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Abstract: In this work, we describe a new type of electrochemical aptasensor for the label-free detec-
tion of oxytetracycline (OTC). Thin-film gold electrodes were fabricated through sputtering gold on a
Kapton film, followed by the immobilization of a thiol-modified aptamer on the electrode surface. The
selective capture of OTC at the aptamer-functionalized electrodes was monitored electrochemically
with the use of the [Fe(CN)6]4−/[Fe(CN)6]3− redox probe. Different experimental variables were
studied, through which the metrological features for OTC determination were derived. Finally, the
developed sensor was implemented to achieve the detection of OTC in a spiked milk sample.
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1. Introduction

Oxytetracycline (OTC) is a commonly used antibiotic in veterinary medicine; residues
of OTC can be present in animal-derived food and are, therefore, consumed by humans [1].
The consumption of, and long-term exposure to, antibiotics may induce antibiotic resistance
and can be harmful to human health [2]; therefore, maximum residue limits (MRLs) in
foodstuff of animal origin have been set by the European Union for antibiotics [3]; in
particular, an MRL of 100 µg/L for OTC residues in milk has been established.

Therefore, it is essential to develop methods for the sensitive and specific detection
of OTC in the environment and food products [4]. To achieve this goal, chromatographic
methods have been predominantly used, but these require expensive, laboratory-based
instrumentation and trained personnel that preclude their implementation in the field for
on-site analysis [5]. On the other hand, biosensors offer an alternative and highly attractive
approach for antibiotic residue monitoring, due to their portability and low cost. Amongst
the different types of bioreceptors used in various biosensing devices, aptamers (single-
stranded oligonucleotides capable of binding to an analyte with high affinity due to the 3D
structural arrangement they conform to) present numerous advantages. As a result, many
aptasensors have been already developed for the detection of several antibiotics, including
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OTC [6,7]. Furthermore, the implementation of electrochemical sensing in aptamer-based
assays offers some important advantages, such as a high sensitivity, low cost and portable
equipment, applicability to on-site analysis, and scope for miniaturization [8].

Herein, the fabrication and application of electrochemical gold-based aptasensors
for the label-free assay of OTC is described. Thin-film gold electrodes were fabricated
through sputtering gold on a Kapton film. Subsequently, thiol-modified aptamers were
immobilized onto the electrodes via the exploitation of the interaction of sulfur with gold.
The selective capture of OTC to the aptamer-functionalized electrodes was monitored
electrochemically using cyclic voltammetry (CV), differential-pulse voltammetry (DPV),
and electrochemical impedance spectroscopy (EIS), with [Fe(CN)6]4−/[Fe(CN)6]3− as a
redox probe (Figure 1). The decrease in the charge transfer of the redox probe could be
related to the OTC concentration.
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Figure 1. The principle of the aptamer-based assay for OTC at the microfabricated gold electrodes.

2. Experiment
2.1. Reagents and Materials

Reagents were of analytical grade and obtained from Sigma-Aldrich (Burlington, MA,
USA). The aptamer sequence was: 5′-GGA ATT CGC TAG CAC GTT GAC GCT GGT GCC
CGG TTG TGG TGC GAG TGT TGT GTG GAT CCG AGC TCC ACG TG/3ThioMC3-D/-3′

and was purchased from Integrated DNA Technologies Inc. (Coralville, IA, USA). The
aptamer was diluted in phosphate buffer (PB) (10 mM, pH 7.4) containing 1 mM MgCl2.
OTC was purchased from Thermo Fisher Scientific (Waltham, MA, USA), and a stock
solution of 100 mg/L was prepared in DMSO:PB (50:50 v/v).

OTC standard calibration solutions containing 0, 25, 50, 100, 200, 400, and 600 ng/mL
of OTC were prepared in PB (pH 7.4). A milk matrix was prepared by dissolving 1.00 g
of low-fat dried milk powder in 50 mL of PB (pH 7.4), centrifuging, and reconstituting
the supernatant solution to a final volume of 100.0 mL with PB. OTC matrix-matched
standard calibration solutions containing 0, 25, 50, 100, 200, 400, and 600 ng/mL of OTC
were prepared in milk matrix.

A spiked milk sample was prepared as follows: 1.00 g of low-fat dried milk powder
was spiked with 10 µg of OTC, dissolved in 50 mL of PB (pH 7.4), and centrifuged; the
supernatant solution was reconstituted to a final volume of 10.0 mL with PB.
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All electrochemical measurements were performed using a solution containing 5 mM
[Fe(CN)6]4−/[Fe(CN)6]3− in 0.1 M KCl.

2.2. Instrumentation

A Metrohm Autolab PGSTAT12 Potentiostat/Galvanostat equipped with the GPES
Software v. 4.9 (Metrohm, Switzerland) was used for all the electrochemical measurements.
Measurements were carried out in a standard electrochemical cell consisting of a Ag/AgCl
reference electrode, a Pt counter electrode, and the microfabricated thin-film gold electrode
as the working electrode. The measurement conditions were: DPV: scan from−0.1 to +0.4 V,
scan rate 10 mV/s, step 5 mV, pulse amplitude 25 mV, modulation time 50 ms, interval
time 0.5 s; CV: scan from −0.5 to +0.5 V, scan rate 50 mV/s; EIS: DC potential +0.25 V, AC
potential 10 mV, frequency range 100,000 Hz to 0.1 Hz.

Circular dichroism (CD) spectra were recorded (200–320 nm range, 2 nm bandwidth,
50 nm/min scan rate) using a Jasco J-1500 CD spectrometer (Tokyo, Japan) thermostated
at 25 ◦C.

Sputtering was performed with a CV401 system (Cooke Vacuum Products, W. Redding,
CT, USA), and atomic force microscopy (AFM) images were taken with an SPM SMENA
instrument.

2.3. Fabrication of the Thin-Film Gold Sensors

The thin-film gold electrodes were fabricated via metal sputtering. A film of flexible
Kapton® HN polyimide film (50 µm thicknesses, from RS) was covered with a metal mask
with the electrode pattern, and Cr and Au were sputtered on the wafer at a nominal
thickness of 5 and 100 nm, respectively. A schematic diagram of the fabrication process of
the gold sensors and an array of gold electrodes are illustrated in Figure 2a,b, respectively.
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Figure 2. (a) Schematic diagram of the fabrication process of the thin-film gold electrodes, (b) photo-
graph of an array of 36 electrodes.

2.4. Experimental Protocol

The aptamer stock solution was heated for 5 min at 95 ◦C and allowed to cool down
to room temperature. Aptamer solutions of 5, 10, 20, and 40 µM were prepared in PB
containing 1 mM MgCl2. An amount of 10 µL of the aptamer solution was drop-casted
onto the thin-film gold working electrode surface and was left for 12 h at 4 ◦C in a humidity
chamber. The aptamer-modified electrodes were thoroughly washed with PB to remove
unbound aptamers. Subsequently, 5 µL of mercaptoethanol solution (1 mM in 1:2 (v/v)
water/ethanol) was added at the aptamer-modified electrode and was left for 30 min at
room temperature.

OTC detection was accomplished through incubating 60 µL of the standard solution
or milk sample onto the sensor surface for 30 min at room temperature. Then, the electrode
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was washed thoroughly with PB to remove unbound OTC and subjected to electrochemical
analysis.

3. Results and Discussion

AFM imaging of the thin-film gold electrodes indicates that the gold film is grainy
in structure, with a roughness of ca. 9 nm and a grain diameter of ca. 15 nm (Figure 3a).
These data demonstrate an exceptionally smooth surface morphology, which is suitable
for the reproducible and uniform attachment of the aptamer, as opposed to the commonly
used thick-film screen-printed gold deposits that exhibit a much rougher surface and,
consequently, lower device-to-device uniformity.

Eng. Proc. 2023, 58, x FOR PEER REVIEW 4 of 7 
 

 

water/ethanol) was added at the aptamer-modified electrode and was left for 30 min at 
room temperature. 

OTC detection was accomplished through incubating 60 µL of the standard solution 
or milk sample onto the sensor surface for 30 min at room temperature. Then, the electrode 
was washed thoroughly with PB to remove unbound OTC and subjected to electrochem-
ical analysis. 

3. Results and Discussion 
AFM imaging of the thin-film gold electrodes indicates that the gold film is grainy in 

structure, with a roughness of ca. 9 nm and a grain diameter of ca. 15 nm (Figure 3a). 
These data demonstrate an exceptionally smooth surface morphology, which is suitable 
for the reproducible and uniform attachment of the aptamer, as opposed to the commonly 
used thick-film screen-printed gold deposits that exhibit a much rougher surface and, con-
sequently, lower device-to-device uniformity. 

The CD spectrum of the aptamer before and after the addition of different concentra-
tions of OTC is illustrated in Figure 3b. The spectrum reveals that the aptamer adopts a 
parallel G-quadruplex conformation (maximum at 260 nm, minimum at 240 nm), while 
incubation with increasing OTC concentrations results in a shift of the peak minimum 
from ca. 240 nm to ca. 250 nm, coupled with a decrease in the peak maximum at ca. 270 
nm and the appearance of a peak at ca. 290 nm, indicative of an analyte-induced folding 
of the aptamer into a hybrid G quadruplex or a mixture of hybrid and antiparallel quad-
ruplexes [9]. 

  
(a) (b) 

Figure 3. (a) AFM image of the thin-film gold electrode surface, (b) CD spectrum of the aptamer 
before and after the addition of OTC. 

The different steps of the aptasensor preparation and the assay were studied using 
EIS and CV (Figure 4). EIS demonstrated that the charge transfer resistance of the bare 
electrode increased upon successive immobilization of the aptamer, mercaptoethanol, and 
OTC (Figure 4a). This was corroborated by the respective CVs, which showed that the 
redox current decreased as the bare electrode was successively treated with aptamer, mer-
captoethanol, and OTC (Figure 4b). These results suggest that the aptamer is successfully 
immobilized on the electrode surface and that the OTC is effectively bound to the immo-
bilized aptamer. The concentration of the aptamer was studied, and a 20 µM solution was 
found to produce the highest sensitivity and repeatability. 
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The CD spectrum of the aptamer before and after the addition of different concentra-
tions of OTC is illustrated in Figure 3b. The spectrum reveals that the aptamer adopts a
parallel G-quadruplex conformation (maximum at 260 nm, minimum at 240 nm), while
incubation with increasing OTC concentrations results in a shift of the peak minimum
from ca. 240 nm to ca. 250 nm, coupled with a decrease in the peak maximum at ca.
270 nm and the appearance of a peak at ca. 290 nm, indicative of an analyte-induced
folding of the aptamer into a hybrid G quadruplex or a mixture of hybrid and antiparallel
quadruplexes [9].

The different steps of the aptasensor preparation and the assay were studied using
EIS and CV (Figure 4). EIS demonstrated that the charge transfer resistance of the bare
electrode increased upon successive immobilization of the aptamer, mercaptoethanol, and
OTC (Figure 4a). This was corroborated by the respective CVs, which showed that the
redox current decreased as the bare electrode was successively treated with aptamer, mer-
captoethanol, and OTC (Figure 4b). These results suggest that the aptamer is successfully
immobilized on the electrode surface and that the OTC is effectively bound to the immobi-
lized aptamer. The concentration of the aptamer was studied, and a 20 µM solution was
found to produce the highest sensitivity and repeatability.

Analytical measurements were performed via recording the DPV oxidation current
of the [Fe(CN)6]4−/[Fe(CN)6]3− redox probe at different OTC concentrations in the range
0–600 µg/L. Increasing concentrations of OTC induced a reduction in the DPV current as a
result of the aptamer blocking of the electrode surface. The % signal reduction, I%, was
calculated as: I% = (io − i)/io (where io is the DPV current at the aptamer-modified electrode
in the absence of OTC, and i is the DPV current at the aptamer-modified electrode in the
presence of OTC).

In order to assess possible milk matrix interference, the matrix effect was calculated as
ME = I%,st/I%,mm (where = I%,mm is the signal reduction in a matrix-matched OTC standard,
and I%,st is the signal reduction in the same OTC standard in PB) (Table 1). These data
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indicate that a more pronounced matrix effect existed at lower OTC concentrations, so a
matrix-matched calibration plot is recommended for quantitative assays.
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Table 1. Study of the milk matrix effect.

[OTC] (µg/L) ME

25 1.25
50 1.23

100 1.15
200 1.15
400 1.11
600 1.05

Typical DPV traces are illustrated in Figure 5, and the linear–linear (I%,mm vs. [OTC])
and linear–log (I%,mm vs. log[OTC]) calibration plots are shown as inserts. The limit of
detection (LOD) of OTC was ~5 µg/L (calculated as the OTC concentration that produced
a statistically different signal from the blank). The repeatability between sensors (calcu-
lated as the % relative standard deviation from five different aptasensors) was 16% at the
100 µg/L OTC level.
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Preliminary experiments were carried out for the determination of OTC in a milk
sample spiked with 100 µg/L OTC. The recovery was calculated as R% = I%,sp/I%mm,100
(where I%,sp is the % signal reduction in the spiked milk sample, and I%mm,100 is the %
signal reduction in a 100 µg/L matrix-matched standard of OTC). The mean recovery
(n = 3) was calculated as 95%.
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