking algorithms have been recently
developed, it is evident that only a few have shown the possibility of exploiting the
PV system at the maximum power point (MPP) to estimate solar irradiance. This is an
effective approach because certain impositions and sensors, such as temperature sensors,
are not required. Moreover, such a method is PV-model free, hence it can provide better
levels of accuracy. The most prominent work in this vein is the MPPT-based estimator
that was recently proposed in [6]. The latter study presented a simplified MPPT-based
equation to compute solar irradiance on the PV module. Considering that the estimator
depends on the MPP, its performance is dictated by MPPT operation. Originally, the
authors proposed conventional MPPT algorithms, such as P&O, to drive the PV system
at the MPP. Recent progress in MPPT research has shown that conventional algorithms
present problems, such as oscillations at the maximum power point and a tradeoff between
dynamic response and steady-state oscillations [3,5,7]. These problems are inherent in
conventional MPPT algorithms and will consequently impact the performance of the
MPPT-based estimator. Therefore, to improve the performance of the estimator, it is crucial
to regulate the PV system using MPPT controllers that ensure overall high performance of
the solar estimator. MPPT algorithms have not received sufficient attention on the subject of
solar irradiance estimation. The present state of the literature shows that only conventional
MPPT algorithms have successfully been applied to the estimation of solar irradiance in PV
systems. On the other hand, these conventional algorithms are limited and do not allow for
maximizing the potential of the MPPT system to estimate solar irradiance.

In this paper, we seek to improve the performance of the conventional MPPT-based
estimator by regulating the PV system with a recently proposed nonlinear MPPT controller.
The MPPT controller is based on the hybrid incremental conductance integral backstepping
(H-INC-IBS) algorithm [14]. Because of its nonlinear features, this controller is a very robust
choice for MPPT applications. In this way, the proposed estimator acquires the robust
characteristics of the H-INC-IBS algorithm.
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A comparative study of the proposed estimator and previously published works is
presented in Table 1, confirming that the MPPT-based estimation of irradiance has been
limited to the use conventional algorithms. Due to the shortcomings of the conventional
scheme, estimated solar irradiance fluctuates significantly at a steady state and is unreliable
in the event of fast-changing operating conditions. In order to demonstrate the unique
features of the proposed estimator, it was compared against the estimator based on the
conventional MPPT algorithm. The simulation and experimental results showed substantial
improvements in estimator performance when the proposed nonlinear MPPT controller
was used to drive the PV system. The rest of this paper is composed as follows: The
design of the proposed system is presented in Section 2. In Section 3, the major results are
discussed and our conclusions are presented in Section 4.

Table 1. Comparative study between the proposed estimator and previously published works.

Ref. Year Method of Solar
Irradiance Estimation MPPT Algorithm Key Remarks

[9] 2013 Short-circuit current
method N/A

- Requires periodic short-circuiting of
the PV terminals

- Not suitable for connected PV systems

[10] 2012 Short-circuit/open-circuit
voltage method N/A

- Requires periodic short-circuiting and
open-circuiting of the PV terminals

- Not suitable for connected PV systems

[11] 2011 Interpolation method N/A Requires fitted data

[12] 2014 PV-model-based N/A Requires some internal parameters of the PV
model, which are not often fully available

[13] 2016 Analytical method N/A Analytical equation relies on internal
parameters of the PV model

[19] 2021 N/A Hybrid P&O-based Modified Invasive
Weed optimization algorithm MPPT not evaluated for irradiance estimation

[16] 2019 N/A Hybrid PSO fuzzy logic controller MPPT not evaluated for irradiance estimation

[17] 2022 N/A Firefly optimization MPPT algorithm MPPT not evaluated for irradiance estimation

[18] 2022 N/A TS fuzzy Radial Basis Neural Network MPPT not evaluated for irradiance estimation

[6] 2018 MPPT-Based Conventional algorithm

- Oscillations at steady state due to limi-
tations of the conventional algorithm

- Low dynamic response under fast-
changing irradiance conditions

[Proposed] 2023 MPPT-Based H-INC-IBS

- Negligible oscillations at steady state
- Suitable for fast-changing conditions

due to the robustness of H-INC-IBS
- Better accuracy than [6]

2. Design of the Proposed System

The PV system under study is presented in Figure 1. It consists of a solar PV panel,
a dc–dc boost converter coupled with load, an MPPT system (H-INC-IBS MPPT), and
an estimator of solar irradiance. The solar PV panel is driven by the H-INC-IBS MPPT
controller. The estimator receives measurements of current and voltage from readily
available current and voltage sensors and makes use of the system’s operation at the MPP
to compute solar irradiance. In reality, concerning MPPT, the boost converter shown in
Figure 2 is used to implement the regulatory algorithm.
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The converter is made up of a coupling capacitor (C1), inductance (L), a switch (K),
a diode (D), and an output capacitor (C2). This converter, among other power electronics
converter topologies, was chosen for its simplicity and higher efficiency in MPPT PV appli-
cations [20]. The following average dynamic model regulates operation of the converter in
a continuous conduction mode [21]:

.
x1 = iPV − x2

C1.
x2 = x1

L − x3
L (1 − u)

.
x3 = x2

C2
(1 − u)− x3

C2R

(1)

where [x1 x2 x3]
T =

[
Vpv iL Vo

]T
= x are the state variables of the converter and u is the

control input. A nonlinear controller can be designed to exploit this full dynamic and realize
the control objective. We required the PV voltage to operate at a certain MPP reference
Vre f . Since this variable is the first state of the system, it can be written as x1re f = Vre f . The
controller was then constructed based on the integral backstepping controller algorithm,
designed with reference to the Lyapunov theory. To ensure that the system operated at the
MPP, the following control framework was adopted [14]:

u = 1 − L
x3

(
K2e2 +

x1

L
+ K2

1C1e1 + K1e2 + kK1C1 p −
.
iPV + C1

..
x1re f − C1ke1 −

e1

C1

)
(2)

where, e1 = x1 − x1re f , ϕ = C1

(
K1e1 +

iPV
C1

− .
x1re f + kp

)
, e2 = x2 − ϕ and p =

∫ t
o (e1

)
dt.



Eng. Proc. 2023, 56, 262 6 of 8

In this design, the reference system was supplied by an incremental conductance
algorithm [14]. Thus, the synergic combination of the control law in Equation (2) with
the INC results in H-INC-IBS, which represents the nonlinear MPPT controller adopted
in this paper. Therefore, provided that the system operates at the MPP, an estimator of
solar irradiance can be designed to exploit these conditions. In this work, we present a
model-free MPPT estimator of solar irradiance for PV systems operating at the MPP. The
major benefit of this estimator is that it does not induce a change in the operating point of
the PV system. The main estimator equation can be written as [6]:

Ĝ = Gre f

 Isc−re f +
(

Ipv − Impp
)

Isc−re f +
(

Ki
Kv

)(
Rs∆I +

(
Vpv − Vmpp

))
 (3)

where, Gre f is the irradiance at standard test conditions (STCs) (1000 W/m2) and Isc−re f is
the panel short-circuit current at STC. The temperature coefficient of the short-circuit current
( Ki) and the open-circuit voltage ( Kv) are readily available from the panel specifications.
The estimator depends on the series resistance of the PV ( Rs), which is unaffected by
environmental conditions. Also, the terms Impp and Vmpp represent the MPP current and
voltage, respectively. Therefore, with a suitable current and voltage sensor for sensing the
PV current (Ipv) and voltage (Vpv), the solar estimate of solar irradiance (Ĝ) can be obtained
when the PV system is operated at the MPP.

3. Results and Discussion

The proposed system was primality implemented in MATLAB/Simulink and was
verified via simulations and experiments. To position the performance of the estimator, it
was compared against the conventional estimator proposed in [6]. For this, a 60 W solar
panel was adopted throughout the comparison [22]. The boost converter parameters were
as follows: L = 0.3 mH and C1 = C2 = 37 µF, at the switching frequency of 250 kHz.
The parameters of the controller were given as: [k, K1, K2] = [47.1853, 13750, 10000]. The
response of the estimators to fast-changing irradiance and temperature is presented in
Figure 3. It can be seen that both estimators show notable performance in tracking the fast-
changing irradiance. However, the proposed method exhibits faster tracking performance,
reduced steady-state ripples, and achieves better estimation accuracy. To verify the obtained
simulation outcomes, an experimental set-up was mounted to record solar irradiance and
temperature on the PV modules. The acquired data was used for further assessment of the
estimator, as revealed in Figure 4. It is evident that the proposed estimator aligned more
closely with the experimental irradiance compared to the conventional method, confirming
it superiority. The mean error of both estimators with reference to the actual experimental
solar irradiance was computed, revealing a value of 3.4967% for the conventional method
compared to 2.1911% for the proposed method. Such a result further confirms the superior
accuracy of the suggested estimator.
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This paper therefore unwinds a new opportunity for integrating existing MPPT algo-
rithms [23] and leveraging their performance for improved irradiance estimation in PV
energy systems.

4. Conclusions

In this paper, an estimator of solar irradiance for PV systems operating at the maximum
power point was proposed. We verified that it is possible to exploit the PV system operating
at the maximum power point to compute solar irradiance using a simple algebraic equation.
The estimator equation requires actual measurements of PV current and voltage, which
can be easily sought using commercially available sensors. The operation of the PV system
at the MPP was supervised using a H-INC-IBS controller. It was further confirmed that
the estimator exhibits superior performance compared to a similar one driven by the
conventional algorithm. The accuracy of the proposed estimator, measured by the mean
error, was 2.1911% compared to 3.4967% for the estimator based on the conventional
MPPT algorithm. The effectiveness of the proposed estimator was further validated using
experiments under real environmental conditions.
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