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Abstract: The cognitive state of a person can be categorized using the Circumplex model of emo-
tional states, a continuous model of two dimensions: arousal and valence. We exploit the Remote
Collaborative and Affective Interactions (RECOLA) database, which includes audio, video, and
physiological recordings of interactions between human participants to predict arousal and valance
values using machine learning techniques. To allow learners to focus on the most relevant data,
features are extracted from raw data. Such features can be predesigned or learned. Learned features
are automatically learned and utilized by deep learning solutions. Predesigned features are calculated
before machine learning and inputted into the learner. Our previous work on video recordings
focused on learned features. In this paper, we expand our work onto predesigned visual features,
extracted from video recordings. We process these features by applying time delay and sequencing,
arousal/valence labelling, and shuffling and splitting. We then train and test regressors to predict
arousal and valence values. Our results outperform those from the literature. We achieve a root
mean squared error (RMSE), Pearson’s correlation coefficient (PCC), and concordance correlation
coefficient (CCC) of 0.1033, 0.8498, and 0.8001 on arousal predictions; and 0.07016, 0.8473, and 0.8053
on valence predictions, using an optimizable ensemble, respectively.

Keywords: regression; machine learning; cognitive/emotional state; visual features

1. Introduction

The cognitive state of a person can be categorized using the Circumplex model of
emotional states [1], a continuous model of two dimensions: arousal and valence, where
arousal measures the energy level and valence measures the positivity level of a person’s
emotion. In this model, emotions are divided into four categories: happy, angry, sad, and
relaxed. Each of these emotions is associated with a quadrant of the circumplex model.
Happy emotions have high valence and high arousal, anger—low valence and high arousal,
sad—low valence and low arousal, and relaxed—high valence and low arousal. The arousal
and valence values can be estimated via machine learning regression.

We use the RECOLA database [2] which includes audio, video, and physiological
recordings of online interactions between human participants to predict arousal and valance
values using machine learning techniques. We previously predicted arousal and valence
values using the physiological [3,4] and video [4,5] recordings of RECOLA. Features are
attributes that describe the data. They can be predesigned or learned [6]. Learned features
are attributes that are automatically extracted and utilized by deep machine learning solu-
tions during the learning process. On the other hand, predesigned features are attributes
that are calculated on the data before the learning process and provided as input to the ma-
chine learner. Our previous work on the video recordings of RECOLA focused on learned
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features from convolutional neural networks (CNNs), such as ResNet-18 and MobileNet-v2.
MobileNet-v2 achieved a root mean squared error (RMSE), Pearson’s correlation coeffi-
cient (PCC), and concordance correlation coefficient (CCC) of 0.1220, 0.7838, and 0.7770
on arousal predictions; and 0.0823, 0.7789, and 0.7715 on valence predictions, respectively.
In this paper, we expand our work to analyze and assess the predesigned visual features,
extracted from the video recordings of RECOLA. We propose a novel combination of pro-
cessing steps to prepare the visual features for regression. We leverage machine learning
solutions such as regression trees, kernel regression, and ensemble regressors to predict the
arousal and valence values of cognitive states. Our goal is to find the model(s) with the
best prediction performance to later integrate into a virtual reality (VR) system that runs
cognitive remediation exercises for users with mental health disorders (e.g., schizophrenia).

Solutions for the prediction of cognitive states ideally consist of two components:
parametrization and recognition of facial expressions [6]. Parametrization is the process of
specifying the visual features and coding schemes to describe the involved facial expres-
sions. The visual features used for the prediction of cognitive states can be appearance
or geometric features [7]. Geometric features represent the geometry of the face. Local
Gabor Binary Patterns from Three Orthogonal Planes (LGBP-TOP) [8] is one method that
is used in the extraction of appearance features, while facial landmarks [9] are usually
used for geometric features. Examples of geometric features include the derivatives of
the detected facial landmarks, the speed and direction of motion in facial expressions, the
head pose, and the direction of the eye gaze. Appearance features represent the overall
texture resulting from the deformation of the neutral facial expression. Appearance features
depend on the intensity of an image, whereas geometrical features determine distances,
deformations, curvatures, and other geometric properties [6]. Coding schemes can either
be descriptive or judgmental [6]. Descriptive coding schemes depend on surface properties
and what the face can do to describe facial expression. Judgmental coding schemes depend
on the latent emotions or affects that produce them to parameterize facial expressions.
The facial action coding system (FACS) [10] is one example of descriptive systems. FACS
is a system that describes all visually evident facial movements [10,11]. It divides facial
expressions into individual components of muscle movement, called Action Units (AUs).
Coding schemes, such as facial AUs, as well as geometric and/or appearance features can
then be treated as input parameters to machine learning regressors or classifiers for the
prediction of cognitive states.

In the remainder of this paper, we will provide a literature review (Section 2), followed
by a description of the methods used in our solution (Section 3). Then, we include a
discussion of our results (Section 4). Finally, we will conclude this paper with some closing
remarks (Section 5).

2. Literature Overview

RECOLA [2] is a multimodal database of natural emotions that is often used in studies
on the prediction of cognitive states. It contains video, audio, and physiological recordings.
It also provides predesigned features for these recordings. Arousal and valence annotations
were provided by 6 raters every 40 ms of recording. The mean of the six ratings was
used to label the data in our work. The database contains 5-min video recordings of 27
participants, where only data from 23 participants are publicly available. Since some of the
data modalities in RECOLA contain records for 18 of the participants, we only used these
18 recordings from the RECOLA database to prove our concept.

The authors of the original RECOLA database [2] further extended their work in [11],
where they performed experiments on the database for the prediction of arousal and valence
values. They extracted 20 visual features on each video frame in the video recordings of
RECOLA, along with their first order derivates. They then deployed a bidirectional long
short-term memory recurrent neural network (BiLSTM RNN) to predict arousal and valence
measures. They compared the prediction performance of the RNN between mean ratings
(average of annotations from all 6 raters) and all six ratings, using both single-task and
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multi-task learning techniques. For arousal, they achieved a CCC of 0.427 using multi-task
learning over all six ratings. For valence, they achieved a CCC of 0.431 using single-
task learning over all six ratings. The authors of RECOLA [2,11] later introduced the
Audio/Visual Emotion Challenge and Workshop (AVEC) in 2015 [12]. In AVEC 2018 [13],
they experimented with the different types of visual features: appearance, geometric, 17
facial AUs, and bags-of-words. For arousal, they achieved a CCC of 0.312 via multi-task
Lasso, while using appearance features. For valence, they achieved a CCC of 0.438 via a
support vector machine (SVM), while using geometric features.

Other authors have also benefited from using the RECOLA database in their research.
Han et al. [14] exploited the geometric visual features provided by AVEC to predict arousal
and valence values through an RNN. They implemented an implicit fusion framework
for joint audiovisual training. They achieved a CCC of 0.413 and 0.527 on arousal and
valence predictions, respectively. Albadawy et al. [15] used the visual features provided by
AVEC 2015, which included appearance (LGBP-TOP) and geometric (Euclidean distances
between 49 facial landmarks) features. For arousal and valence predictions, they proposed
a joint modelling strategy using a deep BiLSTM for ensemble and end-to-end models.
Their ensemble BiLSTM model achieved a CCC of 0.699 and 0.617 for arousal and valence,
respectively. In our work, we used and further processed the basic features extracted by
the authors of RECOLA in [11] and experimented with a variety of regressors to predict the
arousal and valence values of cognitive states.

3. Methods

We processed the visual features of RECOLA by applying time delay and sequencing,
arousal and valence annotation labelling, and data shuffling and splitting. We then trained
and tested regressors to predict the arousal and valence values. The following sections will
discuss the details about our processing steps and regression methodology.

3.1. RECOLA’s Predesigned Visual Features

The video recordings of RECOLA were sampled at a sampling rate of 25 frames/s,
where visual features were extracted for each video frame [11]. As predesigned visual
features, RECOLA contains 20 attributes alongside their first order derivative, resulting in
40 features in total. These attributes/features include 15 facial AUs of emotional expressions,
the head-pose in three dimensions (i.e., X, Y, Z), and the mean and standard deviation of
the optical flow in the region around the head. The AUs are AU1 (Inner Brow Raiser), AU2
(Outer Brow Raiser), AU4 (Brow Lowerer), AU5 (Upper Lid Raiser), AU6 (Cheek Raiser),
AU7 (Lid Tightener), AU9 (Nose Wrinkler), AU11 (Nasolabial Deepener), AU12 (Lip Corner
Puller), AU15 (Lip Corner Depressor), AU17 (Chin Raiser), AU20 (Lip Stretcher), AU23 (Lip
Tightener), AU24 (Lip Pressor), and AU25 (Lips Part) from FACS. For more information
about these features and their extraction, please refer to [11]. We used these features in
our work.

3.2. Time Delay and Sequencing

RECOLA’s video recordings were sampled at a rate of 25 frames/s. This means that
one frame was captured every 0.04 s (40 ms). The visual features were calculated on each
frame, meaning that they were provided every 40 ms as well. Since other data modalities
of RECOLA only started being recorded after 2 s (2000 ms), we skipped any readings
that occurred before that time. As a result, the first 50 frames (2 s × 25 frames/s) of the
recordings were unused in our work.

3.3. Annotation Labelling

The data in RECOLA were labelled with respect to the arousal and valence emotional
dimensions. The data samples were manually annotated using ANNEMO, an annotation
tool, developed by Ringeval et al. [2]. Each recording was annotated by six raters. The
mean of these six ratings was used to label the data in our work. The mean arousal and
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valence values were also sampled every 40 ms. As we proceeded in Section 3.2, the first 50
annotations were discarded. The remaining annotations were accordingly used to label
the corresponding vectors of visual features. All labelling and fusion of data samples and
features were completed according to the timing of the video frames.

3.4. Data Shuffling and Splitting

Data shuffling ensures the randomization and diversity of the data. The data were
shuffled and split, where 80% went towards training and validation, and 20% went towards
testing. Our training and validation dataset was 106,201 frames × 40 features in size, while
the testing dataset was 26,550 frames × 40 features in size.

3.5. Regression

For the prediction of arousal and valence values, we used an optimizable ensemble
regressor. We also experimented with other regression models for comparison purposes:
tree regressors, regression kernels, and ensemble regression. We trained and validated four
tree regressors (fine, medium, coarse, and optimizable tree), two regression kernels (SVM
and least squares regression kernel), and two ensembled regressors (boosted and bagged
trees). A fine regression tree is small with a leaf size of 4 [16]. A medium regression tree
has 12 leaves. A coarse regression tree is large and has a leaf size of 36. An optimizable
regression tree optimizes the minimum leaf size through a Bayesian optimizer. Regression
kernels are Gaussian regression models for nonlinear regression over large datasets. An
SVM kernel maps the features into a high-dimensional space and fits a linear SVM model
to the transformed features. A least squares regression kernel maps the features into a
high-dimensional space and fits a least squares linear regression model to the transformed
features. The boosted trees model ensembles regression trees using the LSBoost algo-
rithm. The bagged trees model ensembles regression trees by bootstrap-aggregation. An
optimizable regression ensemble optimizes training hyperparameters (ensemble method,
number of learners, learning rate, minimum leaf size, and number of predictors to sample)
via Bayesian optimization. We implemented 5-fold cross-validation during training to
avoid overfitting.

4. Discussion of Results

After training the aforementioned models, we tested them by predicting the arousal
and valence values on the testing set to evaluate the performance when presented with
new data. Table 1 summarizes the validation and testing performances in terms of the
RMSE, PCC, and CCC performance measures. A smaller RMSE value signifies better
performance, whereas greater PCC and CCC values signify better performance. We have
achieved a testing RMSE, PCC, and CCC of 0.1033, 0.8498, and 0.8001 on arousal predictions,
respectively. We have achieved a testing RMSE, PCC, and CCC of 0.07016, 0.8473, and
0.8053 on valence predictions, respectively. These performances were obtained using
an optimizable ensemble regressor. Our performances are better than those from the
literature [11–15] (see Section 2), who performed more complex processing and feature
extraction. In Table 1, the validation performances were evaluated by performing 5-fold
cross validation across the training data. The testing performances were computed by using
the trained model for predicting the arousal and valence values of the testing set. The rows
corresponding to the best prediction performances are displayed in bold font in Table 1.
Figure 1 displays a plot of the predicted arousal and valence values against the actual
values, as per the best model (i.e., optimizable ensemble). In the plot of a perfect regression
model, the predicted values would be the same as the actual values, resulting in a diagonal
line of points [16]. Models where the points are scattered near the diagonal line represent
good models, with less errors. Table 1 and Figure 1 also compare the performances of our
models for learned [4] and predesigned features. Using predesigned features showed an
improvement in our prediction performance.



Eng. Proc. 2023, 58, 3 5 of 7

Table 1. Summary of Prediction Performances.

Prediction Regression Type Validation RMSE Testing RMSE, PCC, CCC

Arousal

Fine Tree 0.15389 0.1477, 0.6812, 0.6805
Medium Tree 0.14601 0.1410, 0.6902, 0.6838
Coarse Tree 0.14477 0.1410, 0.6731, 0.6516

Optimizable Tree 0.14351 0.1396, 0.6861, 0.6719
SVM Kernel 0.13665 0.1354, 0.7018, 0.6807

Least Squares Kernel 0.13444 0.1331, 0.7097, 0.6633
Boosted Trees 0.161 0.1607, 0.5463, 0.3743
Bagged Trees 0.11285 0.1082, 0.8304, 0.7796
Optimizable

Ensemble 0.10791 0.1033, 0.8498, 0.8001

MobileNet-v2 [4] 0.12178 0.1220, 0.7838, 0.7770

Valence

Fine Tree 0.10191 0.0981, 0.6975, 0.6967
Medium Tree 0.097111 0.0944, 0.7011, 0.6947
Coarse Tree 0.097623 0.0948, 0.6826, 0.6610

Optimizable Tree 0.096525 0.0945, 0.6922, 0.6801
SVM Kernel 0.094882 0.0943, 0.6855, 0.6495

Least Squares Kernel 0.092417 0.0916, 0.7030, 0.6574
Boosted Trees 0.11142 0.1104, 0.5525, 0.3467
Bagged Trees 0.074689 0.0714, 0.8421, 0.7962
Optimizable

Ensemble 0.073335 0.0702, 0.8473, 0.8053

MobileNet-v2 [4] 0.08309 0.0823, 0.7789, 0.7715
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ensemble trained on visual features (green), and MobileNet-v2 trained on video frames (blue). The
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5. Conclusions

In conclusion, we performed arousal and valence predictions by exploiting the pre-
designed visual features of the RECOLA database. The feature vectors were processed
and accordingly labelled with their corresponding arousal or valence annotations. We
trained, validated, and tested an optimizable ensemble as well as other regressors to predict
arousal and valence values. The optimizable ensemble achieved a RMSE, PCC, and CCC of
0.1033, 0.8498, and 0.8001 on arousal predictions, and 0.07016, 0.8473, and 0.8053 on valence
predictions, respectively. To the best of our knowledge, our prediction performances on
arousal and valence predictions are the best in comparison to the literature. Going forward,
we will carry out our project with the optimizable ensemble as the prediction mechanism
for predesigned visual features. Since we achieved good prediction performance using
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physiological [3,4] and visual data, we can work on acoustic data and start combining our
solutions for the different data modalities. In the future, we will apply our findings to real
data, obtained from a VR system.
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