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Abstract: The installed capacity of photovoltaic systems has been rising quickly lately. Deploying
photovoltaic systems to generate power, however, is a substantial problem given their reliance on
weather and environmental circumstances. The various environmental factors that must be taken into
account are temperature, wind direction, speed, as well as irradiation. The solar system’s standard
test condition is never precisely attained outside. Because of this, it is necessary to take into account
the seasonal influences to increase solar system performance in a real-time context. In the context of
the Indian subcontinent, this research is especially important due to seasonal fluctuations in spectrum-
related characteristics. The findings demonstrate that the multi-crystalline technology efficiency and
output power evaluated for sites conform to the efficiency as well as output power anticipated using
the temperature of the module. Under normal testing conditions, the solar PV module’s parameters
are taken from the manufacturer’s datasheet. The accurate modeling of solar systems is necessary to
address a variety of PV system problems. We may characterize a solar module’s electrical properties
using this precise modeling technique to provide an accurate analysis of cell behavior under any
operating situation. Three main stages must be taken into account while modeling a PV cell: the
right selection of analogous models, the mathematical formulation of the model, and the precise
identification of parameter values in the models. Therefore, in order to mimic the characteristics of
solar modules, it is crucial to analyze and design relevant models, as well as use the right modeling
technique. The root-mean-square error parameter is considered for the linear regression method.

Keywords: standard test condition; multi-crystalline; photovoltaic; parameter extraction; root mean
square error

1. Introduction

Temperature has a major effect on how well a solar photovoltaic (PV) panel works.
It affects how much energy the entire solar plant produces. The PV module’s performance
capacity increases as a result of the temperature change, which also quickens the cycle
of degradation [1]. A precise estimate of the PV module’s temperature is essential for
assessing the PV installation’s capacity to produce electricity when planning and evaluating
the potential performance of large PV installations [2].

Based on variations in climatic parameters including air temperature, rainfall, and air
current, the climate of India can be categorized into four seasons: monsoon, post-monsoon,
winter, and summer [3,4]. The effects of seasonal solar spectrum changes on solar panels
consisting of mono-crystalline-Si, amorphous-Si, and cadmium sulfide (CdS) were studied
in Japan by Hirata et al. [5,6]. Gottschalg et al. [7,8] demonstrated comparable spectrum
fluctuations on several thin-film-based solar modules in the UK in terms of UF variation.
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In [9], a method for integrating seasonal variations in the incident spectrum at a site in
the United Kingdom was established for both single-junction as well as multi-junction
amorphous silicon panels. The yearly spectral effect and its uncertainty were evaluated
and linked to both the MMF and the APE at a different site in Germany [10,11].

At the Japan site, the effect of seasonal variations in spectral distribution on the
performance ratio was investigated [12–15], taking into account both APE and module
temperature. Another Spanish study [16] used a spectral correction parameter to examine
the impact of the spectrum on multi-crystalline silicon (mc-Si) and amorphous Si solar
modules. The impact of the spectrum on the photovoltaic devices was modeled in [17].
Trials were conducted with respect to real time environmental conditions between the
winter and summer seasons [18]. In [19], the authors proposed various meta-heuristic
optimization methods. A parameter extraction technique for the double-diode photovoltaic
cell is mentioned in [20].

2. Methodology

The work on measuring the spectrum that is presented here was carried out at the
National Institute of Solar Energy (NISE) in India, as presented in Figure 1. This area is
in Gurgaon, the northernmost city in India, not far from New Delhi. Data were collected
for one year, from January to December, from a sensing device between 8 a.m. and 5 p.m.
at an interval of 10 min. A year can be partitioned into the 4 seasons of winter, summer,
monsoon, and post-monsoon at this location. The first week of November marks the
start of winter, which lasts through February. In contrast, summer starts in March and
lasts through the end of June, whereas the monsoon lasts from July to September, and
October and early November may be considered the post-monsoon. Finding the module
temperature coefficient is a crucial step in this paper’s analysis of how the weather affects
photovoltaic modules. For the most accurate estimate of output energy generation, module
temperature prediction is essential because local environmental factors including in-plane
irradiance (Gt), speed of wind (Vw), and ambient temperature (Ta) change over time. Based
on projected coefficients, the experimental module temperature for mc-Si technology was
compared to the predicted module temperature. The temperature (Tm) of the output power
module is an important factor when determining efficiency. This is because it has a direct
impact on the solar module’s output performance [16].
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Using the least-squares approach on noted data for 1-year, linear regression data
analysis was utilized to complete the estimation of all Tm model coefficients. Using one or
more independent variables that may most effectively predict the value of the dependent
variable, linear regression analysis calculates the coefficients of the linear equation. It re-
duces the differences between the expected and actual output values by fitting a straight
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line or surface. Given a set of paired data, basic linear regression calculators using the
“least squares” method can be used to determine the best-fit line. Before using this linear
regression technique, undesirable values from the supplied dataset were eliminated for a
more accurate and better estimation of the model coefficients.

3. Measurement and Experimental Setup

Figure 2 presents the experimental measurement setup that was utilized in NISE.
In addition, this location is at 28◦37′ N latitude, 77◦04′ E longitude, with a height of 216 m
above level of sea. This area is in Gurgaon, the northernmost city in India, not far from New
Delhi. Data were collected for one year, from January to December, from the sensing device
between 8 a.m. and 5 p.m. at an interval of 10 min. The identical area of these technologies,
namely amorphous Si, HIT, as well as multi-crystalline Si, was arranged at a slope angle of
28◦, parallel to the sites.
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On the other hand, data loggers gathered information from modules and sent it to
a computer for estimation, while environmental characteristics such as irradiance (Gt),
speed of wind (Vw), and ambient temperature (Ta) were sensed by a sensing device as
shown in Figure 2. Table 1 shows a list of sensing devices and their resolutions that
can be used in a weather base station. A pyranometer sensor was used to detect solar
radiation. A propeller-style wind sensor detected Vw. The temperature of the atmosphere
was monitored using a K-type thermocouple. At a 10 min period, real-time data were
collected for each solar module.

Table 1. Model coefficients for different seasons.

Coefficients Monsoon Post Monsoon Winter Summer

Power Coefficient (a1) −0.0076 −0.2615 −0.0113 −0.0053
Power Coefficient (a2) 0.0035 0.0013 0.04166 0.003

Irradiance (a3) 0.024 0.0375 0.0254 0.0309
Ambient temperature (a4) 1.23 1.175 1.142 1.0422

Wind Speed(a5) −1.0327 −2.4569 −1.3112 −1.0113
Constant (a6) −9.8155 −2.1883 −1.8169 −0.5167
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To record solar radiation upon the exterior surface with a 305–2800 nm wavelength (λ)
range, a pyranometer was used with a resolution of 10 W/ m2. In order to sense and note
down the atmospheric temperature, a temperature sensor with a resolution of 0.2◦C was
used [16]. Important environmental factors that affect the power of the PV module were
included in the model. The module’s short-circuit current (Isc) and open-circuit voltage
(Voc), which are the two major output power components, are directly impacted. Irradiance
indirectly affects current and voltage because it raises the temperature of the module [20].
The amount of solar radiation directly affects how powerful the panels are. Therefore,
a reduction in solar radiation level results in a reduction in panel power. On the other hand,
the relationship between panel power and temperature is inverse. In other words, when the
outside temperature rises, panel power declines. A PV panel that is exposed to wind can
produce more power than that of without considering the wind. Climate factors such as
high temperature and humidity have a greater-than-70% impact on solar cell performance
and significantly reduce the efficiency of solar cells.

A heuristic approach is presented in the mentioned equation, which shows the devia-
tion from STC, and it is given by

∆P = 100 ∗

PSTC −
({

a1·A·G + a2·A·G·ln
(

G
GSTC

)}{
1 + γm

([
a3·

(
1 − PSTC

GSTC .A

)
·G + a4Ta + a5Vw + a6

]
− TSTC

)})
PSTC

 (1)

where GSTC, PSTC, and TSTC are the irradiance, power, and module temperature at the
standard test condition, respectively. The in-plane irradiance, ambient temperature, and
wind speed, respectively, are the instantaneous environmental parameters G, Ta, and
Vw. The terms related to module temperature are shown by coefficients a3, a4, a5, and
constant a6, whereas the power generation terms due to the direct influence of irradiance are
connected with coefficients a1 and a2. The model coefficients were derived using regression
analysis from quantifiable data gathered over a one-year period and technical specifications
provided by the manufacturer using Equation (1). The linear regression analysis utilizing
the observed module temperature yielded the model’s coefficients a3, a4, a5, and constant a6.

Module temperature is taken into account for the horizontal axis while determining the
three coefficients, namely a3, a4, a5, and constant a6, while efficiency, ambient temperature,
and wind speed are taken into account for the vertical axis. By taking into account power,
module temperature, and gamma factor for the horizontal axis and the active area of the
module and irradiance for the vertical axis, regression analysis was used to obtain the
model’s a1 and a2 coefficients.

4. Results and Discussion

The coefficients a3 to a6 of the model were obtained from the regression analysis using
the observed module temperature. These coefficients were then used in the regression
analysis to create the model’s a1 and a2 coefficients, together with the observed power
deviation, and are shown in Table 1.

The site condition may affect the coefficients associated with the module tempera-
ture (a3–a6). These coefficients are proportional to the temperature of the module. The
coefficients a1 and a2, which are connected to power-generating terms, are mostly related
to the module’s technical characteristics. The a1 coefficient would have a considerable
influence on power, which would follow the seasonal efficiency trend for PV modules.
Other coefficients, such as a2, have a greater influence than the a1 coefficient.

For analysis purposes, sample dates for the seasons were chosen as the 12 August for
the monsoon, the 12 October for the post-monsoon, the 26 December for the winter, and
the 27 May for the summer.

The measured and projected temperatures for the summer are shown in Figure 3.
A single day from each season was chosen, and readings were obtained every ten minutes
to simulate various weather conditions. The period of consideration for the same was
from 8 AM to 5 PM. The graph shows that the observed and anticipated temperatures are
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closely related. The difference between measured and projected temperatures is depicted
in Figure 4. If we look at a season-by-season graph, we can see that the observed and
anticipated module temperatures are in line.
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Figure 5 represents the difference in measured as well as predicted Pout for the summer
season. Figure 6 compares the percentage power variations expected and empirically
measured. The predicted or guessed total output power matches with the experimental
total output power. Because of the strong four seasons in India, the graph plots for a
particular season are drawn for mc-Si technology. However, the RMSE was used to quantify
the difference between experimental and predicted values, and it is shown in Table 2.
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Table 2. RMSE for temperature and power for mc-Si Technology.

Seasons RMSE of Module Temperature RMSE of Power

Monsoon 3.9026 3.6532
Post Monsoon 4.7126 3.7391

Winter 4.4333 3.8425
Summer 4.9832 4.1264

It can be seen from the graphs in Figures 3–6 that the winter season will have more
variance because of the lower temperature. In contrast to poly- or mono-crystalline cells,
amorphous silicon can sustain higher temperatures without affecting output. Due to this,
the winter season’s root-mean-square error value is higher than its counterparts during
the monsoon, post-monsoon, and summer seasons. Given that summer has the lowest
root-mean-square value of the four seasons, it follows that mc-Si technology is best suited
to summer.

When applying the linear regression approach suggested by Table 3, the root-mean-
square power value is 3.84, which is less compared to the method suggested in the literature
and it is 4.68 in the literature. Therefore, as compared to earlier work, the proposed method
exhibits better results from the root-mean-square value.

Table 3. Power RMSE for mc-Si technology with respect to literature and proposed method.

Active Module
Area, A (m2)

Module Power
PSTC (W)

Temperature
Coefficient of
Power (%/◦C)

Power RMSE by
Literature
Method

Power RMSE by
Proposed
Method

1.01 160 −0.49 4.68 3.84

5. Conclusions

The mathematically based study of a solar cell includes a nonlinear-type current and
voltage characteristic with a number of unknown parameters. It may be believed that the
information provided by the seller of solar modules is insufficient. Therefore, utilizing the
error objective function between the estimated value and the observed value, the problem
to be studied was reformatted. The problem’s goal was to lower the error function.

The current study examined how a multi-crystalline (mc-Si) technology module re-
sponds to seasonal variations in an Indian environment. With the use of mc-Si technology,
this model was utilized to find out the temperature of solar modules placed on the site
under a range of wind conditions. A qualitative analysis of the experimental data indicated
that the temperature of the module reacts nonlinearly to the temperature, namely, ambient
temperature and irradiance in windy conditions, leading to a notable variation in tempera-
ture. The analysis conducted throughout the estimation procedure revealed that the winter
season, which exhibits a high RMSE in terms of temperature and power, is more sensitive
to variations in the seasonal spectrum. It was shown that summer is the best season for
mc-Si technology since it has the lowest root-mean-square value of the four seasons.
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