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Abstract: Recent advancements in particle dispersion modeling have significantly enhanced our
understanding and capabilities in predicting and analyzing the behavior of particulate matter in
various environments. However, this field still confronts several research gaps and challenges
that span across scientific inquiry and technological applications. This paper reviews the current
state of particle dispersion modeling, focusing on various models such as Lagrangian, Eulerian,
Gaussian, and Box models, each with unique strengths and limitations. It highlights the importance
of accurately simulating multi-phase interactions, addressing computational intensity for practical
applications, and considering environmental and public health implications. Furthermore, the
integration of emerging technologies like machine learning (ML) and artificial intelligence (AI)
presents promising avenues for future advancements. These technologies could potentially enhance
model accuracy, reduce computational demands, and enable handling complex, multi-variable
scenarios. The paper also emphasizes the need for real-time monitoring and predictive capabilities in
particle dispersion models, which are crucial for environmental monitoring, industrial safety, and
public health preparedness.
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1. Introduction

When a solid and a liquid combine, the solids clump together. These big clusters of
particles may cause the liquid to disperse unevenly. Due to how small they are, we might
not be able to look at the materials and see the enormous clusters. We can determine the
size of the particles by putting them through a particle analyzer. We can confirm that the
grouping of particles may still be too large based on the range in which the particles fall.

In regulatory and epidemiological contexts, modeling the dispersion of air contam-
inants is crucial. Even though most modeling ideas originated in the 1980s, dispersion
models have been optimized and improved since then. Modeling techniques must be
used with care to quantify component interactions. Significant propagation patterns of the
variables can be captured by the quantified interactions, which can improve comprehension
of the system and recognize the essential connections and elements that shape the system’s
behavior. Applications using fluid–solid interaction (FSI) entail the integration of the fields
of structural mechanics and fluid dynamics [1]. Several new models, like Computational
Fluid Dynamics, have also been developed. Moreover, the accuracy of the data acquired is
continuously enhanced by next-generation representations [2].
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2. Theoretical Background

The atmospheric mechanisms that spread a pollutant generated by an origin are
described by dispersion modeling, which uses numerical equations. The levels at specific
downstream receptor sites can be predicted using a dispersion model according to emissions
and meteorological parameters. The National Ambient Air Quality Standards (NAAQS)
and other regulations are observed using these air quality algorithms. Modeling dust
dispersal from extraction processes is based on four quantitative techniques: the Lagrangian
model, the Eulerian model, the Gaussian model, and the box model.

2.1. Lagrangian Approach

According to the Lagrangian method, a fluid is thought to be made up of several fluid
particles, and each fluid parcel is followed as it moves to measure how its properties change
over time.

V = V(t) (1)

Imagine being in a car and seeing the vehicle’s displacement, speed, and acceleration
over a period of time. Because it follows a material (fluid) particle, a Lagrangian charac-
terization is also known as a material description. This approach uses the qualities as a
function of time to characterize the fluid motion.

In terms of atmospheric dispersion, a moving reference grid based on wind direction
and the general direction of plume flow is used by the Lagrangian model to compute the
dispersion of plume parcels. The reference grid follows the plume as it moves, and the
movement of the plume is modeled using an arbitrary walking approach. The likelihood
function is constructed from site-specific meteorology, the distribution of particle sizes, and
particle density. Despite its dynamic nature, the Lagrangian model has limitations [3].

The Lagrangian model is based on the advection–diffusion equation. The equation
called advection-diffusion is a simplified version of the Navier–Stokes equation. This equa-
tion illustrates the particle motion that is affected by turbulent air movement and diffusion.
The left-hand side of the equation represents the concentration change in a localized area
at a point in time, while the letter Q represents the emission rate. Moreover, the terms,
without the k constant, on the right-hand side of the equation denote the movement in
three directions, x, y, and z, caused by the average wind speed. Lastly, the three factors
with the k constant depict the movement caused by turbulent motions. The k constant
denotes the coefficient of diffusion [3].

2.2. Eulerian Approach

In Eulerian analysis, measurements are made at a predetermined fixed location in
space, where an observer’s concentration at a particular location as a function of time
is described. “Field description” also refers to the Eulerian consideration or description.
The Eulerian approach never concentrates on specific fluid portions; instead, it studies the
characteristics of the fluid as it passes by a specific fixed point.

The fluid parameters consequently become a function of space and time in Eulerian
analysis. The z represents the vertical axis, which typically denotes height or pressure.

V = V(x, y, z, t) (2)

In atmospheric dispersion, the difference between the Eulerian and Lagrangian models
is that the former uses a fixed reference grid. In contrast, the latter makes use of a moving
grid. In contrast to the Eulerian model, which tracks a static grid as the pollution plume
passes by, both models track the movement of pollution plumes over time [4].

Like Lagrangian models, the advection–diffusion equation is also the mathematical
equation on which the Eulerian model is typically based. However, the method by which
the two models simulate is different. Lagrangian models simulate the movement of particles
in a frame that is moving with the average stream, akin to a person moving simultaneously



Eng. Proc. 2023, 56, 332 3 of 9

with the particles. Because of this, forward and backward routes can be generated, which
can aid in visualizing matter’s starting and end points in the atmosphere.

Both the Eulerian and Lagrangian models are versatile. The two models can be
used in different mixtures, conditions of the system, areas of the land, and heights and
depths of the land. These two models have an average of 1 km to 100,000 km of spatial
resolution. Another configuration of Eulerian and Lagrangian models is a model that uses
Computational Fluid Dynamics as a basis. Computational Fluid Dynamics offers a solution
to the Navier–Stokes equation. Complicated terrains or simulations that would need a
scale close to real-life proportions are suitable for Computational Fluid Dynamics (CFD).
However, CFD needs an enormous amount of data, unlike other models, to achieve this.

2.3. Gaussian Model

Gaussian dispersion models assume that the statistical distribution of pollutants is
typically distributed. The two-dimensional (y and z) Gaussian plume grows over time.
The following conditions must be true for the emission and atmospheric conditions: no
chemical reactions must occur, and wind speeds must always be equal to or greater than
1 m s−1. These conditions are all prerequisites for Gaussian plume models. Gaussian
models are often applied when simulating the propagation of buoyant pollutants in air
plumes. The commonly employed model is as follows:

X =
Q

2πµsσyσz

[
exp

{
−0.5

(
y
σy

)2
}][

exp

{
−0.5

(
H
σz

)2
}]

(3)

where X denotes the hourly concentration at a downwind distance; µs is the mean wind
speed at pollutant release height; Q is the pollutant emission rate; σy is the standard
deviation of the lateral concentration distribution; σz is the standard deviation of the
vertical concentration distribution; H is the pollutant release height (stack height); and y is
the crosswind distance from the source to the receptor.

Equation (3) has a steady-state assumption. The equation estimates the concentration
at any point in the direction of the source from which the wind is blowing. This equation
also assumes the Gaussian distribution of particulate matter in the direction in which the
wind is against the line of travel.

There are two Gaussian models: the Gaussian plume and the Gaussian puff models.
The Gaussian model that comprises a permanent point is the Gaussian plume. The Gaussian
plume model contains the equation encapsulated in the Lagrangian model. The Gaussian
puff model breaks a continuous plume into individually separated and distinct packets of
particulate matter. In this model, the concentration of particles can be traced back to the
puff that contributed to the bulk of the particles.

With point-source emissions, the Gaussian plume model is among the most popular
and relies on employing empirical factors (sigma’s) as a function, analyzing the transit and
diffusion of air pollutant particles and the atmosphere’s stability. Environmental permitting
processes frequently rely on Gaussian plume models, such as the Industrial Source Com-
plex (ISC), the AERMIC Model within the AERMOD software, and CALPUFF, developed
by the United States Environmental Protection Agency (US EPA), as well as the Atmo-
spheric Dispersion Modeling System-Urban (ADMS-Urban), developed by Cambridge
Environmental Research Consultants (CERC). Thus, although the AERMOD software has
superseded the ISC model, the latter is still widely utilized. This can be explained by the
lack or inaccessibility of the input data needed by the AERMOD software and other more
complex models [5].

Among the inputs are the pollutant release rate, the release height, the wind speed
(at the reference height, frequently the height at which emissions are released), the mix-
ing/inversion height, and the vertical and horizontal dispersion variables. Additionally,
the plume’s rise or fall can be modeled. The plume is expected to quantitatively reflect from
the ground or the upper boundary layer of air when it reaches these surfaces. This may
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eventually give the erroneous impression that contaminants are collecting at ground level,
which the model can consider [4].

2.4. Box Model

The simplest approach for modeling air quality is the box model. The box model
portrays the airshed as a straightforward box with uniformly concentrated contents. The fol-
lowing is the model that is typically applied:

dCV
dt

+ uCinWH − uCWH = QA (4)

where C is the concentration of pollutants throughout the box; Cin denotes the pollutant
concentration entering the box; Q is the pollutant emission rate from the source per unit
area; V is the volume of the box; A is the horizontal area; W is the width of the box; H is the
height of the box (mixing height); and u is the wind speed normal to the box.

3. Recent Advances in Modeling Particle Dispersion

Particle dispersion modeling has several applications. This includes following the trail
of movement of particulate matter, which can be challenging since there are many factors to
consider, such as the particle’s inertia, gravitational pull, and continuity effects. Tracking the
particle movement would be more challenging if conducted in actual conditions. Currently,
the standard methods to study the dispersion of particulate matter in turbulent flow
are the eddy interaction model, the Monte Carlo method, and random walk models.
The methods mentioned are beneficial in understanding the system behind inertia and
the effect of crossing the direction of movement of particles. However, these methods
often encounter convergence problems as numerous calculations in the trajectory are a
prerequisite. Furthermore, the eddy interaction model gives inaccurate results in modeling
particle dispersion in turbulent regimes. This problem is also encountered in random walk
methods such as Markovian models [5].

One application of atmospheric dispersion modeling is the analysis and assessment
of risk. The authors of [6] conducted a study on liquefied natural gas dispersion once an
explosion occurs, specifically the effect of experimental parameters on dispersion. The ex-
perimental parameters studied in the paper were temperature and flow regimes. In the
study, various CFD models were used to simulate the dispersion of particles. The RSM-w
turbulence model produced the most accurate projection of all the models used for tur-
bulent regimes. However, the SST k-w turbulence model is the most steady and secure
model. Additionally, it also requires fewer equations to function, unlike the other models.
In another model, the realizable k-e, a continuity error occurred. Thus, a new study must
be conducted to resolve the error. Furthermore, researchers must focus on designing nu-
merical models that give accurate results while remaining stable and requiring as simple
and minimal calculations as possible.

In the study conducted by Shengbin Di et al. [7]., the researchers put forth an inno-
vative approach to tackle the challenges associated with modeling dynamic fluid–solid
interactions. They introduce an improved direct-forcing immersed boundary method
that aims to enhance the numerical representation of particle dispersion in such systems.
The accurate depiction of fluid–solid interactions is crucial for understanding the behavior
and movement of particles in various applications, including environmental processes,
industrial systems, and biological systems. Simulating fluid–solid interactions has tradi-
tionally been a complex task due to the inherent difficulties in accurately capturing the
intricate dynamics. The direct-forcing immersed boundary method offers a promising
solution by directly imposing the forces exerted by the fluid on the solid particles. This elim-
inates the need for explicit boundary conditions and allows a more accurate representation
of the fluid’s interaction with particles. The proposed method improves upon existing
approaches by refining the representation of fluid–solid interactions. It addresses the
limitations and shortcomings of previous models, such as incomplete force coupling and
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numerical instabilities. By incorporating the improved direct-forcing immersed boundary
method, the researchers aim to provide more accurate predictions of particle dispersion,
including factors like particle trajectories, velocity profiles, and concentration distributions.
The significance of this research lies in its potential applications in a wide range of fields.
Understanding particle dispersion is crucial for assessing air and water pollution, studying
the behavior of granular materials, analyzing fluidized bed reactors, and simulating the
movement of biological particles, among other areas. Accurate modeling of fluid–solid
interactions can lead to more reliable predictions and insights, which, in turn, can inform
decision-making processes and enable better designs for systems and processes involving
particle dispersion.

While the study by Shengbin Di et al. [7] presents a valuable advancement in modeling
techniques for fluid–solid interactions, there are still avenues for further research. It is essen-
tial to evaluate the performance and robustness of the improved direct-forcing immersed
boundary method under different flow conditions, particle shapes, and sizes. Additionally,
investigations into integrating additional physical phenomena, such as particle aggregation
or breakup, could enhance the model’s accuracy. Further exploration and refinement of
these modeling approaches will contribute to the continued advancement of our under-
standing of particle dispersion in fluid–solid systems. There is also a need for further
evaluation and validation of the proposed improved direct-forcing immersed boundary
method for simulating dynamic fluid–solid interactions. Although the study introduces an
innovative approach to enhance the numerical representation of particle dispersion, it is
essential to assess the method’s performance under various flow conditions, particle sizes,
and shapes. Conducting thorough investigations and comparisons with experimental data
or alternative modeling techniques would help validate the accuracy and reliability of the
proposed method. Additionally, exploring the integration of additional physical phenom-
ena, such as particle aggregation or breakup, would further expand the capabilities and
applicability of the model. Addressing these research gaps would contribute to advancing
and refining modeling techniques for fluid–solid interactions, ultimately improving our
understanding of particle dispersion in diverse scenarios.

In the study by R. Huang [8], a particle filter-based online method for degradation
analysis is proposed, explicitly focusing on applying the exponential dispersion process.
The exponential dispersion process is a versatile stochastic model encompassing various
degradation processes, making it suitable for analyzing various systems and phenomena.
The fundamental motivation behind the research is to address the challenges posed by
continually updating degradation observations and the need for real-time analysis. Tra-
ditional offline methods may struggle to handle the continuous influx of new data and
require storing and recalling historical observations, which can be computationally inten-
sive and impractical for real-time decision making. Hence, the study seeks to develop an
online method to update parameter estimators and dynamically provide real-time degra-
dation analysis results. The proposed method leverages the particle filter technique, a
powerful sequential Monte Carlo method, to perform online inference for degradation
analysis. The particle filter method allows for iterative parameter estimation using each
new observed data point only once, eliminating the need to store and access historical
data. By iteratively updating the parameter estimators, the method can adapt to chang-
ing degradation patterns and provide up-to-date insights into the degradation process.
The study focuses on the Tweedie exponential dispersion model, a subclass of the ex-
ponential dispersion process. The Tweedie model is known for its flexibility and ability
to capture various degradation phenomena. The proposed online degradation analysis
method offers a powerful and versatile tool for real-time monitoring and predicting degra-
dation processes by integrating the Tweedie exponential dispersion model with the particle
filter method. The study conducted simulation studies to evaluate the effectiveness of
the proposed method. These simulations demonstrated the method’s ability to accurately
track and analyze degradation processes in real time, even in the presence of evolving
data. By comparing the results of the proposed method with those of traditional offline
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methods, the study showcases the advantages of online inference in terms of computational
efficiency, real-time capability, and adaptability to changing degradation patterns.

Raeini et al. [9] present a spatially resolved fluid–solid interaction model designed
explicitly for dense granular packs and soft-sand materials. The research aims to address
the limitations of existing models in accurately capturing the complex behavior of fluid–
solid interactions in these types of materials. The research highlights the importance of
understanding and accurately representing the behavior of granular packs and soft sand
in various engineering and geotechnical applications. The authors emphasize that tradi-
tional continuum-based approaches often fail to capture the intricate details of fluid–solid
interactions, leading to inaccurate predictions and limiting the applicability of the models.
To overcome these limitations, the study proposes a spatially resolved model that considers
the individual particles and their interactions within the granular pack or soft-sand system.
The model incorporates discrete particle dynamics and explicitly accounts for the fluid flow
through the void spaces between the particles. Employing advanced numerical techniques,
such as the Discrete Element Method (DEM) and Computational Fluid Dynamics (CFD), the
model accurately captures the behavior of individual particles and their interaction with the
surrounding fluid. This enables a more realistic representation of fluid–solid interactions
in dense granular packs and soft-sand materials. The proposed spatially resolved model
offers a more comprehensive and detailed understanding of fluid–solid interactions in
these materials, allowing for improved predictions and insights into their behavior. The re-
search contributes to the field by addressing the gap in accurately modeling fluid–solid
interactions in dense granular packs and soft-sand materials. It presents a spatially resolved
fluid–solid interaction model for dense granular packs and soft-sand materials. By incor-
porating discrete particle dynamics and considering the individual behavior of particles
within the system, the model provides a more realistic representation of fluid–solid interac-
tions. The research contributes to the advancement of modeling techniques for accurately
capturing the complex behavior of granular materials. It expands our understanding of
fluid–solid interactions in engineering and geotechnical applications.

The study by X. Mei et al. [10] focuses on developing a high-order Markov chain
model to predict the dispersion of particles in indoor environments with varying ventilation
modes. The researchers aim to address the challenge of understanding and predicting the
movement of particles in indoor spaces, which is crucial for assessing indoor air quality
and designing effective ventilation strategies. They propose using a high-order Markov
chain model that considers the historical states of the ventilation system to predict future
particle dispersion. The study considers different ventilation modes, including natural,
mechanical, and a combination of them. By analyzing the data obtained from real-world
experiments, the researchers constructed a high-order Markov chain model that captures
the complex dynamics of particle dispersion under these ventilation modes. The model
accounts for factors such as the concentration and size distribution of particles, as well as the
characteristics of the ventilation system. Incorporating these variables, the researchers aim
to provide a more accurate prediction of indoor particle dispersion compared to existing
models. The study results show that the high-order Markov chain model effectively predicts
particle dispersion under dynamic ventilation modes. The model’s accuracy is evaluated
through comparison with experimental data, demonstrating promising performance in
capturing the complex dynamics of indoor particle movement. Overall, the research
contributes to indoor air quality assessment by providing a predictive model that can assist
in designing efficient ventilation strategies and improving indoor environmental conditions.
The study may not have fully accounted for the variability and complexity of real-world
indoor environments and ventilation systems. Indoor environments can vary significantly
in layout, furniture arrangement, occupancy patterns, and building materials, which can
impact particle dispersion. Additionally, ventilation systems can have distinctive designs,
operation modes, and control strategies. Future research could address these factors to
improve the applicability and generalizability of the high-order Markov chain model.
The validation of the high-order Markov chain model may have been limited. While the
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study mentioned the comparison of model predictions with experimental data, the extent
and diversity of the validation may not have been comprehensive. It is essential to validate
the model against various experimental setups, including indoor environments, ventilation
configurations, and particle sources. This would help assess the model’s performance
under various conditions and provide more confidence in its predictive capabilities.

Another study by A. Nanni et al. compares puff and Lagrangian particle dispersion
models at a complex coastal site. The researchers aim to evaluate and compare the per-
formance of two diverse models used for simulating the dispersion of particles in the
atmosphere. Specifically, they examine the puff model and the Lagrangian particle disper-
sion model. The study site chosen for this comparison is a complex coastal area, which
poses unique challenges for dispersion modeling due to the influence of variable wind
patterns, complex terrain, and other coastal factors. The study discusses the methodology
employed to evaluate the models and compares their performance based on various metrics.
The researchers consider factors such as model accuracy, computational efficiency, and the
ability to capture the complex dispersion patterns at the coastal site. Comparing the results
obtained from both models, the study provides insights into the strengths and limitations of
each approach. The research findings contribute to our understanding of how well the puff
and Lagrangian particle dispersion models perform in complex coastal environments and
provide guidance for choosing the most suitable model for similar locations. The study com-
pares the performance of the puff and Lagrangian particle dispersion models at a complex
coastal site. The study evaluates model accuracy and computational efficiency, providing
insights into the strengths and limitations of each model type in capturing the complex
dispersion patterns in coastal environments. Based on the general context of particle dis-
persion modeling, there is limited consideration of model uncertainties. The study may
not have extensively addressed the uncertainties associated with the puff and Lagrangian
particle dispersion models. These models rely on various assumptions and simplifications,
which can introduce uncertainties in their predictions. Evaluating and quantifying the
uncertainties associated with the models’ outputs would provide a more comprehensive
understanding of their reliability and help assess their applicability in complex coastal
environments [11].

4. Research Gaps and Future Outlook

The field of modeling particle dispersion has witnessed substantial advancements in
recent years, but it still confronts a myriad of research gaps and future challenges. These
challenges span across the spectrum of scientific inquiry and technological application,
reflecting the complexity and significance of particle dispersion in various contexts, from
environmental science to public health.

One of the critical areas where current models often fall short is accurately simulating
multi-phase interactions. Particles in both natural and artificial environments interact with
a variety of phases, such as gases, liquids, and solids. These interactions are inherently
complex and have a profound impact on the behavior and eventual fate of the particles.
However, current models typically employ simplifications that may not fully capture the
intricacies of such interactions, especially in conditions of high particle concentration or
in the presence of reactive or hygroscopic particles. Future research needs to focus on
developing models that can more precisely mimic these complex interactions, possibly
through enhanced understanding of the physicochemical properties of particles and their
behavior under varied environmental conditions.

Another significant challenge is the computational intensity of high-fidelity particle
dispersion models. These models, while robust and detailed, often demand extensive
computational resources, limiting their practicality for large-scale or real-time applications.
This is a considerable constraint, particularly in scenarios requiring quick modeling re-
sponses, such as in urban pollution analysis or during industrial accidents. The future of
particle dispersion modeling lies in striking a balance between accuracy and computational
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efficiency, possibly through innovative computational methods, optimization algorithms,
and leveraging advances in high-performance computing.

The environmental and public health implications of particle dispersion are increas-
ingly coming to the forefront. Models capable of accurately predicting the dispersion of
pollutants and their subsequent interactions with the environment are vital for informed
environmental policy making and conservation efforts. Similarly, in the realm of public
health, models that can effectively simulate the spread of airborne pathogens are crucial
for managing and mitigating the impacts of disease outbreaks. Future research in this area
would not only need to address the physical and chemical aspects of dispersion but also
integrate biological and ecological dimensions.

The incorporation of emerging technologies like machine learning (ML) and artificial
intelligence (AI) presents a promising direction for the evolution of particle dispersion
models. These technologies hold the potential to significantly enhance the accuracy of
models, reduce computational demands, and enable the handling of complex, multi-
variable scenarios that traditional models struggle to address. ML and AI can aid in
recognizing patterns, predicting complex system behaviors, and managing large datasets,
all of which are common challenges in particle dispersion modeling.

The development of models that can provide real-time monitoring and prediction of
particle dispersion represents a significant leap forward. Such capabilities are crucial for
various applications, including environmental monitoring, industrial safety, and public
health preparedness. Achieving this requires advances not only in modeling techniques
but also in sensor technology and data processing capabilities.

Climate change poses a new dimension of challenge for particle dispersion models.
Future models will need to account for changing climatic conditions and their impacts on
particle behavior. This is a relatively unexplored area that is gaining importance as the
effects of climate change become more pronounced.

Tackling the challenges in particle dispersion modeling demands an interdisciplinary
approach. Collaboration across disciplines such as physics, chemistry, environmental
science, computer science, and engineering is essential. The complexity of the problems
requires diverse expertise and perspectives to develop more comprehensive and accu-
rate models.

As models become more refined and capable, they will increasingly influence envi-
ronmental and public health policies. It is crucial for researchers to work closely with
policymakers to ensure that the insights gleaned from advanced models are effectively
translated into actionable regulations and guidelines.

In summary, while recent advances in particle dispersion modeling have been signif-
icant, the field continues to face a multitude of challenges. Addressing these challenges
requires a multifaceted approach that encompasses advanced scientific research, computa-
tional innovation, and the integration of emerging technologies. The potential impacts of
these advancements are vast, ranging from improved environmental protection and industrial
safety to enhanced public health response and policy development. By pushing the frontiers of
particle dispersion modeling, we can gain a deeper understanding of these complex systems
and their implications, paving the way for a healthier and safer environment.
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