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Abstract: Wireless sensor networks (WSNs) grapple with a challenging and pivotal issue: how to
maximize the network’s lifespan. To improve the quality of service (QoS) and extend the life of
the network, there has been a lot of effort made in this area in recent years. The sensor nodes of
a WSN are autonomous, dispersed devices that gather and direct data to a central hub, or “Base
Station”, using wireless connections without any central coordinator. These networks have less
processing power, memory capacity, power supply, and so on, which limits their range and battery
life. Numerous studies preceding our research have proposed a myriad of strategies to enhance
network longevity. In a WSN, information is relayed from one node to the next until it reaches the
base station. Most nodes may be reliably expected to operate for the duration of their batteries. These
strategies encompass reducing energy consumption, minimizing latency, load balancing, clustering,
efficient data aggregation, and curtailing data transmission delays. WSNs may alter dynamically
as a result of internal or external circumstances, necessitating a depreciating dispensable redesign
of the network. Because the networks in classic WSN techniques are expressly programmed, it is
difficult for them to respond dynamically. Machine learning (ML) approaches can be used to respond
appropriately in order to overcome such circumstances. Machine learning is the process of acting
without human involvement or reprogramming in order to learn from experiences. This paper
presents a review of different ML-based algorithms for WSNs together with their benefits, limitations,
and parameters that affect network longevity.

Keywords: machine learning; wireless sensor network; routing; neural network; fuzzy logic;
reinforcement learning

1. Introduction

To improve the quality of service (QoS) and extend the life of the network, there
has been a lot of effort made in this area in recent years. The sensor nodes of a WSN
are autonomous, dispersed devices that gather and direct data to a central hub, or “Base
Station”, using wireless connections without any central coordinator. These networks
have less processing power, memory capacity, power supply, and so on, which limits
their range and battery life. In a WSN, information is relayed from one node to the next
until it reaches the base station. Most nodes may be reliably expected to operate for
the duration of their batteries. Investing in costly and time-consuming maintenance on
sensor nodes in an area is not an option. It is possible to connect many devices directly;
however, doing so may drastically shorten the network’s lifespan. Improving a WSN’s
energy efficiency or prolonging its lifespan is a challenging topic that can be solved by a
variety of innovations at various levels of the network’s protocol stack. Effective congestion
detection algorithms, energy-efficient routing, and power-efficient media access control all
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play a role. Due to the significance of node placement in WSNs, a few research publications
have developed mathematical formulations for the best possible node distribution schemes.
While some studies focused on using dispatch, a node’s sole purpose is to relay packets
rather than do recognizing, and others emphasized the need to strategically place relay
nodes at various distances from the master station. An energy-effective WSN design
considers factors such as cluster-head selection, cluster size, and the frequencies with
which cluster member characteristics are updated. Although some employ on/off switches,
others still aggregate data to find patterns that can lead to energy savings. It is possible
that the time and energy put into finding a solution to this problem can be reduced by
using the techniques described in [1]. Similarly, “hierarchical or cluster-based routing”
would be a particularly useful methodology for more scale WSNs to address the challenges
of scalability, effective communication, and fault acceptance. Clusters are subnetworks
organized in a hierarchical structure.

2. The Characteristics of WSNs

Computing abilities: Due to its small size, high price, and high battery consumption, the
sensor has very limited computational capabilities. In terms of battery energy, sensor nodes
frequently become invalid and out of control due to battery fatigue. So, the conservation
protocols and algorithms need to be thought about ahead of time.

Communication capabilities: Due of their restricted communication capabilities and
range, WSN communication devices have limited utility. The typical communication range
is less than a meter, and environmental factors can have an impact on the sensor.

Dynamic Power Management (DPM): Energy consumption at the sensor node can be
managed and preserved with DPM. Batteries power the sensor nodes, and how much
juice they need varies with the task at hand (data collection, processing, or transmission).
Because it is difficult to charge or replace the batteries, the sensor network cannot be used
for a longer period of time.

Multi-hop communications: transmissions in a WSN occur over multiple hops in a radio
frequency chain, allowing for intercommunication between nodes.

Application relevance: Data aggregation from WSNs is used to analyze traffic patterns
and other factors. The sensor network deviates from the standard network in that it does
not rely on a central server to collect data but rather on the apps running on it and the
final working environment. The physical signals and routing protocols used by the various
sensor network applications are not shared.

Reliability: the packet dimension, node frequency, protocol architecture, hop-by-hop
connectivity, endways communication, buffer size, packet loss ratio, packet distribution
proportion, bandwidth, and loss retrieval are just some of the aspects that affect WSN
consistency [2].

Reliability semantics: Complete packet delivery is what packet reliability ensures. To
fully define the reliability semantics, it is necessary to consider not only event reliability
but also end-to-end consistency, upstream consistency, and downstream reliability.

General problems in WSNs: In terms of node placement, initial and foremost is the
difficulty of getting the nodes set up, which is complicated by factors like cost and locational
restrictions [3].

Energy consumption without accuracy: establishing a connection between nodes and
base stations (BSs) requires a certain number of nodes, the consumption of which might
influence the network’s lifespan.

Coverage: the sensor’s narrow field of view means it can only monitor a subset of the
network’s physical space.

Node dynamics: Nodes in networks are presumed stable. In other circumstances,
however, it becomes critical to fortify the adaptability of base stations or CHSs. Since node
membership tends to be fluid and the cluster is subject to change over time, studying node
dynamics presents a formidable challenge.
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Overlay cluster: As was previously noted, the network administrator or the sensors
themselves can decide on the CH. A person who is currently part of one cluster is likely to
switch over to another CH if they make their decision at a later date. To address design
concerns, it cuts across functional silos. In order to avoid inequity, starvation, or stagnation
because of resource rivalry, it is crucial to put in place the mechanisms that will allow for
the detection of overlapping groups and the coordination between them.

Load balancing: In sensor networks, this is a serious issue because CHs are typically
created after the initial deployment of sensors. The head will overload the specific CH
responsible for failure if the delivery of member sensor nodes is not balanced over all
available CHs. So, it is important to form groups of similar size in such circumstances to
ensure a level playing field.

3. Routing on Wireless Sensor Networks

By controlling the power usage of individual nodes, routing can help a network last
longer under specific situations. WSNs employ several protocols whose primary focus is
on extending the operational lifetime of the network. What determines this is the network’s
architecture and the routes it takes. In this case, we used a mixed method with the first ever
location-based routing. The other option is to route groups together. The structure of the
internet lends credence to this categorization.

3.1. Routing Approach

It was discovered that such a strategy falls into two distinct methodological camps,
i.e., the following:

Classical-based routing: By selecting nodes at random using a timed function, traditional
routing provides an unstable flow of traffic between the many nodes in the core cluster,
which in turn causes problems with scalability, load balancing, connection, and coverage.

Optimized-based routing: This demonstrates a critical function in prolonging the WSN
network’s usefulness. The key problems with this system are its intolerance, poor energy
efficiency, poor connectivity, rigidity, and inability to scale.

3.2. Clustering Characteristics

Clustering characteristics entail how certain aspects of the clustering procedure can
affect the effectiveness of hierarchical routing. Cluster qualities have two major issues:
cluster characteristics and sensor capacities [4–6].

3.3. Cluster Purposes

Improving the lifetime of the network: the success of an SN deployment is highly depen-
dent on the network’s longevity; as a result, it is important to study routing algorithms that
minimize energy waste while maximizing throughput.

Fault tolerance: Many methods are developed to deal with the problem of a node
failing. Proxy CHs are used or CH rotation is used (when both nodes fail) to deal with
this problem. When developing the clustering algorithm, fault tolerance was one of the
primary considerations.

Fill handling: When outlining the goals of a clustering protocol’s design, fill handling
is an important one. Overloading the CHs will quickly drain their energy reserves and
is therefore strictly prohibited. Thus, it is crucial that each cluster’s nodes be evenly
distributed as CHs carry out the work of data aggregation or signal processing tasks.

3.4. Cluster-Head Choice Norms

The following criteria are considered when picking a CH:
While the choice of CH has a significant impact on the lifespan of WSNs, it is important

to take the network’s topology into account when making this decision.



Eng. Proc. 2023, 59, 231 4 of 13

Residual energy (RE): Its power is crucial for the CH selection procedure. It appears that
this power is all that is left in the sensor once it has completed its communication. This RE
reduces the energy expenditure of the node while the CH and BS are exchanging information.

3.5. Cluster Properties

Cluster size: On total available nodes and the network transmission range, the lifetime
of a WSN can be affected by its cluster size. Increasing the count of nodes in a cluster may
lead to a decrease in total available node energy. More iterations may cause node energy
depletion if there are a more nodes in the cluster.

Cluster density: Energy consumption in CHs is proportional to the total number of
cluster members. The cluster’s density can change depending on whether it is a static or
dynamic cluster.

3.6. Detailed Procedure of Clustering Routing Protocols

(1) Finalizing the number of cluster heads: after establishing the clustering number K with the
scientific model and formula, the clustering probability, P = K/N, can be calculated.

(2) Initial clustering: To begin, the network must be initialized and initially clustered with
LEACH, with the aim of identifying the temporary clusters and clustering of the head.
At the same time, the temporary CH gathers data on the energy and location of each
cluster node.

3.6.1. Fuzzy Logic

The four main components of a fuzzy logic system (FLS) are the fuzzifier, the infer-
encing engine, the rules-based decision-making, and the fuzzifier. Entering the data and
utilizing the existing purposes to recognize the grade of each applicable fuzzy set are the
first step. The term “fuzzy inference” refers to the application of fuzzy logic to the task
of drawing conclusions about an input in terms of an expected output. The depiction
then yields recommendations for model identification or decision-making. When a fuzzy
inference system generates an imprecise result, this is referred to as degradation.

FCH: Fuzzy-logical CH selection (FCH) is performed [7]. It utilizes energy and node
cognizance and focuses on the period of calculation to make a CH selection using an
integrated procedure, FL.

CHEF: In the paper [8], the authors propose a fuzzy-logic-based CH selection mech-
anism (CHEF). However, CHEF is used to book other nodes for BS and CH choices, as
opposed to LEACH’s “hot spare” approach.

LEACH-FL: As stated in [9], LEACH-FL is an improved type of the LEACH algorithm.
It employs a device like that of the LCH, albeit with parameters tailored to things like
battery life, proximity to the sink, and network density.

ICT2TSK: Type 2 “Takagi-Sugeno-Kang (TSK) as the FL system” [10] is used in
“ICT2TSK”, a sophisticated clustering algorithm. When compared to the TSK FL Type 1
system, it is used to pick CHs and more effectively accomplish the governing of uncertain-
ties. By instituting a uniform zone of competition around each CH, it can gauge the load
on the network and make informed decisions about how best to allocate power.

SEP-FL: In a heterogeneous WSN, SEP-FL is a FL method that improves CH selectiv-
ity [11]. By adjusting the probabilities of each node’s residual energy, this refined form of
SEP makes use of CH selectivity.

EAUCF: In [12], the author suggests using a fuzzy algorithm called Energy-Aware in
an Unequal Cluster (EAUCF).

DFLCR: To address the problems of network period and energy consumed in WSNs,
the writer suggests a dispersed fuzzy-logic-based clustering routing (DFLCR) [13] protocol.
In contrast to other protocols, the suggested DFLCR protocol considers the significance
of local distance and reserved residual energy. Because the DFLCR protocol can regulate
the cluster size, the best node can be chosen as the CH., Fuzzy logic (FL) has been used to
address a wide range of issues plaguing WSNs.



Eng. Proc. 2023, 59, 231 5 of 13

SIF: this is a swarm-intelligence protocol based on FL (SIF) routing and RE [14], sink
distance, and distance to center to choose appropriate CHs.

FBUC: An improvement on the EAUCF [15] is the fuzzy-based asymmetric UC (FBUC)
method of grouping. According to FNB, FBUC outclasses the other two systems across all
stages in terms of energy consumption and network lifetime.

EEDCF: When it comes to consuming less energy during clustering-based routing
operations and cluster-head identification, the EEDCF [16] protocol, also known as “Energy-
Efficient Distributed Clustering Based on Fuzzy” [16], is a differential algorithm in WSN.

3.6.2. Genetic Algorithms (GAs)

A more efficient approach would involve using a GA to calculate the routing topology
of the WSN again in the present while taking each node’s energy level and distance from
other nodes into account. Fitness tests are run on the new structures to select the fittest
persons in order to enhance the GA models. This optimization technique benefits from
the information from random searches and routes. GAs have demonstrated their ability
to adapt to changing conditions, making them deployable. The six basic elements of the
GA global scheme are the preliminary set of outlines, chromosomal ciphering task, gene
operator, assessment function, choice method, and final set of configurations.

The “genetic algorithm to extend the lifespan of sensor networks at two levels (GABEEC)”
of Wazed et al. is proposed in [17]. The GABEEC algorithm is proposed by Bayrakli et al.
in [18]. The protocol has two phases: the first is the configuration phase, and the second is
the steady-state phase. Based on energy entropy, Hamidouche et al. [19] propose a genetic
process for multipath routing in WSNs (GAEMW). In order to boost lifetime efficiency
and WSN steadiness, the authors of [20], Abo-Zahhad et al., disseminated an additional
adaptive energy-efficacy clustering hierarchy protocol (GAEEP) constructed in a genetic
process. The protocol’s goal is to rise the valuable lifetime of WSNs by determining the best
placement for CHs and the minimum possible number of them to use, all while decreasing
the energy requirement of separate sensor nodes. The goal of the research presented by
Hussain et al. in [21] was to extend the life of networks and use less energy. Here, we use
the constraints of “BS distance, data transfer, cluster distance, and energy level” [21]. We
find that LEACH, HCR-1, and HCR-2 all perform at or near the same level. According
to the outcomes, optimizing the fraction of the network that is actively processing data is
more effective than using more algorithms.

In order to attain optimum thresholding for cluster construction, the authors Liu et al.
suggest a GA-based adaptive clustering algorithm. LEACH-GA is a GA-based enhancement
of the original LEACH [22]. Moreover, the LEACH-GA technique outperforms DT, LEACH,
and MTE in terms of network lifetime, and its use of the finest possibility accepts optimum
energy-efficient clustering. This is in comparison to the LEACH configuration and static
state. The suggested algorithm calculates the best clustering threshold. The findings
demonstrate that, in comparison to leech-GA leeches, the network lifetime can be better
quality by growing the number of live nodes per cycle. Complex systems known as
Artificial Neural Networks (ANNs) use components referred to as neurons or nerve cells to
carry out parallel or distributed processing. Synapses, which are weighted connections,
are used for communication between neurons. ANNs are computational processes that
can generate principal multifaceted mapping involving different parameters by means
of a supervised learning method in order to finish the categorization of data using an
unsupervised manner.

4. Estimation of the Enhanced Clustering Methods

Many clustering algorithms that take machine learning into account in terms of key
parameters like data delivery speediness, nonstop power consumption over the time of a
network, and algorithm scalability are compared here. The uniformity of nodes, whether or
not data collection techniques are integrated, and whether or not the system is centralized
all play a role. The rate at which information is transferred from sending nodes to a base
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station (BS) or other receiving nodes is a critical metric, as it provides an overarching view
of the transmission’s reliability and the amount of data lost. When evaluating cluster-
ing algorithms, one crucial metric is the energy-consumption parameter. Reduction in
node energy impacts the lifetime of the sensor network because more communication or
transactions at a node can use up energy and decrease the lifespan of the network. As
an outcome, we have focused our research on WSNs on a grander scale, debating the
scalability of existing algorithms and suggesting that networks with more than 500 nodes
receive special attention.

There are two main methods for implementing clustering algorithms: a centralized
method and an extensive method. However, in the centralized method, the BS is an integral
part of the decision-making process. In this context, homogeneity in a distributed system
refers to a set of nodes in the network that all share the same characteristics, and they require
that a BS broadcast this information to its plotting nodes and compute it as part of the ML
adaptation to the network. In such a network, the CH is chosen as a clustering algorithm for
nodes that have distinctive properties. The sensor network’s radio model provides a rough
estimate of the node’s power consumption in the field. As such, the clustering method
takes into account this radio model as part of the network and determines the energy
output of each node during transmission. To measure how well the provided methods
cope with unexpected situations, we define multipath metrics. Errors are tolerated better
in multipath implementation techniques, unless the direct route to the BS is cut off and
only an alternate route leads to the BS. This configuration allows the algorithm to continue
operating normally in the event that a single node in the network fails.

5. Machine Learning Adaptability for WSNs

Many issues plaguing WSNs can be easily overcome and performance can be greatly
improved by utilizing machine learning. Figure 1 shows some ways in which ML is used
to extend the lifespan of WSNs include the following:

• Anticipating the volume of energy that can be collected during a given time slot, which
is necessary to increase the longevity of WSNs;

• ML-based localization that actually works;
• Using ML to identify the faulty links;
• Using ML to decrease the dimensionality of data at the level of the sensor or CH.
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5.1. Supervised Learning

The supervised learning technique is used to fix several WSN issues, including local-
ization [23], coverage difficulties [24], data collection [25], event discovery [26], routing [27],
and target tracking [28]. The following are some supervised learning techniques:

Regression: As a supervised learning technique, regression makes predictions about a
given value (Y) based on a predetermined collection of attributes (X). The regression model
uses continuous or quantitative variables. Regression is a relatively basic machine learning
technique that produces precise predictions with few errors.

Support vector machines: For optimization problems with undefined constraints or com-
plex curves, SVMs provide an alternative solution. When packets cannot pass through the
network near the sink nodes, as happens in a WSN, the sink is congested. In machine learn-
ing, the “support vector machine (SVM)” is a valuable classification process. Localization
issues at the border and coverage gaps can be effectively addressed with SVM [29].

Decision trees: “Decision tree” refers to a learning algorithm that uses tree-like graphs
to practice and evaluate separate functions. Using a decision tree to pick the best node is
one of the most important steps in increasing the network lifetime of WSNs [30]. This is
accomplished through the CH selection process. In addition, decision trees can be used as
a strategy and a technique for localizing important features of linkage reliability, such as
loss rate, normal retrieval time, and normal failure time.

Random forest: A collection of trees and a classification provided by each tree in the
forest make up the random forest (RF) algorithm, which is a supervised machine learning
technique. The random forest classifier is created first, and then the outcomes are predicted,
which is how the RF algorithm operates [30]. For larger datasets and heterogeneous data, RF
performs well. The missing values are correctly predicted using this method. A significant
number of decision trees can be produced by isolating variables at each tree node and
randomly choosing a subset of training samples. Because of the high quality of training
data and overly robust decision trees, the RF classifier’s sensitivity level is lower when
compared to other streamlined machine learning classifiers.

Artificial Neural Networks: As the most popular learning algorithms, NNs are con-
structed from learning units called decision units. Perceptual and radial basis functions
are common names for cascade circuits. Chains of decision units acting in concert can
reveal both simple and intricate patterns in data. However, the computationally intensive
learning practice requires multiple cascade circuits [31].

Deep learning: Deep learning is a subclass of ANNs and is a supervised machine
learning technique used for categorization. The data-learning representation techniques
with multi-layer representations (between the input and output layers) are known as deep
learning approaches. In order to arrive at the optimal solution, it is composed of basic
nonlinear modules that translate the representation from a lower layer to a higher layer. It
draws inspiration from the information processing and communication patterns found in
human nervous systems [32]. The abilities to extract high-level characteristics from data,
work with or without labels, and be trained to accomplish numerous goals are the main
advantages of deep learning.

K-nearest neighbor (k-NN): “ k-NN is a supervised learning algorithm” in which the
labels of nearby data models are used to classify sample test data. Nearest-average calcula-
tions are used to replace missing or unknowable test samples. The k-NN fault detection
algorithm relies heavily on this method [31,32].

Bayesian learners: Without access to the mobility information contained in the WSN
sensor node, Bayesian language learners [33] are able to make reliable estimates of sensor
node movement (speed). They can create analytical mobility prediction models and routing-
based mobility prediction methods using these mobility estimation techniques.
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5.2. Unsupervised Learning

In this, there is no predetermined training model that is used to acquire knowledge;
rather, it learns as it goes along. Moreover, no designations are offered. WSN utilizes
these algorithms for data clustering and aggregation [34]. “K-means” plays a key role in
“clustering and component analysis”.

Principal Component Analysis: To improve the scalability of the network and reduce
the overall power consumption, data aggregation plays a significant role in WSNs. The
“Principal Component Analysis (PCA)” [35] is an appropriate technique for pre-processing
data from sensor networks, i.e., for performing dimensionality decreases. To minimize
energy consumption and maximize network lifetime, the PCA-guided routing algorithm
explores the principal component analysis (PCA) technique to determine the shortest paths
between nodes and cluster centers in a WSN.

K-means clustering: When it comes to partition-based algorithms for clustering data,
“K-means clustering algorithmic [36]” is one of the most widely used models. By prioritiz-
ing the CHs with the highest energy, the K-means algorithm ensures that the clusters are
well-balanced and have a low overall energy footprint [37–39].

Hierarchical clustering: Similar objects are grouped together into clusters using the
hierarchical clustering technique, which determines the top-down or bottom-up order
of each cluster. Divisive clustering, another name for top-down hierarchical clustering,
involves splitting a huge single division recursively until there is one cluster for each
observation. Agglomerative clustering, also known as bottom-up hierarchical clustering,
allocates each observation to its cluster based on density functions. The hierarchical
clustering approach is simple to use and does not require any prior knowledge of the
number of groups.

Fuzzy-c-means clustering: Bezdek created fuzzy-c-means (FCM) clustering, also known
as soft clustering, in 1981. It makes use of fuzzy set theory to assign an observation to one
or more clusters. Using similarity measurements like intensity, distance, or connectedness,
this technique finds clusters. The algorithms may be taken into consideration for one
or more similarity measures, depending on the applications or datasets. To determine
the ideal cluster centers, the algorithm runs over the clusters iteratively. Regarding the
overlapped datasets, FCM yields the best grouping when compared to K-means.

5.3. Reinforcement Learning

In Table 1 many WSN initiatives, including collaborative communications, routing,
and flow control, use “Reinforcement Learning (RL)” to guarantee that sensors and detect-
ing nodes can observe optimum operations and execution networks in a suitable operating
environment. There has been further development of the app’s features. The term “trial and
error” refers to the way that knowledge is gained via experience rather than through theo-
retical models. This model is notable for how easily it can be modified and put into practice.
Processing and memory requirements are minimal, yet the potential applications are high.
As such, RL for WSNs is concerned with a wide range of issues, including clustering
protocols, medium-access protocols, and routing protocols; additionally, hyper-parameter
optimization is addressed within the context of RL, with applications including architec-
tural network design and application-level collaboration between nodes. To improve the
effectiveness of standard learning algorithms for WSN routing issues, the Q-learning [40]
approach is useful [41].
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Table 1. Comparison of ML-based techniques.

ML.
Technique Mobility Environment Complexity Topology Remarks

Regression Static Distributed/
Centralized Moderate Hybrid Improved network lifetime

k-NN Static Distributed Moderate Hybrid Reliable data transmission

Decision tree Static Distributed Moderate Tree Improved network lifetime

ANN Static
Static

Centralized
Distributed

High
High

Hybrid
Tree Improved network lifetime

Decision tree Static Distributed High Tree Reliable data transmission

Bayesian Static or mobile Distributed/
Centralized Moderate Hybrid

Improved network lifetime
Reliable data transmission
Improved time complexity

Improved accuracy

k-means Static Distributed Moderate Tree Efficient redundancy
elimination

Hierarchical
Clustering Static Distributed or

Centralized Moderate Hierarchical Reduce unnecessary
transmission

PCA Static Distributed
Low

Moderate
High

Hybrid

Improved network lifetime
Efficient drift findings
Reduce unnecessary

transmission

SVD Static Centralized High Hybrid Reduce unnecessary
transmission

Genetic Classifier Static or mobile Distributed Moderate Star Improved network lifetime

6. Limitations

Despite its many advantages, adopting ML in WSNs has certain limitations, including
the following:

• Because machine learning (ML) algorithms need to learn from prior data, they do not
yield correct predictions right away. The quantity of previous data affects the system’s
performance. Large data sizes also result in excessive energy consumption during
data processing. Stated differently, a trade-off exists between the high computational
complexity of the ML algorithm and the energy limits of WSNs. The ML algorithms
must operate centrally in order to overcome this trade-off.

• It is a laborious process to validate the predictions made by the machine learning
algorithm in a real-time setting.

• Finding a specific machine learning method to solve a problem in a wireless sensor
network (WSN) can be hard at times.

7. Open Issues

There are still a number of unresolved issues that need more WSN research. Here, we
have enumerated a few open research problems related to WSNs that may be resolved with
machine learning technique:

Localization: Creating effective route planning for the beacon nodes within the frame-
work of mobile sensor nodes is crucial. As far as we are aware, mobile anchor nodes do
not have access to any specific established path-planning approach. Moreover, ML has the
potential to offer effective route-planning methods for all sensor network anchor nodes,
leading to improved localization accuracy and reduced power consumption. While the
majority of current localization algorithms only consider two-dimensional space, the major-
ity of real-time applications deploy sensor nodes in three-dimensional space. As a result,
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both stationary and mobile WSNs require the creation of methods for three-dimensional
space localization.

Coverage and connectivity: Although many new approaches to coverage and connectiv-
ity have been suggested, many unanswered questions remain. Another difficult problem
is determining the ideal location for sensor nodes and predicting the minimal number
of nodes needed to cover a specific area. The majority of sensor node deployments in
real-time WSN systems are haphazard. A coverage hole could be caused by this haphazard
deployment. This kind of coverage gap in the network is notoriously difficult to detect.
Coverage gaps could emerge as a result of the ever-changing nature of the network. Ad-
ditional study is needed to forecast these kinds of network issues and identify potential
solutions. The optimal computing complexity for three-dimensional coverage has thus far
remained undiscovered, while the majority of present-day researchers have focused on
two-dimensional space.

Anomaly detection: One of the most exciting areas of WSN research is anomaly detec-
tion, and several researchers have come up with new methods to help with this problem.
When something goes wrong with a WSN, it might cause transmission delays, increased
communication overhead, or even data misinterpretation by the sensor nodes. While the
authors of the aforementioned works did a good job of focusing on anomaly detection,
there is still a need for more research on what to do once an anomaly has been detected
and how to mitigate its effects. Because anomaly detection methods vary depending on
the application, picking an algorithm to use in heterogeneous WSNs is no easy feat. The
detection algorithm must meet the requirements of detection speed and accuracy. In terms
of routing, the majority of the currently available routing techniques were designed to
gather data from a singular source and send them to a singular destination. Packet collision
is a potential issue in WSNs that have numerous sources and destinations. A growing area
of interest in WSN research is the development of cooperative routing protocols that do
not cause collisions when there are several sources and targets. The nodes’ locations in
mobile WSNs are subject to constant alteration. The nodes in a WSN can move around for
many reasons that are outside their control. Building routing protocols that can adapt to
the ever-changing network is, thus, essential.

Data aggregation: The majority of academics are concerned with approaches for data
aggregation in WSNs where the sensor nodes have a uniform data rate. When it comes to
WSNs, additional investigation into sensor nodes with inconsistent data rates is necessary.
With nonuniform sensor nodes, data collecting becomes more complicated in mobile WSNs.
The mobile sink has the potential to enhance data collection and energy efficiency. It is
difficult to schedule the mobile sink in WSNs when the data are not uniform. Consideration
of energy efficiency, scalability, and low cost are the primary objectives of the efficient data
aggregation process using mobile sinks.

Congestion control and avoidance: Congestion control and avoidance methods need to be
resilient and incredibly resistant to internal disturbances, external stimuli, and data loss in
order to keep up with the ever-changing nature of WSN operations. Because of the energy
and memory limitations of WSNs, it is necessary to minimize the transmission rate between
nodes and implement simple congestion management techniques at each level. When it
comes to autonomous and decentralized tactics, WSNs need a way to control and avoid
congestion that is quick, efficient, and effective. It is recommended that congestion control
implement a self-learning strategy to adapt to the ever-changing network conditions. In
order for a network to self-adopt a congestion control method, it must react by adding
or removing nodes when congestion is observed. To prevent network congestion, traffic
estimation methods are required to detect a quick and dynamic route change. Instead of
transferring data across nodes, effective mobile agent approaches are needed to collect data
from sensor nodes [42,43].

Energy harvesting: Wireless sensor networks rely on small, low-power sensor nodes
dispersed across the environment and powered by batteries. The sensor nodes have limited
energy resources, so a tiny, cheap, and highly efficient wireless harvesting system (WHS) is
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needed to keep the network running for a long period. Wireless sensor networks (WSNs)
require effective protocols for wireless energy harvesting across multiple layers. There
has to be an ML-based reevaluation of the dependability of routing protocols since most
current ones are energy efficient. There needs to be a system in place for large-scale sensor
networks that can charge and discharge themselves in response to environmental changes.
To extend the life of the network, effective methods of distributing power are required. As
a result, adjusting the duty cycles requires synchronization between the physical layer’s
power control and the MAC layer [43,44].

Quality of service: Providing what users and applications need should be the primary
focus of quality of service in WSNs. Varied needs (e.g., sensor type, data rate, traffic
management methods, data kinds) and applications for WSNs necessitate varied quality-of-
service criteria. Consequently, it is difficult to define the standards of quality of service for
various requirements or applications. It is possible to enhance the QoS by creating efficient
cross-layer protocols. Creating quality-of-service criteria for a big, diverse mobile sensor
network is a formidable task.

8. Conclusions

This research looks at the fundamentals of WSN routing algorithms, including their
features and how they work. We also go over the pros and cons of several methods that
can be employed to enhance the efficiency of routing algorithms in WSNs. In recent years,
WSNs have made great strides due to the application of ML methods. This study provides
a comprehensive analysis of ML techniques. Lastly, this paper highlights the difficulties
of using ML to create routing algorithms in WSNs and suggests areas that could benefit
from further investigation using ML in the future. Anybody interested in ML and WSNs
can benefit from this conversation. The following could be part of future studies: Machine
learning methods are not suitable for large-scale deployment in low-power sensors because
of the computational bottleneck and energy consumption limitations of WSNs. Distributed
learning approaches, on the other hand, do not have to take the whole network’s data into
account; therefore, they use less power, have smaller memory footprints, and demand less
processing capacity than centralized learning algorithms. Distributed cooperative learning
is ideal for WSNs because it eliminates the mathematical bottleneck and enables ML-based
green routing while reducing energy usage.

Author Contributions: Conceptualization, A.R.G. and A.D.P.; methodology, A.R.G. and A.D.P.;
software, A.R.G. and A.D.P.; validation, A.R.G. and A.D.P.; formal analysis, A.R.G. and A.D.P.;
investigation, A.R.G. and A.D.P.; resources, A.R.G. and A.D.P.; data curation, A.R.G. and A.D.P.;
writing—original draft preparation, A.R.G. and A.D.P.; writing—review and editing, A.R.G. and
A.D.P.; supervision, A.R.G. and A.D.P. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All the data used are made available in the present work.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Shafiq, M.; Ashraf, H.; Ullah, A.; Tahira, S. Systematic Literature Review on Energy Efficient Routing Schemes in WSN Asurvey.

Mob. Netw. Appl. 2020, 25, 882–895. [CrossRef]
2. Pradeepa, K.; Anne, W.R.; Duraisamy, S. Design and implementation issues of clustering in wireless sensor networks. Int. J.

Comput. Appl. 2012, 47, 23–28. [CrossRef]
3. Wategaonkar, D.N.; Deshpande, V.S. Characterization of reliability in WSN. In Proceedings of the 2012 World Congress on

In-formation and Communication Technologies, Trivandrum, India, 30 October–2 November 2012.
4. Low, A. Evolution of wireless sensor networks for industrial control. Technol. Innov. Manag. Rev. 2013, 3, 5–12. [CrossRef]

https://doi.org/10.1007/s11036-020-01523-5
https://doi.org/10.5120/7232-0163
https://doi.org/10.22215/timreview/682


Eng. Proc. 2023, 59, 231 12 of 13

5. Liu, X. A survey on clustering routing protocols in wireless sensor networks. Sensors 2012, 12, 11113–11153. [CrossRef]
6. Jain, N.; Sinha, P.; Gupta, S.K. Clustering protocols in wireless sensor networks: A survey. Int. J. Appl. Inf. Syst. (IJAIS) 2013, 5,

41–50.
7. Gupta, I.; Riordan, D.; Sampalli, S. Cluster-head election using fuzzy logic for wireless sensor networks. In Proceedings of the 3rd

Annual Communication Networks and Services Research Conference (CNSR’05), Halifax, NS, Canada, 16–18 May 2005.
8. Kim, J.M.; Park, S.H.; Han, Y.J.; Chung, T.M. CHEF: Cluster head election mechanism using fuzzy logic in wireless sensor

networks. In Proceedings of the 2008 10th International Conference on Advanced Communication Technology, Gangwon,
Republic of Korea, 17–20 February 2008; Volume 1.

9. Ran, G.; Zhang, H.; Gong, S. Improving on LEACH protocol of wireless sensor networks using fuzzy logic. J. Inf. Comput. Sci.
2010, 7, 767–775.

10. Zhang, F.; Zhang, Q.-Y.; Sun, Z.-M. ICT2TSK: An improved clustering algorithm for WSN using a type-2 Tak-agi-Sugeno-Kang
Fuzzy Logic System. In Proceedings of the 2013 IEEE Symposium on Wireless Technology & Applications (ISWTA), Kuching,
Malaysia, 22–25 September 2013.

11. Mostafa, B.; Saad, C.; Abderrahmane, H. Fuzzy logic approach to improving Stable Election Protocol for clustered heterogeneous
wireless sensor networks. J. Theor. Appl. Inf. Technol. 2014, 14, 112–116.

12. Bagci, H.; Yazici, A. An energy aware fuzzy approach to unequal clustering in wireless sensor networks. Appl. Soft Comput. 2013,
13, 1741–1749. [CrossRef]

13. Alaybeyoglu, A. A distributed fuzzy logic-based root selection algorithm for wireless sensor networks. Comput. Electr. Eng. 2015,
41, 216–225. [CrossRef]

14. Zahedi, Z.M.; Akbari, R.; Shokouhifar, M.; Safaei, F.; Jalali, A. Swarm intelligence based fuzzy routing protocol for clustered
wireless sensor networks. Expert Syst. Appl. 2016, 55, 313–328. [CrossRef]

15. Logambigai, R.; Kannan, A. Fuzzy logic based unequal clustering for wireless sensor networks. Wirel. Netw. 2016, 22, 945–957.
[CrossRef]

16. Zhang, Y.; Wang, J.; Han, D.; Wu, H.; Zhou, R. Fuzzy-logic based distributed energy-efficient clustering algorithm for wireless
sensor networks. Sensors 2017, 17, 1554. [CrossRef]

17. Wazed, S.; Bari, A.; Jaekel, A.; Bandyopadhyay, S. Genetic algorithm-based approach for extending the lifetime of two-tiered
sensor networks. In Proceedings of the 2007 2nd International Symposium on Wireless Pervasive Computing, San Juan, PR, USA,
5–7 February 2007.

18. Bayraklı, S.; Erdogan, S.Z. Genetic algorithm-based energy efficient clusters (gabeec) in wireless sensor networks. Procedia Comput.
Sci. 2012, 10, 247–254. [CrossRef]

19. Hamidouche, R.; Aliouat, Z.; Gueroui, A.M. Genetic algorithm for improving the lifetime and QoS of wireless sensor networks.
Wirel. Pers. Commun. 2018, 101, 2313–2348. [CrossRef]

20. Abo-Zahhad, M.; Ahmed, S.M.; Sabor, N.; Sasaki, S. A new energy-efficient adaptive clustering protocol based on genetic
algorithm for im-proving the lifetime and the stable period of wireless sensor networks. Int. J. Energy Inf. Commun. 2014, 5, 47–72.

21. Hussain, S.; Matin, A.W.; Islam, O. Genetic algorithm for hierarchical wireless sensor networks. J. Netw. 2007, 2, 87–97. [CrossRef]
22. Liu, J.-L.; Ravishankar, C.V. LEACH-GA: Genetic algorithm-based energy-efficient adaptive clustering protocol for wireless

sensor networks. Int. J. Mach. Learn. Comput. 2011, 1, 79. [CrossRef]
23. Mann, P.S.; Singh, S.; Kumar, A. Computational Intelligence based metaheuristic for energy efficient routing in wireless sensor

networks. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29
July 2016.

24. Gemeda, K.A.; Gianini, G.; Libsie, M. An evolutionary cluster-game approach for Wireless Sensor Networks in non-collaborative
settings. Pervasive Mob. Comput. 2017, 42, 209–225. [CrossRef]

25. Yang, L.; Lu, Y.; Xiong, L.; Tao, Y.; Zhong, Y. A game theoretic approach for balancing energy consumption in clustered wireless
sensor networks. Sensors 2017, 17, 2654. [CrossRef]

26. Sun, W.; Yuan, X.; Wang, J.; Li, Q.; Chen, L.; Mu, D. End-to-end data delivery reliability model for estimating and optimizing the
link quality of industrial WSNs. IEEE Trans. Autom. Sci. Eng. 2017, 15, 1127–1137. [CrossRef]

27. Song, X.; Wang, C.; Gao, J.; Hu, X. DLRDG: Distributed linear regression based hierarchical data gathering framework in wireless
sensor net-work. Neural Comput. Appl. 2013, 23, 1999–2013. [CrossRef]

28. Bara’a, A.A.; Khalil, E.A. A new evolutionary based routing protocol for clustered heterogeneous wireless sensor networks. Appl.
Soft Comput. 2012, 12, 1950–1957.

29. Banihashemian, S.S.; Adibnia, F.; Sarram, M.A. A new range-free and storage-efficient localization algorithm using neural
networks in wireless sensor networks. Wirel. Pers. Commun. 2018, 98, 1547–1568. [CrossRef]

30. Jadhao, P.R.; Ghonge, M.M. Energy Efficient Routing Protocols for Underwater Sensor Networks—A Survey. Energy 2015, 1–4.
31. Kulkarni, S.R.; Lugosi, G.; Venkatesh, S.S. Venkatesh. Learning pattern classification survey. IEEE Trans. Inf. Theory 1998, 6,

2178–2206. [CrossRef]
32. Lu, C.-H.; Fu, L.-C. Robust location-aware activity recognition using wireless sensor network in an attentive home. IEEE Trans.

Autom. Sci. Eng. 2009, 6, 598–609.
33. Branch, J.W.; Giannella, C.; Szymanski, B.; Wolff, R.; Kargupta, H. In-network outlier detection in wireless sensor networks.

Knowl. Inf. Syst. 2013, 34, 23–54. [CrossRef]

https://doi.org/10.3390/s120811113
https://doi.org/10.1016/j.asoc.2012.12.029
https://doi.org/10.1016/j.compeleceng.2014.09.001
https://doi.org/10.1016/j.eswa.2016.02.016
https://doi.org/10.1007/s11276-015-1013-1
https://doi.org/10.3390/s17071554
https://doi.org/10.1016/j.procs.2012.06.034
https://doi.org/10.1007/s11277-018-5817-z
https://doi.org/10.4304/jnw.2.5.87-97
https://doi.org/10.7763/IJMLC.2011.V1.12
https://doi.org/10.1016/j.pmcj.2017.10.008
https://doi.org/10.3390/s17112654
https://doi.org/10.1109/TASE.2017.2739342
https://doi.org/10.1007/s00521-012-1248-z
https://doi.org/10.1007/s11277-017-4934-4
https://doi.org/10.1109/18.720536
https://doi.org/10.1007/s10115-011-0474-5


Eng. Proc. 2023, 59, 231 13 of 13

34. Somaa, F.; Adjih, C.; El Korbi, I.; Saidane, L.A. A Bayesian model for mobility prediction in wireless sensor networks.
In Proceedings of the 2016 International Conference on Performance Evaluation and Modeling in Wired and Wireless Net-
works (PEMWN), Paris, France, 22–25 November 2016.

35. Ghonge, M.M.; Mangrulkar, R.S.; Jawandhiya, P.M.; Goje, N. (Eds.) Future Trends in 5G and 6G: Challenges, Architecture, and
Applications; CRC Press: Boca Raton, FL, USA, 2021.

36. Wang, Y.; Martonosi, M.; Peh, L.-S. Predicting link quality using supervised learning in wireless sensor networks. ACM
SIGMOBILE Mob. Comput. Commun. Rev. 2007, 11, 71–83. [CrossRef]

37. Rooshenas, A.; Rabiee, H.R.; Movaghar, A.; Naderi, M.Y. Reducing the data transmission in wireless sensor networks using the
principal compo-nent analysis. In Proceedings of the 2010 Sixth International Conference on Intelligent Sensors, Sensor Networks,
and Information Processing, Brisbane, QLD, Australia, 7–10 December 2010.

38. Pant, P.; Rajawat, A.S.; Goyal, S.; Potgantwar, A.; Bedi, P.; Raboaca, M.S.; Constantin, N.B.; Verma, C. AI based Technolo-
gies for International Space Station and Space Data. In Proceedings of the 2022 11th International Conference on System
Modeling & Advancement in Research Trends (SMART), Moradabad, India, 16–17 December 2022; pp. 19–25. [CrossRef]

39. Ugochukwu, N.A.; Goyal, S.B.; Rajawat, A.S.; Islam, S.M.N.; He, J.; Aslam, M. An Innovative Blockchain-Based Secured Logistics
Management Architecture: Utilizing an RSA Asymmetric Encryption Method. Mathematics 2022, 10, 4670. [CrossRef]

40. Kathole, A.B.; Katti, J.; Dhabliya, D.; Deshpande, V.; Rajawat, A.S.; Goyal, S.B.; Raboaca, M.S.; Mihaltan, T.C.; Verma, C.; Suciu, G.
Energy-Aware UAV Based on Blockchain Model Using IoE Application in 6G Network-Driven Cybertwin. Energies 2022, 15, 8304.
[CrossRef]

41. Krishnamoorthy, R.; Kumar, N.; Grebennikov, A.; Ramiah, H. A high-efficiency Ultra-Broadband mixed-mode Gan HEMT power
amplifier. IEEE Trans. Circuits Syst. II Express Briefs 2018, 65, 1929–1933. [CrossRef]

42. Vitee, N.; Ramiah, H.; Mak, P.-I.; Yin, J.; Martins, R.P. A 3.15-MW +16.0-DBM IIP3 22-DB CG inductively source degenerated
balun-lna mixer with integrated transformer-based gate inductor and IM2 injection technique. IEEE Trans. Very Large Scale Integr.
(VLSI) Syst. 2020, 28, 700–713. [CrossRef]

43. Eswaran, U.; Ramiah, H.; Kanesan, J. Power amplifier design methodologies for Next Generation Wireless Communications.
IETE Tech. Rev. 2014, 31, 241–248. [CrossRef]

44. Chong, G.; Ramiah, H.; Yin, J.; Rajendran, J.; Wong, W.R.; Mak, P.-I.; Martins, R.P. CMOS cross-coupled differential-drive rectifier
in subthreshold operation for ambient RF Energy Harvesting—Model and analysis. IEEE Trans. Circuits Syst. II Express Briefs
2019, 66, 1942–1946. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1145/1317425.1317434
https://doi.org/10.1109/SMART55829.2022.10046956
https://doi.org/10.3390/math10244670
https://doi.org/10.3390/en15218304
https://doi.org/10.1109/TCSII.2018.2809491
https://doi.org/10.1109/TVLSI.2019.2950961
https://doi.org/10.1080/02564602.2014.906895
https://doi.org/10.1109/TCSII.2019.2895659

	Introduction 
	The Characteristics of WSNs 
	Routing on Wireless Sensor Networks 
	Routing Approach 
	Clustering Characteristics 
	Cluster Purposes 
	Cluster-Head Choice Norms 
	Cluster Properties 
	Detailed Procedure of Clustering Routing Protocols 
	Fuzzy Logic 
	Genetic Algorithms (GAs) 


	Estimation of the Enhanced Clustering Methods 
	Machine Learning Adaptability for WSNs 
	Supervised Learning 
	Unsupervised Learning 
	Reinforcement Learning 

	Limitations 
	Open Issues 
	Conclusions 
	References

