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Abstract: Sandwich geometries, mainly panels and beams, are widely used in several transportation
industries, namely aerospace, aeronautics, and automotive. They are known for some advantages in
structural applications: high specific stiffness, low weight, and possibility of design optimization prior
to manufacturing. This study aims to discover the dynamic behaviour of a model of novel sandwich
type of beam simply supported-at-its-ends by use of finite element method. There are 12 geometries
studied herein, with the same base configuration. The models were previously subjected to a design
optimization routine. The dynamic behavior of the initial models in relation to their final versions is
considered. The influence of the geometry on the characteristic frequencies is discussed, as well as
its improvement in relation to the initial models. It is shown that the statically optimized models
represent a significant improvement over the initial ones. In some cases, the improvement surpasses
20%. It can, therefore, be concluded that the design optimization approach, developed for static
analysis, might be moderately effective in improving the modal behavior of the studied beams.

Keywords: sandwich beams; dynamic analysis; finite element method (FEM)

1. Introduction

The finite element method (FEM) functions by employing partial derivative equations
to solve the discretization of the domain into many elements. In the context of dynamic anal-
ysis, the utilization of the finite element method (FEM) necessitates the use of a computer
system that possesses enough computational capabilities [1]. The literature encompasses
several studies that are relevant to the topic of the present work.

The authors of reference [2] extended the conventional Vlasov theory for thin-walled
beams with open and closed cross sections by incorporating distortional displacement
forces. The engineering relevance of the eigenvalues identified through dynamic analysis
lies in their ability to mitigate the amplification of distortional eigenmodes. The authors
of [3] offer a beam that resembles a thin-walled hollow tube, which is reinforced by ribs. The
objective of the study is to examine the impact behavior of the beam in order to enhance
energy absorption and reduce the first peak force. Subsequently, the process of shape
optimization design is undertaken. The research investigates the characteristics of free
vibration in single-cell thin-walled tubes with regular convex polygonal cross-sections. The
authors also conducted a comprehensive analysis of the many modes of these beams.

In the study conducted by [4], a precise formulation of dynamic stiffness is presented
using one-dimensional, higher-order theories. This formulation is subsequently employed
to investigate the characteristics of free vibration in both solid and thin-walled structures.
The objective of the study conducted by [5] was to expand the range of applications for
the Generalized Beam Theory (GBT) formulation, which had been recently developed
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for conducting elastic linear buckling analyses of thin-walled components. The paper
in question aims to provide data on the dynamic behavior of internally reinforced thin-
walled beams through a comparative analysis. Article [6] presents results of studies of a
geometrically stiffened honeycomb core to increase the structural performance results in
an upgraded honeycomb structure known as the stiffened honeycomb sandwich panel
(stiffened HSP). The horizontal stiffened HSP has a lower natural frequency and a bigger
buckling stress when compared to the standard and vertical stiffened HSPs [6].

The study [7] proposes a theoretical model of a stiffened plate with numerous dy-
namic vibration absorbers under various boundary restrictions. The model presented
in [7] improves the equivalent mass solution efficiency by 90% when compared to FEM [7].
In reference [8], the vibration properties of sandwich panels with a sandwich core made
of hierarchical composite honeycomb are presented. To offer an equivalent model (two-
dimensional model), an orthotropic constitutive model of the hierarchical composite hon-
eycomb sandwich core was used.

The natural frequencies and mode shapes of the sandwich panels were predicted
using modal testing, two-dimensional (2D) and three-dimensional (3D) finite element
models. The comparable model’s prediction results agreed with the findings of the 3D finite
element analysis and the experiment [8]. In [9], the homogenized beam-like model for the
transverse dynamics of reticulated structures is presented in a finite element formulation.
The study deals with elastic periodic lattice structures, whose unit cell is composed of
connected beams or plates and repeats itself in a single direction. Examples of these
structures include foams, crystals, honeycombs, and multistory skyscrapers. The motion is
given by a sixth-order differential equation, and the examined model is a one-dimensional
enriched form of the fourth-order Timoshenko beam equation. It is demonstrated that the
homogenized beam finite element solution presented approaches the whole detailed finite
element structural model and recovers the analytical results [9].

Industrial machinery with movable parts can be made smaller while still having the
same mechanical performance to increase speed. Because thin-walled structures can be
reinforced internally [10,11] and have high mass-unit effectiveness, hollow solid sections
outperform bulk counterparts in engineering applications with the same outer section
dimension and shape. Previous research on the mechanical behavior of beams similar
to the one here has been conducted [12,13]. Similar beams were also subjected to design
optimization procedures [14,15]. In addition, a beam comparable to the one under study
has been produced and put through experimental testing [16].

The present study focuses on the modal analysis of internally reinforced beams that
were designed and optimized for static loads. No study was found in which the geometries
used in this study, or similar ones, were studied in modal analysis. Also, no studies were
found that prove the effectiveness of design optimization, performed in static analysis, on
the improvement of the modal behavior of internally reinforced thin-walled beams.

2. Numerical Procedure
2.1. The FEM Models

For the purpose of the analysis of dynamic behavior,12 finite element method (FEM)
models were designed in the ANSYS Mechanical APDL. These models represent different
versions of the project of novel beams. They are composed of two sandwich panels on the
top and on the bottom, and a reinforcement pattern on the sides, as shown in Figure 1: Such
models were earlier discussed by the authors in other application aspects [12–14,16,17].
Simple hollow-box beams, named hollow-solid sections, and abbreviated HSS in the results
were also studied, using the same conditions as on the sandwich beams. The variables for
the studied beams are shown in Figure 1 (right).

In order to obtain an effective response to transversal beam deflection in terms of
stiffness, 12 FEM models were built. These models were subjected to modal analyses, via
the Block-Lanczos method, simply supported at their ends. The supports are shown in
Figure 2. The mesh is a quadrilateral free mesh, using SHELL63 elements and with a mean
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element size of 0.0025 [m]. This construction is based on the principle that such a type of
beam needs a zone along which accessories pass, such as compressed air tubes and electric
cables. The central zone of the beam was chosen because that zone contains the neutral
axis. In the peripheral zone, there are two lateral zones, and two other zones: one at the top
and the other at the bottom.
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Figure 2. Type of support applied to all FEM models, and points used to calculate displacements,
adapted from [12–14,16,17].

The ANSYS input file contains instructions to collect the displacements on the nodes
attached to the keypoints indicated in Figure 2 (one by each keypoint), which are situated
at the edges and at the center, in order to gather the displacements on the same points
in each iteration. These keypoints were selected because, even when the variable values
change during optimization, their coordinates remain unchanged. Since the ribs at these
sites provide considerable reinforcement, it is anticipated that the local deformation will
not be significant for the thicknesses under consideration. The 12 geometries studied are
shown in Figure 3.

In the present study, the following material properties, typical of steel, were considered:
Young’s modulus (E) of 210 GPa; density (r) of 7890 kg/m3; Poisson’s ratio (n) of 0.29 [-].
The modal analyses were performed in case of the model supported at its ends.
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2.2. Design Optimization

The models were optimized with respect to their total mass and nodal displacements
in the z direction, which were measured at three different places. The interaction between
ANSYS 2020 R2 and the MATLAB 2019 R1 optimization programming code is seen in
Figure 4. ANSYS and the MATLAB application collaborate in this process. In [14,15,17],
the authors state that ANSYS computes the FEM models, while MATLAB manages the
optimization by means of a programming code. The optimization process was built
according to the scheme shown in Figure 4.

Eng. Proc. 2023, 56, x 5 of 11 
 

 

 
Figure 4. Functional flow chart of the optimization methodology [14,17], adapted from [18]. 

Despite the variance in the geometric variables, these spots were selected at locations 
where all coordinates remain constant. By doing this, the findings are not directly 
impacted when the design factors are changed. The approach used in this work’s 
MATLAB-based Finite Element Model Updating tool was first created in [18] for structural 
dynamic analysis. Additionally, in [19,20], it was modified for structural static analysis. In 
this work, Equation (1) served as the goal function that the MATLAB code used to 
optimize the models, as in [14,17]. 

1 1
1 2

1 1

( , )

n n

j j
j j
n n

i i
j j

j j

M
O m W W

M

δ
δ

δ

= =

= =

= +
 

 
  

(1) 

where the following variables are defined: 
δj is the nodal deflection obtained in each nodal point, and in each iteration, δji is the 

nodal deflection obtained in each nodal point in the initial model. 
Mj is the element mass obtained in each nodal point and in each iteration, and Mji is 

the element mass obtained in each nodal point in the initial model.  

2.3. Improvement of the Models 
Each beam model in its initial state was parametrized in ANSYS APDL and has the 

same values as the variables LG1, LG2, and LG3. These variables are shown in Figure 1 
(right). Their initial values are LG1 = 45, LG2 = 75, and LG3 = 2 [mm]. The outer section 
dimensions are kept, by principle, unaltered. The models had been statically optimized 
earlier, in [14,17], and as such, the values of the design variables changed during the 
optimization routine. Their final values are shown in Table 1. 

Table 1. Final variable and objective function values obtained on the optimized models. 

Bending A1 A2 A3  A1 A2 A3 
Pattern 1 Pattern 3 

LG1f 4.86 1.80 1.80 LG1f 4.50 2.17 1.80 
LG2f 7.73 9.26 8.32 LG2f 7.51 9.02 9.52 
LG3f 3.74 2.79 2.63 LG3f 3.61 2.76 2.58 

Final objective 0.98 0.83 0.79 Final objective 0.97 0.86 0.80 
Pattern 2 Pattern 4 

LG1f 1.80 2.17 1.80 LG1f 1.80 2.17 1.80 
LG2f 10.15 7.61 11.90 LG2f 8.05 7.70 8.36 
LG3f 2.79 2.99 2.65 LG1f 2.75 3.55 2.76 
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Despite the variance in the geometric variables, these spots were selected at locations
where all coordinates remain constant. By doing this, the findings are not directly impacted
when the design factors are changed. The approach used in this work’s MATLAB-based
Finite Element Model Updating tool was first created in [18] for structural dynamic anal-
ysis. Additionally, in [19,20], it was modified for structural static analysis. In this work,
Equation (1) served as the goal function that the MATLAB code used to optimize the
models, as in [14,17].

O(m, δ) = W1

n
∑

j=1
Mj

n
∑

j=1
Mi

j

+ W2

n
∑

j=1

∣∣δj
∣∣

n
∑

j=1

∣∣∣δi
j

∣∣∣ (1)

where the following variables are defined:
δj is the nodal deflection obtained in each nodal point, and in each iteration, δj

i is the
nodal deflection obtained in each nodal point in the initial model.

Mj is the element mass obtained in each nodal point and in each iteration, and Mj
i is

the element mass obtained in each nodal point in the initial model.

2.3. Improvement of the Models

Each beam model in its initial state was parametrized in ANSYS APDL and has
the same values as the variables LG1, LG2, and LG3. These variables are shown in
Figure 1 (right). Their initial values are LG1 = 45, LG2 = 75, and LG3 = 2 [mm]. The
outer section dimensions are kept, by principle, unaltered. The models had been statically
optimized earlier, in [14,17], and as such, the values of the design variables changed during
the optimization routine. Their final values are shown in Table 1.

Table 1. Final variable and objective function values obtained on the optimized models.

Bending A1 A2 A3 A1 A2 A3

Pattern 1 Pattern 3

LG1f 4.86 1.80 1.80 LG1f 4.50 2.17 1.80

LG2f 7.73 9.26 8.32 LG2f 7.51 9.02 9.52

LG3f 3.74 2.79 2.63 LG3f 3.61 2.76 2.58

Final objective 0.98 0.83 0.79 Final objective 0.97 0.86 0.80

Pattern 2 Pattern 4

LG1f 1.80 2.17 1.80 LG1f 1.80 2.17 1.80

LG2f 10.15 7.61 11.90 LG2f 8.05 7.70 8.36

LG3f 2.79 2.99 2.65 LG1f 2.75 3.55 2.76

Final objective 0.87 0.89 0.81 Final objective 0.80 0.85 0.77

The analyzed models were previously subjected to bending and torsion modelled as
uncoupled loads, in [12–14,16,17].

3. Results and Discussion

Mode shapes for model A1 and Pattern 4 are shown in Figure 5 as an example. In
Figure 5, both the displaced and initial mode shapes are presented.
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3.1. Mesh Convergence Analysis

To select a mesh size that originates accurate results, a mesh convergence analysis was
performed on the model beam 3 pattern 3. This geometry is shown in Figure 2 (left).

As this model is the most complex, it is expected that if the mesh convergence yields
accurate results for this geometry, the other models would originate accurate results, as
well. Table 2 presents the mesh convergence study, showing the mean element size Esize,
the frequency of the 1st mode ω1, and the error obtained by the application of Equation (2).

Table 2. Mesh convergence study.

Error [%] ω1 Esize [mm]

145.88 40

1.28 144.01 20

1.39 142.01 10

0.32 141.55 5

0.04 141.61 2.5

The error E shown in Table 2 was calculated by using Equation (2):

E[%] =
|ωi − ωi+1|

ω1
∗ 100 (2)

Because the element size of 2.5 mm originates the most accurate results, in comparison
to other element sizes, with a value of 0.04%, that element size was used in the simulations.

3.2. Analysis of the Frequencies

In order to study the dynamic response of the beams, modal analyses were performed.
The modal extraction method was Block-Lanczos, with a frequency range between 0 and
20,000 Hz. The first 20 modes were expanded, and their eigenvalues collected. The results
are shown in Figures 6–11. The results regarding the dynamic behavior presented in
Figures 6 and 7, were compared by means of an improvement factor:

I f =
ω f − ωi

ωi
∗ 100% (3)

where If is the improvement of the final models in relation to the initial models, in terms of
characteristic frequencies, ωi is the frequency of the initial models, and ωf is the frequency
of the final models.
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It can be seen that all the beams behave similarly in terms of their dynamic response.
The frequency range surpasses 1800 Hz for beam A1 pattern 3 final (optimized), shown
in Figure 6. It is the maximum value of frequency obtained for all the models. Beam
A3 pattern 4 (Figure 8) is the model that behaves best, as the highest maximization of
frequencies can be obtained considering all models. The dynamic response of a structure,



Eng. Proc. 2023, 56, 321 10 of 11

in terms of natural frequencies, is very important in structural analysis. It is known that
lower frequencies are more energetic, and, therefore, they are known to be more prone to
disrupt the adequate operation of applications involving high accelerations and comprising
lightweight mobile parts. The dynamic behavior can be improved if the natural frequencies
of the optimized models can be maximized in comparison with the initial ones. It can be
seen from beam A1, whose results are shown in Figure 9, there is an improvement for
Patterns 1 and 3. Pattern 4 presents an advantage only for some modes, and Pattern 2 is
causing an overall worsening. For beams of the A2 type, shown in Figure 10, there is an
overall improvement for Pattern 4, while Pattern 3 gives that only for some modes, and
Patterns 1 and 2 present an overall worsening. Beams of the A3 type, shown in Figure 11
present an improvement for some modes for Patterns 3 and 4 and an overall worsening for
Patterns 1 and 2.

4. Conclusions

Although the internal reinforcements are useful in improving the static behavior, as
shown in [12–14,16,17], the improvement they originate do not appear to be worth the price
of increasing the mass. All the 12 studied beams were already subjected to optimization
routines for the improvement of the static behavior [12–14,16,17]. The initial and optimized
models were then subjected to modal analysis. When comparing the modal behavior of A3
pattern 4 with a simple hollow-box beam, it can be seen that the improvements are quite
good. It is shown that overall, the improvement in the dynamic behavior originated by the
static optimization is significant, albeit mild.

Author Contributions: Conceptualization, H.M.S.; methodology, H.M.S.; software, H.M.S.; validation,
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