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Abstract: The goal of this paper is to evaluate various compact CNN architectures for object recogni-
tion trained on a small resource-constrained platform, the NVIDIA Jetson Xavier. Rigorous experi-
mentation identifies the best compact CNN models that balance accuracy and speed on embedded
IoT devices. The key objectives are to analyze resource usage such as CPU/GPU and RAM used to
train models, the performance of the CNNs, identify trade-offs, and find optimized deep learning
solutions tailored for training and real-time inference on edge devices with tight resource constraints.

Keywords: machine learning; compact convolutional networks; object recognition resource-constraint
devices; IoT; sensor data processing

1. Introduction

Nowadays, artificial intelligence (AI) has become very prominent and impactful owing
to its proficiency in accomplishing a wide variety of tasks with high levels of effectiveness
and efficiency. Some of the areas where AI has demonstrated its capabilities include, but
are not restricted to, visual recognition tasks like image classification, object detection,
sensor data, and natural language processing. Deep learning is an advanced sub-discipline
of machine learning that emphasizes refining artificial neural networks with multiple
layers to apprehend intricate representations of data. It can learn useful features from raw
data without manual feature engineering. In contrast, the advent of Internet-of-Things
devices having inbuilt sensors opens novel prospects for implementing convolutional
neural networks (CNNs) directly on resource-limited devices. However, these devices have
limited memory, storage, and computing power, making extensive and complex CNNs
infeasible. Implementing compact CNNs with smaller models and computational needs
on IoT devices enables localized capabilities like object recognition without relying on the
cloud. This reduces latency while improving privacy and reliability. To facilitate model
training and inference, several types of specialized hardware have emerged such as CPUs,
graphics processing units (GPUs)/tensor processing units (TPUs), and field-programmable
gate arrays (FPGAs).

Researchers have been investigating the training and inference performance of models
in resource-constrained devices. Ajit et al. [1] provide a broader review of CNNs without
directly addressing the impact of training using different hardware. Nevertheless, the paper
offers valuable context regarding the algorithmic steps and applications of CNNs across
various fields. Recent studies [2] indicate that both GPUs and TPUs significantly improved
the performance and accuracy of CNN models, with TPUs outperforming GPUs in certain
cases. This suggests that the choice of hardware can have an important impact on model
accuracy and overall performance. Other work focuses on GPU and TPU deployment for
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image classification tasks [3]. Only a few papers have explored the use of the NVIDIA Jetson
Xavier NX platform for deploying imaging applications. Among these, Jabłoński et al. [4]
evaluate the performance of Jetson Xavier NX for real-time image processing for plasma
diagnostics. The authors implement several image processing algorithms on the platform
and evaluate their performance in terms of speed and accuracy. They found that the
platform is able to achieve good performance on the image processing tasks, and that it
is well-suited for real-time applications due to its fast-processing speeds. Kortli et al. [5]
propose a hybrid model that combines a CNN with a long short-term memory (LSTM)
network for lane detection and implement and demonstrate the ability to achieve good
performance for this task on the Jetson Xavier NX.

The goal of this paper is to evaluate various compact CNN architectures for object
recognition in images trained on the NVIDIA Jetson Xavier NX. The key objectives are to
analyze resource usage such as CPU/GPU and RAM used to train models, the performance
of the CNNs, identify trade-offs, and find optimized deep learning solutions tailored for
training and real-time inferencing on devices with tight resource constraints.

2. Materials and Methods
2.1. NVIDIA Jetson Xavier Platform

The NVIDIA Jetson Xavier NX [6] is a system-on-a-chip (SoC) developed by NVIDIA.
It is designed for use in a wide range of applications, including autonomous machines,
robotics, and edge computing. The Xavier NX is based on the NVIDIA Volta architecture
and features a 6-core Arm Cortex-A57 processor, a 512-core NVIDIA Volta GPU, and a deep
learning accelerator (DLA). It is designed to be highly energy efficient and has a small form
factor, making it suitable for use in devices with limited space and power resources. The
Xavier NX can deliver high performance for a range of tasks, including machine learning,
image and video processing, and computer vision. It is targeted at developers and OEMs
who are looking to build advanced, high-performance systems for a variety of applications.

2.1.1. Setting Up the NVIDIA Xavier NX Board

The process of installing NVIDIA SDK Manager and Jetpack [7], flashing an SD card,
and installing an SSD drive while changing the root file system (‘rootfs’) to the SSD involves
a series of specific procedures.

The first step is to download the NVIDIA SDK Manager from the NVIDIA SDK
Manager download page. This step requires one to have an NVIDIA Developer account to
access the download. Once the file has been downloaded, the terminal must be opened,
and one must navigate to the directory where the file is saved. The permission of the file is
then changed to make it executable with a specific command. The SDK Manager is then
installed by running a particular command in the terminal.

After the SDK Manager has been installed, it can be executed by typing ‘sdkmanager’
into the terminal and then logging in with the NVIDIA Developer account credentials.
Within the SDK Manager, one must select the appropriate hardware configuration in the
‘Target Hardware’ section. Then, the desired Jetpack version is selected in the ‘SDKs’ section.
One must then follow the prompts to complete the installation process.

Flashing the SD card is a task handled by the SDK Manager during the Jetpack
installation process, requiring the SD card to be connected to the host machine. If a manual
flash of the SD card is needed, a tool like Etcher [8] can be utilized. One can download
and install Etcher, select the image file they want to flash, select the SD card, and start the
flashing process.

The installation of the SSD drive and the changing of the ‘rootfs’ to point to the SSD
first necessitates physically connecting the SSD to the device. After this, the SSD must be
formatted, which, in Linux, can be performed using a specific command, replacing ‘sdX’
with the appropriate device id. One is then guided through a series of prompts to create a
new partition and format it. After the SSD has been formatted, it is mounted by running
a specific command. The contents from the SD card are then copied to the SSD using the
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‘rsync’ command. One then must edit the ‘/boot/extlinux/extlinux.conf’ file on the SD
card to point to the SSD, changing ‘root=/dev/mmcblk0p1’ to ‘root=/dev/sdX1’. The
device is then rebooted, after which the system should boot from the SSD. It is crucial to
remember to replace ‘sdX’ with the user’s SSD drive id and ’/dev/mmcblk0p1’ with the
actual root partition. Additionally, it is of paramount importance that one backs up any
vital data before proceeding with these steps and proceeds with caution when modifying
system files or disk partitions.

2.1.2. Deploying CNNs on NVIDIA Jetson Xavier NX

Once the above steps are completed, one can begin creating and training machine
learning models. Code development can be made more effective by installing the proper
Integrated Development Environment (IDE) on the Jetson Xavier NX or by establishing a
remote connection over SSH. Pytorch and Tensorflow are both available in the NVIDIA
Jetson SDK. The PyTorch library was our choice for implementation. Moreover, we also use
Torchvision, which is a PyTorch add-on library that provides datasets, model architectures,
and image transformations for computer vision, NumPy for numerical operations, and
Scikit Learn that provides utilities for machine learning, including model evaluation metrics.
The Pytorch profiler, torch.profiler, is also used for profiling model inference to analyze
GPU/CPU usage and memory consumption. For maximizing performance and obtaining
the best out of the NVIDIA Xavier NX, we activated all 8 CPUs, enabling its 6 cores,
which causes the board to consume 20 Watts of power. NVIDIA provides a script called
‘jetson_clocks’. The script is provided by NVIDIA to optimize the board performance
through the implementation of static maximum frequency settings for CPU, GPU, and
EMC clocks. It is also recommended to activate fans, but we found that the temperatures
are not high when the board is managed with the default values.

2.2. Datasets for Experimentation

In this paper, we focus on 2D object recognition in images. We chose two datasets
for experimentation. The first one is CIFAR-10 [9], a well-known dataset in computer
vision for object recognition. It contains 60,000 32 × 32 color images, all of which contain
one of the 10 distinct object classes. Each class comprises 6000 images, rendering a grand
total of 10 unique object classes. The test batch contains 1000 randomly selected from
each class. The second one, STL-10 [10], contains 96 × 96 color images across 10 classes
with 500 training and 800 test images per class, totaling 5000 labeled training images
and 8000 labeled test images. It is commonly employed to benchmark machine learning
models and provides 800 test images per class compared to 1000 for CIFAR-10, a moderate
difference. As the STL-10 dataset has fewer labeled training images with higher resolution
(32 × 32 for CIFAR-10 vs. 96 × 96 for STL-10), we wanted to observe how well models can
generalize to different quantity of data and deal with different image sizes.

2.3. Methodology

A series of compact, lightweight CNN architectures, namely AlexNet, ShuffleNet v2,
SqueezeNet, ResNet50, and MobileNet v2, are implemented and evaluated on the Jetson
Xavier NX platform. The performance is compared either when training the algorithms
directly from scratch on the platform or when using a transfer learning process.

2.3.1. Tested Architectures

We have chosen 5 compact architectures for testing: AlexNet [11] comprises 8 layers
with trainable parameters, including 5 convolutional layers paired with max pooling layers,
followed by 3 fully connected layers. Each layer uses a ReLU activation function, except
for the output layer. It also uses dropout layers, which prevent the model from overfitting.
ShuffleNetV2 [12] is an efficient, lightweight CNN architecture designed for mobile and
embedded vision applications with limited computational resources. Its architecture is
composed of 50 layers and incorporates two operations: pointwise group convolution
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and channel shuffle, which significantly reduce computational costs while still preserving
accuracy. The architecture of SqueezeNet [13] is based on a shuffle operation that enables
channel interleaving, reducing the number of computations required by the network.
ResNet [14] is a pioneering CNN architecture that utilizes residual connections to enable
training of very deep networks. Skip connections allow gradients to flow directly to earlier
layers. ResNet’s key components include residual blocks, stacked together to form the
network, and a bottleneck design for deeper versions. This architecture enabled the training
of extremely deep networks, from 48 up to 152 layers. In this paper, we use Resnet50, which
is a ResNet variant that has 50 layers. Finally, MobileNetV2 [15] uses depthwise and
pointwise separable convolutions to reduce parameters and computations needed while
incurring a slight decrease in performance. The architecture introduces inverted residual
blocks, a modification of the standard residual block found in the ResNet architectures,
which allows for efficient training on limited computation power. When training these
models, we resized and normalized the input image size for each architecture and we
shuffled the training datasets. We also applied data augmentation techniques, i.e., cropping
and horizontal flipping. We froze the hidden layers to both avoid relearning generic
features and improve training performance.

2.3.2. Test Design and Performance Evaluation

In order to train models and assess their performance, we used the two datasets in
Section 2.2. Each model is trained initially with 10 epochs and the number of epochs is
increased to 30, 50, 60, 100, 150, and 200 epochs, for a fixed batch size of 64. The loss
function is set as cross-entropy loss, and the optimization algorithm is Stochastic Gradient
Descent (SGD) with a learning rate of 0.001 and momentum of 0.9. For monitoring the
training process, a script runs in background collecting CPU/GPU/RAM utilization from
the board. Also, the loss is printed every 200 batches. The best model is identified by
the highest F1-score with less computation cost. However, the time required to train, and
accuracy of a model should also be considered depending on the use case. To test our
model, we train from scratch directly on the board and also use transfer learning. The latter
takes advantage of knowledge previously learned from models trained on large datasets,
which in our case, is the ImageNet dataset [16]. Transfer learning reduces the time required
to train a model as it freezes the hidden layers that contain general knowledge (i.e., uses
pre-trained weights obtained during learning on ImageNet dataset) and retrains only a
limited number of layers, particularly those toward the output layer that contains the
specific knowledge of the target task. It achieves a good performance quicker with reduced
computation costs. After training, the model’s performance is evaluated on the test sets
mentioned in Section 2.2. The precision, recall, and F1-score for each model are calculated
using the Scikit Learn library’s functions.

3. Results

Tables 1 and 2 summarize the results we obtained on the two datasets using the
five tested CNN architectures when trained from scratch and when using the pre-trained
weights computed via transfer learning, with the best performance highlighted in bold. On
the CIFAR-10 dataset, the AlexNet model trained from scratch improved its F-score from
a modest 0.640 after only 10 epochs to an impressive F-score of 0.824 after 50 epochs and
finally to an optimal 0.845 after 200 full epochs of training. Using transfer learning, the
performance of the model increases significantly with fewer epochs, achieving an F-score
of 0.911 for 100 training epochs. The pre-trained ShuffleNet model achieved an F-score of
0.916 with only 10 epochs. Unlike the model trained from scratch, this model did not see
significant improvement as the number of epochs increased and peaked at an F-score of
0.924 for 30 epochs. The SqueezeNet with transfer learning scored very well (an F-score
of 0.902) with only 3 h of training. The pre-trained ResNet50 achieved 0.841 F-score with
30 epochs. On the other hand, MobileNetV2 showed a modest improvement of 0.078 in
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F-score when using pre-trained weights vs. training from scratch, but in less than half the
training time.

Table 1. Summary of the best model performance on CIFAR-10, with the best model performance
highlighted in bold.

Model Epochs Precision Recall F-Score Time to Train

AlexNet
Scratch 200 0.846 0.846 0.845 21 h 46 min

Pre-trained 100 0.912 0.911 0.911 10 h 47 min

ShuffleNet
Scratch 100 0.740 0.741 0.741 13 h 02 min

Pre-trained 30 0.924 0.924 0.924 4 h 07 min

SqueezeNet Scratch 50 0.767 0.763 0.761 11 h 40 min
Pre-trained 30 0.902 0.902 0.902 3 h

Resnet50
Scratch 100 0.655 0.647 0.649 38 h 15 min

Pre-trained 30 0.842 0.842 0.841 1 h 24 min

MobileNetV2
Scratch 150 0.750 0.751 0.750 5 h

Pre-trained 100 0.828 0.830 0.828 2 h 12 min

Table 2. Summary of the best model performance on STL-10, with the best model performance
highlighted in bold.

Model Epochs Precision Recall F-Score Time to Train

AlexNet
Scratch 100 0.985 0.984 0.984 1 h 33 min

Pre-trained 30 0.995 0.995 0.995 30 min

ShuffleNet
Scratch 100 0.475 0.475 0.474 1 h 20 min

Pre-trained 100 0.914 0.913 0.913 1 h 15 min

SqueezeNet Scratch 100 0.613 0.567 0.571 2 h 30 min
Pre-trained 10 0.862 0.862 0.861 8 min

Resnet50
Scratch 200 0.449 0.452 0.464 3 h 42 min

Pre-trained 10 0.914 0.915 0.914 10 min

MobileNetV2
Scratch 150 0.328 0.276 0.257 33 min

Pre-trained 150 0.786 0.781 0.781 32 min

Overall, the pre-trained models achieved an increased average F-score of 13.2% and
an average decrease in computational time of 75.8%. For this dataset, the best performance
is associated with ShuffleNet and the fastest model to train is Resnet50, but for a decrease
in performance of 10.38%. The best compromise between performance and training time
seems to be achieved by the pre-trained SqueezeNet, with a decrease of only 2.2% in
performance with respect to the best model, but for double the time with respect to the
fastest model.

As shown in Table 2, on the STL-10 dataset, consistent with the previous dataset,
AlexNet is the one achieving the best performance when trained from scratch on the board.
The pre-trained AlexNet and ResNet50 models only require very few epochs to achieve
excellent results on this dataset. The pre-trained ShuffleNet scored almost twice better
than its from scratch version with the same number of epochs. MobileNetV2 from scratch
struggled to learn even after 150 epochs. For this dataset, the pre-trained models achieved
an increased average F-score of 34.2% and an average decrease in computational time
of 73.4%. With an F-score of 0.995, the AlexNet with transfer learning achieves the best
performance on this dataset, while the fastest model (one third of the time required by
AlexNet) is SqueezeNet for a decrease of 13.5% in performance.
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4. Discussion and Conclusions

As expected, the pre-trained models performed very well compared to their coun-
terparts trained from scratch (average of 23.7% over the two datasets), as the base model
trained on ImageNet is suitable for the task. Also, the pretrained model took less training
time (average of 74.6% shorter over the two datasets). The pretrained AlexNet performed
better (8.4% improvement) on STL-10 compared to CIFAR-10, with only 30 epochs in-
stead of 100 epochs on CIFAR-10. The same remains true for the counterpart trained from
scratch, i.e., a 13.9% improvement on CIFAR for half the training epochs. This suggests
that AlexNet can learn well with fewer images but with higher resolution samples. The
pretrained ShuffleNet performed well on CIFAR-10 with only 30 epochs and on STL-10
took more time (100 epochs) to achieve an F-score greater than 0.90. The ShuffleNet model
trained from scratch obtained subpar performance (less than 0.5) on STL-10, suggesting
that the model struggles with less data. SqueezeNet achieved an F-score of 0.861 with
only 10 epochs on the STL-10 dataset and the performance did not improve with more
epochs. However, it achieves an F-score of 0.902 with 30 epochs on CIFAR-10. Similar
to ShuffleNet, the SqueezeNet model trained from scratch obtained a low performance
(0.57). This implies that SqueezeNet requires more data to increase performance. ResNet50
achieves an F-score of 0.914 with only 10 epochs on the STL-10 dataset but only scores 0.842
with 30 epochs on CIFAR-10. Like AlexNet, ResNet50 does well with few data but with
higher resolution images. MobileNetV2 did not show a big discrepancy in terms of F-score
across the two datasets, performing slightly better (4% improvement) on the CIFAR-10
dataset with 50 fewer epochs.

As previously mentioned, the best performing model on the CIFAR-10 dataset was
the pre-trained ShuffleNet trained on 30 epochs with an F-score of 0.924, whereas the
pre-trained AlexNet model achieved an F-score of 0.995 on the STL-10 dataset when
trained with 30 epochs. On average, ShuffleNet achieved an F-score of 0.918 over the two
datasets, whereas AlexNet achieved 0.953. Even though AlexNet scored slightly better
than ShuffleNet, the training time is another determining factor. On average, ShuffleNet
only needed 2 h 41 min to achieve good performance on both datasets, while AlexNet
took 5 h 30 min, making ShuffleNet the preferred model. Regarding the speed training,
the pre-trained ResNet50 model was the fastest to train on CIFAR-10, taking 1 h 24 min to
obtain an F-score of 0.841, which is approximately half the time. SqueezeNet, the second
fastest model, took 3 h to achieve an F-score of 0.902 on CIFAR-10. On STL-10, the pre-
trained SqueezeNet was the fastest, showing an F-score of 0.861 in 8 min. On the other
hand, the pretrained ResNet50 model took only two extra minutes (10 min total) to reach
an impressive F-score of 0.914.

It is worth mentioning that during the training time, Jetson Xavier NX was overall
extremely efficient in terms of resource utilization, using almost 100% of CPU, GPU, and
RAM available.

The primary limitations encountered while training CNNs on the NVIDIA Xavier NX
board stemmed from the constrained memory resources available. We encountered some
challenges while training larger models such as VGG-11 and VGG-19 on CIFAR-10 with
the container repeatedly exiting due to out-of-memory errors. After several attempts, we
managed to find an appropriate batch size that works for these models. While the Xavier
NX platform enables training in many moderate CNN architectures, memory constraints
impose clear limits on model and dataset scale versus high-end GPUs or cloud-based
accelerators with abundant RAM. In summary, RAM availability represents the primary
bottleneck for more advanced deep learning tasks on this embedded hardware. In our
future work, we will be exploring alternative optimizers and loss functions that could
potentially improve convergence speed, model performance, and robustness. Additionally,
leveraging hardware-specific libraries such as Nvidia’s TensorRT could also improve
inference performance on the Xavier NX via strategies tailored to the GPU architecture.
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