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Abstract: The electrochemical cell is designed with a conductive substrate (working electrode) where
deposition takes place within a three-electrode cell. In order to complete the electrochemical circuit,
the cell has been equipped with a counter electrode (CE) and a reference electrode (RE). The cell
additionally incorporates an AFM probe, which serves as a scanning instrument for characterizing
the deposited structures as well as a localized contact for triggering the electrochemical processes.
The materials used in the cell components are chosen with care to ensure compatibility with the
electrolyte solution and to minimize interference or contamination. The aim of this study is to
design an electrochemical cell for in situ real-time monitoring of deposition using Atomic Force
Microscopy (AFM), facilitating the controlled growth of thin films or nanostructures on a conducting
substrate. The combination of AFM and electrochemical deposition allows for real-time monitoring
and precise manipulation of the growth process at the nanoscale. This research focuses on the key
design considerations and optimization parameters for an effective electrochemical cell that enables
the in situ characterization and control of the deposition process.

Keywords: AFM; simulation; FEM; electrochemical deposition; nanosturcture

1. Introduction

In real-time, the deposition process is tracked using in situ Atomic Force Microscopy
(AFM) monitoring and characterization techniques, such as tapping mode. AFM’s remark-
able high-resolution-imaging capabilities enable the observation of surface topography,
grain structure, and growth kinetics of the deposited structures. By aligning the findings
from AFM with the electrochemical parameters, a comprehensive understanding of the
growth mechanism and the relationships between structure and properties can be attained.

The creation of an efficient electrochemical cell designed specifically for in situ AFM de-
position opens up new avenues for investigating electrochemical processes on a nanoscale.
This synergy of precise control over deposition conditions and real-time-imaging capabili-
ties provides valuable insights into the mechanisms governing growth. It also sets the stage
for the development and production of advanced functional materials with customized
properties suited for diverse applications.

AFM belongs to the category of scanning probe techniques. Unlike electron micro-
scopes, AFM has the versatility to operate under various conditions, including ambient
environments [1–3], in liquids [4–14], and even in gaseous environments. AFM serves mul-
tiple functions beyond just imaging; it can also be employed for lithography, spectroscopy,
and nanomanipulation.

The symmetry of the electric field distribution holds significant importance in electro-
chemical cells due to its direct association with the precision of electrochemical measure-
ments. To illustrate, the arrangement of current lines can exert a critical influence on the
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electrochemical processes occurring within a cell. More specifically, regions of the electrode
featuring a supervisor current density may be more susceptible to accelerated degradation
compared to their counterparts with lower current density. In numerous electrochemical
systems, understanding the distribution of current density serves the dual purpose of either
reducing measurement errors or mitigating undesirable effects, such as the non-uniform
deposition seen in electrochemical deposition processes and the non-uniform deterioration
of electrodes.

This study investigates the simulation of potential distribution within an electrochem-
ical cell designed for Atomic Force Microscopy (AFM) in an electrochemical context. This
specific cell was devised for the deposition of Bismuth nanoparticles. The primary motiva-
tion behind the new cell design is to facilitate the simultaneous measurement of variations
in the surface topography of electrochemically deposited films while maintaining precise
control over the applied potential, thereby minimizing measurement errors. The objective
of simulating the electric field distribution in these electrochemical cells is to gain insights
into how electrical potentials are distributed within the electrolyte medium.

2. Materials and Methods
2.1. Electric Field Simulation Setup inside the Cell

A commercial finite element software, COMSOL Multiphysics 3.5 ™ [12], was utilized
to perform a three-dimensional simulation. Initially, the cell’s geometry was replicated
in a 3D model, depicted in Figure 1a. The electrolyte was represented as a cylindrical
structure containing both anode and cathode electrodes (Figure 1b). The working electrode
(Figure 1b, red) was in contact with the electrolyte on a single surface, while the counter
electrode (Figure 1b, blue) was emulated with a metal ring placed within the electrolyte
cylinder. The research focused on the primary current due to its dependence on electrode
geometry and arrangement.
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Figure 1. The electrochemical cell: (a) cell’s 3D schematic; (b) schematic of the cell’s geometry
for simulation, the working electrode is represented by the red part, and the counter electrode is
represented by the blue part.

In scenarios involving primary current distribution, rapid kinetics were assumed.
This allowed for simplification where the potential of the electrolyte nearby the electrode
is matched to the applied electrode potential. The Finite Element Method (FEM) was
employed to solve Ohm’s law and Laplace equations at various points distributed within
the electrolyte. More comprehensive information can be found in our earlier publication.

The meshing strategy involved selecting meshes with finely detailed boundaries
between the electrolyte and the electrodes interface, with a thickness of 20 nm. As a result,
each cell’s meshing employed 450,000 elements. The meshing concept for the cells is
depicted in Figure 2.
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fine meshing near the electrodes; right: a zoom in of the meshes near the counter electrode.

2.2. Materials

A solution containing a known amount of bismuth ions (1000 mg per liter of Bi(III))
dissolved in HNO3 was bought from Merck. Analytical-grade acetic acid (CH3COOH)
and 99.99% pure platinum wire were obtained from Sigma Aldrich. A glassy carbon disk
electrode (GCE), which had a 12 mm outer diameter and a 5 mm disk diameter, was
purchased from Pin research.

2.3. Electrochemical Cell Preparation

The electrochemical cell was subjected to a thorough cleaning process involving
sequential 15 min ultrasonic baths in acetone, isopropanol alcohol, and Milli-Q water. Prior
to affixing the glassy carbon electrode (GCE) to the electrochemical cell, the electrode
underwent polishing using Al2O3 powder and nylon polishing pads. Subsequently, it was
rinsed with Milli-Q water. The platinum wire served as the counter electrode and was
positioned in a circular manner within the inner frame of the cell. Additionally, a typical
Ag/AgCl/NaCl (3M) reference electrode from BASi was utilized. Once the electrodes were
properly placed within the cell, they were wired to a PalmSense 4 potentiostat.

2.4. AFM Electrochemical Deposition

Once the electrodes were introduced into the electrochemical cell, a solution containing
the analyte (at a concentration of 1 mg L−1 of Bi(III) in a 0.5 M acetate buffer solution) was
introduced into the cell. Subsequently, the working electrode was subjected to scanning
using the Agilent 5500 Atomic Force Microscope (AFM), which was operated in tapping
mode. A MikroMasch tip was used to scan the electrode. The tip possessed a force constant
of 5 N/m, a length of 125 µm, and was coated with gold. The scanning process was
conducted at a frequency of 1 Hz, covering a scanning area of 10 × 10 µm2. The area
of interest was first scanned at open circuit potential, and then a voltage of −1.0 V vs.
Ag/AgCl/NaCl (3M) was imposed for 100 s.

3. Results and Discussion
3.1. Electric Field Simulation inside the Cell

To facilitate a comprehensive understanding of the potential distribution, Figure 3
presents a visualization of the simulated potential within the cell. In Figure 3a, it is ev-
ident that the electrical field exhibits a symmetrical distribution within the electrolyte,
forming concentric patterns around the working electrode. However, critical observation
arises when we consider Figure 3b, where the geometry of the counter electrode has been
meticulously chosen. In this case, a ring-shaped counter-electrode configuration has been
employed, leading to a notable enhancement in the field’s focus and intensity in close
proximity to the working electrode. This configuration optimizes the electrochemical per-
formance and efficiency of the cell, making it a compelling choice for various applications.
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3.2. AFM Electrochemical Deposition

To commence the electrochemical analysis, the initial step involved injecting the
solution into the electrochemical cell. Subsequently, the tip of the apparatus was carefully
positioned near the surface of the electrode to facilitate scanning. In Figure 4, AFM images
illustrate the state of the glassy carbon electrode (GCE) and the features that have formed
on its surface.
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Figure 4a provides a detailed view of the GCE’s surface. Notably, there are no
discernible deposits or foreign substances present on the glassy carbon substrate, with
the only visible markings being attributed to the minor scratches incurred during the
polishing process.

Following this preliminary assessment, a cathodic voltage of −1.0 V/Ag/AgCl/NaCl
(3M) was introduced to the glassy carbon electrode (GCE). This electrochemical treatment
was sustained for a duration of 60 s, serving as a critical component of the experimental
procedure to initiate specific electrochemical processes and investigate the resultant effects
on the electrode’s upper face (Figure 4b).

4. Conclusions

The newly constructed cell was especially intended to allow the simultaneous measur-
ing of electrochemically deposited bismuth nanostructures. This novel cell design allows
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for accurate monitoring of bismuth nanostructure deposition and improves our capability
to collect real-time data during the electrochemical process. With this improved cell, we
could obtain a better knowledge of bismuth nanostructure production and electrochemical
behavior, opening up new avenues for in-depth study and analysis in this field. The 3D
FEM simulations have revealed that the proposed cell design results in an even distribution
of electric potential throughout the electrolyte. The synergy between AFM and electro-
chemistry constitutes a potent methodology for gaining insights into the electrochemical
developments occurring on the conductive substrate’s top surface. The ability to directly
observe the creation of a bismuth film, even when it is present in low concentrations, is
made possible through in situ AFM measurements conducted within the solution. When a
cathodic voltage of −1.00 V was applied for a duration of 100 s, the initiation of bismuth
film formation manifested as nanostructures resembling nanoparticle features.
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