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Abstract: The focus and sales of EVs are slowly coming into scope, as the power source of such
vehicles is a significant area in which the integration of power systems is becoming a crucial issue.
This work involves the use of hybrid sources, batteries as a primary source, fuel cells, and an ultra-
capacitor as an auxiliary source. This hybrid system provides the grip of the FCEV. The constraints of
fuel cells are the SOC of the battery and the H2 level. These three power sources in hybrid systems are
connected to the DC bus via proper DC-to-DC converters. This paper will discuss the combination of
Harris Hawks Optimization (HHO) for the energy management and control of these source systems,
for the constraint of mandated sources, and to ensure stability. The proposed system provides a
satisfactory energy management system for the hybrid system. Using the proposed technique, the
fuel consumption settling period is reduced. The proposed method was implemented and validated
with and without the HHO technique.

Keywords: electric vehicles; battery; fuel cell; ultra-capacitor; solar; Harris Hawks Optimization
HHO technique

1. Question of Research

Power sources are a primary concern in EVs. Why are only batteries used as power
sources, why can other sources not be used, and why are sources not integrated? Refs. [1–3].

2. Introduction

New hydrogen technology is rapidly emerging for electric vehicle propulsion systems.
Fuel cell systems (FCSs) will play an important role in electric vehicles in the coming
decades. This energy source has many advantages, from the environment to its efficiency
and effectiveness [4]. Because the power response of FCSs is small, PEMFC (proton
exchange membrane fuel cell)-powered vehicles may become unstable during sudden
load changes.

An energy management system (EMS) is needed to produce the power from the hybrid
source to distribute the load. EMSs meet the hybrid resource constraints used to achieve
the high recital of the projected method and improve the fuel economy [5–7]. Rule-based
control and optimization-based control techniques are used in some of the literature. These
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often have success or reverse the cycle. Ideally, a reduction in hybrid fuel consumption can
only be achieved when driving conditions are known to be necessary.

PMEFCs can provide non-stop energy to electric vehicles. As a result, hydrogen-
powered PEMFCs are used [8]. This is the best power source and removes conventional
fossil fuel usage. Battery (BT)-powered devices and Ultra-capacitors (UCs) are known for
their high power. BTs can provide long-term alternative energy. (UCs) are also used to
control the energy compared to the battery. The efficiency and power of UCs are high, and
their discharging and charging cycles are also increased [9].

Of the hybrid sources that exist, one of the sources is UCs. UCs are electrochemical
condenser devices that deliver a very short period of maximum power. UCs consist of
an electric motor coated as a double layer. The double coated layer is made up of non-
ferrous metals [10–12]. An electric motor is a combination of a power source and an
engine. Methanol and propane create hydrogen gas through biological processes and the
transformation of hydrocarbons. Designing an EMS system consists of the use of hybrid
seeds to manage the power required. The proposed EMS is used to provide and improve
the electrical load. The hybrid system provides the grip of the fuel cell EV. The fuel cell
constraints are the SOC of the battery and the H2 level. This work selected PI-based HHO
control for energy management. This is used to manage and control the energy, consider
the multi-source for source limitation, and improve the system’s performance [13]. The
workflow of the entire proposed work is described below:

Step 1: The modelling of the battery and analysis of the battery output with/without
the HHO technique.

Step 2: The modelling of the fuel cell and analysis of the output with/without the
HHO technique.

Step 3: The modelling of the ultra-capacitor and analysis of the output with/without
the HHO technique.

Step 4: The integration of the above three sources to see the output of the energy
management system for the hybrid system as a whole.

3. Functional Block Diagram of EMS of Fuel Cell Hybrid Electric Vehicle

EMSs (Energy Management Systems) are required by hybrid vehicle systems to achieve
good efficiency and performance. According to some control objectives, they determine
the energy separation between the system’s different energy sources, considering each
source’s characteristics.

Figure 1 shows that the primary source is a battery, whereas fuel cells and ultra-
capacitors are used as supplementary sources. A unidirectional DC/DC converter connects
the FC and DC bus to improve the voltage. An ultra-capacitor connects the DC bus using a
bidirectional DC/DC converter for charging and discharging, and is connected to the DC
bus for maintaining bus voltage.
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4. Battery Modelling and Analysis

A model of a dynamic equivalent circuit. The diagram in Figure 2 suggests the
simulation study. The simulation circuit comprises a direct current voltage source, a series
resistance, and two RC parallel circuits. The DC voltage source represents the battery’s
open circuit voltage in series networks. Rs denotes the internal DC resistance and the RC
parallel denotes the networks, which characterize the transient response of the voltage
and current Vt. The rate capacity effect is also deliberated in this model, where the usable
capacity is varied, with the current representing the terminal voltage. The SOC of the
battery is calculated based on the value of the functional capacity parameters depending
on the SOC and current.

Vt = OCV − V1 − V2 − Vs (1)

Vs = I × Rs (2)
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The battery open circuit voltage is denoted as Voc BAT, the battery’s output voltage is
denoted VBAT, and the battery series resistance is represented as R series. The R-C circuit
is multiple time constants for the circuit designed. They are τ-hour, τ-sec and τ-min. These
parameters are called SOC functions and are also used to model the transient behavior of the
battery. The battery state of charge calculation is performed using the following equation.

5. Survey and Case Studies

Migration towards electric vehicles has started globally in India, and the significant
adoption of these vehicles began in 2021. The prime reason for accepting these vehicles
could be the exorbitant increases in the price of fossil fuel in the past few years. The
alternate solution product, the electric vehicle rung cost, is deficient compared to the
currently available products.

Comparative study of various types of fossil fuel alongside alternate fuel technology
(CNG and EV) vehicles to understand the running cost per km and the cost of ownership
of these vehicles.

SOC = SOC0 +
ηBAT

(3600.CBAT)

∫
iBAT dt (3)

where the battery’s initial parameters are iBAT & SOC0 is the battery’s initial current and
sate of charge, and CBAT is the battery’s capacity.

6. Fuel Modelling and Considerations

As show in the Figure 3, the fuel cell is a type of battery that uses hydrogen and oxygen
as fuel. It converts chemical energy directly into electrical energy through an electrode
reaction. A simplified model for the fuel cell has been established.
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Figure 3. Equivalent circuit model of fuel cell.

When the load current changes due to the charging effect, the fuel cell generates a
gradually changing voltage on the bipolar plate surface. This voltage is accompanied by an
equivalent resistance Ra, which is connected in parallel with a capacitor C, as shown in the
given diagram of a specific equivalent model.

[Ecell − R.jStack − A.In(jStack + jl)− mexp(n jStack)(jStack = IStack/Acell)] (4)

where VFC is the fuel cell voltage; iFC is the current for the fuel cell; Acell is each fuel area;
Ecell is the fuel cell reversible voltage; N is the fuel cell stack number; jstack is the density
of the FC current; R is the specific resistance of the membrane area; m and n are the two
mass transfer coefficients; A is the coefficient of T α; α, β and γ are second-order model
approximating coefficients; Istack is the fuel stack current; and iFC is the output current of
the fuel cell.

7. Ultra-Capacitor Modelling and Consideration

A fuel cell is a device that uses hydrogen and oxygen as fuel through an electrode re-
action that directly converts chemical energy into electrical energy. At present, a simplified
model concerning the model has been established.

When the load current changes due to the fuel cell’s bipolar plate surface, it produces
a slow charging effect in response to the charging effect. The voltage is being changed. The
corresponding resistance Ra is linked in parallel with a, as shown in the specific equivalent
model diagram of the capacitor C which represented in the Figure 4.
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8. Design and Implementation of EMS Controller
8.1. Proportional Term

The proportional time produces an output value proportional to the current error
value. The proportional response can be modified by multiplying the error by a constant Kp,
called the proportional gain constant. The proportional term is given by the following:

Pout = Kpe(t) (5)

A high proportional increase causes a significant change in the output for a given
change in error. If the proportional increase is too high, the system can become unstable. In
contrast, a slight gain results in a small output for a significant input error, and the controller
is unresponsive or less responsive. If the gain balance is too low, the control will be too
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small when responding to internal disturbances. Tuning theory and industrial practice
show that the proportional time should contribute to the number of output changes.

8.2. Integral Term

The contribution from the critical point is proportional to both the magnitude of
the error and the duration of the error. The key in the PID controller is the number of
instantaneous errors over time and provides variables that must be corrected in the past.
The excess error is divided by the gain (Ki) and added to the output. The main point is
given by the following:

Iout = Ki
∫ t

0
e(T)dT (6)

The movement of the process is performed by the integral term toward the set point
and eliminates the residual steady-state error that occurs with a pure proportional controller.
However, since the central term corresponds to accumulated errors from the past, it can
cause the current value to exceed the set point value. Which, the complete working block
diagram representation in Figure 5.
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The PI controller can guarantee a fast response due to proportional action, and the
integral action will make the steady-state error zero by adequately selecting the parameters
Kc and Ti values. If the error is zero, the previous value of the integral term is retained
as an output signal. When the error changes from zero, the proportional term works for
correction, and the integral term increases or reduces the output.

9. Implementation of HHO for the Proposed Application

The converter’s switching pulse is generated using the Harris Hawks Optimization
technique in a closed-loop operation. Here, the error signal is given to the PI controller.
The PI Controller controls the error signal. So, this error signal is considered an objective
function problem.

Mathematically, this can be represented as follows:

P = Kpep(t) + KpKI

∫ T

0
ep(τ)d + PI(0) (7)

where
P = PI controller’s output
Kp = Proportional gain
KI = Integral gain
(t) = Desired value of controlled variable—measured value
(0) = Integral term initial value.
The proposed optimization techniques take this error signal as an objective function.
The tuning of the parameter problem is formulated as an optimization problem,

and to identify the optimal, it is applied. The controller parameters have to be tuned
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for satisfactory plant operations. The objective of the optimization problem is to reduce
hydrogen consumption and achieve a quick settling. The figure below shows the flowchart
of the tuned PI controller. The following issues must be addressed while applying the HHO
for any problem. The same represented in the Figure 6. Tuning of PI controller using HHO.
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Step_1: The individual population represents the parameters of the PI.
Step_2: HHO searches for the optimal solution by maximizing the fitness function

and, therefore, an evaluation function that measures the quality of the problem solution.
Step_3: In the transmission line voltage control process, in terms of the system time

constant, the objective is to minimize the Integral Square Error (ISE), which decides the per-
formance of the transmission line. For removing the negative error component controllers,
the ISE squares the error to remove.

ISE =
∫ T

0
e2(t)dt (8)

Step_4: HHO minimizes the fitness function, and the minimization objective function
is transformed into the fitness function = 1/ISE. The ISE is used as the basis of the fitness
function. The HHO, however, maximizes the fitness function, whereas the ISE needs to be
minimized. The same mentioned in the Table 1.

Table 1. The parameters considered for HHO optimizers.

Sl.No Parameter Type Value Considers

1 Maximum iteration 500
2 Number of Hawks 30

For the compensation process, Kp and Ki are the control parameters.
Where

Ki = Kp/τi (9)

The considered parameters for PI are as follows:
0.1 < Ki < 1
1 < Kp < 3

10. Implementation of the Proposed System

The proposed system was simulated and implemented in MATLAB/Simulink. A
controlled voltage source represents the terminal voltage Vocv of the battery. At the same
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time, five subsystems control the voltage value of the battery model: SOC calculation, OCV
calculation, RC values, voltages of RC parallel networks, and VRS. The I measurement
produces the current value for the subsystems. SOC_0 represents the initial SOC, whereas
SOCn represents the real-time SOC_n.

Figure 7a,b shows the boost converter obtaining output from the battery. The bat-
tery output voltage is DC. The Simulink results are compared without and with the
optimization techniques [11–15].
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Figure 7. (a) Simulink model without HHO optimization, (b) the Simulink model with HHO
optimization.

11. Results and Discussion

From the converter results from the Figures 8 and 9, the proposed optimization techniques
produce a constant output voltage, and the rise time is low. Without using the optimization
techniques, the switching pulse of the converter is given from the pulse generator. But using
the proposed optimization techniques, the PI controller is used to generate the pulse of the
converter. Here, the PI controller gain values of Kp and Ki are generated through optimization.
The objective function of the integral square error is to control the PI controller gain values.
The error values are minimized using the proposed optimization technique. Only optimization
techniques generate the gain parameter values in the minimized time. Here, the converter’s
output voltage is 60 V DC, and the current is 8.6 A. The obtained gain values using HHO are
a Kp of 1 and ki of 0.65 which are discussed in Table 2.
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Table 2. Observations with and without HHO technique implementation.

Sl.No Parameter Type Without HHO With HHO

1 Rise time 0.175 0.001
2 Settling time 1.85 0.005

Results for Integration of the Sources

Figures 10 and 11 shows the proposed multi-source system simulation model created
with MATLAB/Simulink. The current measurement block is used to give the present value
of the fuel cell, and the voltage measurement block is used to give the voltage value of
the FC. The converter obtains output from the multi-source (battery, fuel cell and ultra
capacitor). The multi-source system output voltage is DC. The converter fixed the DC
voltage to variable DC voltage. The Simulink results are compared to the optimization
techniques along with converter specifications used in the design discussed in Table 3.
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Table 3. Converter design parameters implemented in MATLAB.

Boost Converter

Parameters Ratings

Inductance 10 mH
Capacitors 0.1 F

Output inductance 5.5 mH
Output load 1 Ω

Fuel cell voltage 103.6 V
Boost converter voltage of fuel cell 150 V

Battery voltage 3.4 V
Boost the converter voltage of the battery 60 V

Supercapacitor voltage 2.56 V
Boost converter voltage of supercapacitor 60 V

12. Conclusions

The proposed system provides a satisfactory energy management system for the hy-
brid system. The simulation results under the control of PI-tuned HHO support the validity
of the power control strategy. The control strategy is compared by integrating multiple
sources (battery, fuel cell, and ultra-capacitor using HHO and without the HHO algorithm).
For this comparison, the converter settling time and rise time performance are improved.
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