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Abstract: This article describes the design of a local GSM signal amplifying system and presents
the results of appliance performance measurements, simulations and analyses. The system consists
of a receiving antenna of the Yagi type, a 50 Ω cable, a 0.5–1.5 GHz wideband RF amplifier and a
transmitting antenna. A precise measurement of the S-parameters of each component is performed
and recorded in the appropriate S-matrix data file format. The amplifying system is first realized in a
Keysight Genesys programming simulation platform with S-models, created based on the measured
data. That schematic is simulated and optimized by calculating additional impedance-matching
circuits included in the initial schematic design.
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1. Introduction

Despite the requirements and the “promises” of the providers, the quality of mobile
telecommunication services is not adequate in some parts of their covered areas. In fact,
the radio signal coverage of the GSM network, and the level of the LTE signal in particular,
is not reliable, nor is it constantly stable enough in the areas of small villages where few
people live, although the majority of those people also need a mobile service with the same
excellent parameters as is delivered in the territories of the big cities [1,2]. Obviously, it is
not profitable for the providers to develop the infrastructure in low-population areas, and
this is a very unpleasant problem for the minority population who prefer to live in small
towns and villages or much closer to wild nature [3].

The present paper displays some interesting results and analyses of the design and ex-
ploration of a local radio signal amplifying system, developed to receive, amplify, transmit
and spread GSM signals across a small area of a village home yard [4].

NanoVNA-FV2 has been used for the measurements concerning the components of
the GSM [5] signal local amplifying system—parameters of the antennas, cables and RF
amplifier. For the measurements of parameters of the radio signal coverage both the RF
Field Strength Analyzer Protek 3200 and the mobile Android OS application Network Cell
Info has been used [6].

2. Schematic Design of the Amplifying System
2.1. Initial Schematic Design

The initial schematic of the designed GSM signal amplifying system is shown in
Figure 1. The receiving antenna type is a nine-element Yagi with the appropriate dimensions
of its elements for optimal performance in the range of frequencies of 850 to 950 MHz, with
vertical polarization; it is pointed towards the closest base station of the GSM network.

The location of the antenna is on the roof of the house, and the direction has been
established after some pre-calculations based on the GPS data concerning the latitude
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and longitude of the nearest 4G-supporting base station of the GSM service provider. The
position and direction of the antenna were precised by RF signal measurement. The antenna
is equipped with an RG-58 50 Ω coax cable with an N-type female connector [7].

The receiving antenna is equipped with an RG-58 50 Ω coax feeder cable and an
N-type female connector. A convertor, N-type male to SMA female, couples the antenna
feeder to the RG-58 coax cable. Both outputs of the cable are equipped with SMA male
connectors—the first one is connected to the SMA female side of the convertor, N to SMA,
and the second one is connected to the input terminal of the RF power amplifier [8].

The second coax cable links the output of the amplifier and the distribution antenna
connector (also N-type female). That cable is also equipped with SMA male connectors at
both of its ends, which necessitates one more convertor, SMA male to N-type male.
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Figure 1. Block schematic of the designed GSM signal amplifying system.

Although it appears to be more convenient to terminate the respective outputs of the
coax cables directly with the appropriate connectors (N-type male) and to avoid the need
for convertors, there is an important reason for the described arrangement. The described
schematic is designed for the initial measurement and simulation without the need for
impedance-matching components in the network.

2.2. Final Schematic Topology and Components of the Local GSM Signal Amplifying System

As soon as the simulation provided the results, it has been evident that the impedance
sequence had to be ensured between the receiving antenna and amplifier, and between the
amplifier and the load, i.e., the distribution antenna. The impedance-matching schematic
units to be inset in the input network and in the load network were designed with discrete
elements based on the results of the simulation. These units also needed the respective
optimization concerning the connector arrangements, but this could be done only after their
best possible place in the topology had been established during the process of simulation.

3. Consecution of Measurements and Results
3.1. Measurement of S-Parameters of the Amplifying System Components by NanoVNA-FV2

The main purpose of the measurement has been to collect the S-parameters data
matrix of each of the components of the amplifying system in order to prepare an accu-
rate simulation model to ensure the maximal coincidence between the real and expected
electromagnetic behavior of the amplifying system.

The S-parameters measurement has been performed individually for each component
of the initial schematic on Figure 1 [9].

Both the receiving antenna and the distribution antenna are one-port devices, so
the following parameters were measured and recorded [10] in an .s1p file format by the
vector network analyzer: S11 Smith chart, |S11|, return loss, characteristic impedance,
R + jX, input signal phase, group delay of the input signal, quality factor, serial C, serial L,
real/imaginary, R/omega, X/omega.

The RF power amplifier as well as both linking coax cables are two-port devices
(quadrupoles), so the measured parameters by the same instrument are S11 (S22), S21 (S12),
S11 Smith chart, |S11|, return loss, characteristic impedance, R + jX, input signal phase,
group delay of the input signal, quality factor, serial C, serial L, real/imaginary, R/omega,
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X/omega, S21 polar plot, gain, |S21|, output signal phase, group delay of the output
signal, S11 and S21 comparison (LogMag) and time domain response (TDR).

One of the remarkable and important functionalities of the vector network analyzer
NanoVNA-FV2 is the calibration procedure available before each measurement. In the case
of two-port devices, the calibration applies a set of three special connectors terminating
the measuring circuit to open and short and to a 50 Ω load. Once the calibration is done, it
can be saved in a file for later use when the same measurement schematic arrangements
are applied.

In the case of two-port devices being tested, an additional calibration procedure is
performed, called “through”. It connects PORT1 to PORT2 directly by a benchmark coaxial
single cable or by a pair cable, connected by a standard SMA adaptor, as is depicted in
Figure 2. The calibration of the analyzer effectively eliminates the greatest majority of
undesired impedances across the measuring network caused by the self-reactance of all
connectors, convertors, etc. that impact the accuracy of the measurement of such high-
frequency radio signals (close to 1 GHz). After the calibrating procedure of the instrument,
the measurements are performed.
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Figure 2. Schematic of the vector analyzer calibration procedure “through”.

3.2. Measured Data Results and Graphics
3.2.1. Receiving Antenna Equipped with RG-58 50 Ω Coax Feeder Cable, N-Type
Female Connector

A convertor, N-type male to SMA female, couples the antenna feeder to the calibrated
coax cable of the instrument.

The Smith chart of the receiving antenna is shown in Figure 3, and the voltage standing
wave ratio (VSWR) as a function of the frequency in the GSM signal band is depicted in
Figure 4. In the Smith chart, it is evident that the impedance of the antenna does not match
the 50 Ω load across the entire GSM band. The closest point to the center of the chart is in
the very beginning of the frequency range explored, i.e., 850 MHz. The worst value of the
VSWR is 2.885, reached at 944.6 MHz—corresponding to the most outlying point relative
to the center of the Smith chart.
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Figure 3. Smith chart of the receiving antenna.

The analysis of the measurements led to the conclusion that an impedance-matching
component has to be added to the input network of the amplifying system, between the
receiving antenna and the RF amplifier input port (Figure 5). The exact parameters and
place of the matching circuit were determined after the simulation.
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3.2.2. Distribution Antenna Also Equipped with RG-58 50 Ω Coax Feeder Cable, N-Type
Female Connector

An N-type male to SMA female convertor couples the antenna feeder to the calibrated
coax cable of the instrument.

The Smith chart of the distribution antenna is shown in Figure 6, and the voltage
standing wave ratio (VSWR) as a function of the frequency in the GSM signal band in
Figure 7. On the Smith chart, it is evident that the impedance of the distribution antenna,
which is practically the load of the amplifying system, is close to the ideal 50 Ω load across
the entire GSM band.

The closest point to the center of the chart is near the end of the frequency range
explored, i.e., 961.8 MHz. The best value of the VSWR is 1.009 (Figure 7) and it is reached
at the same frequency—961.8 MHz, which corresponds to the most outlying point from the
center of the Smith chart.

The distribution antenna obviously achieves much better values of the same parame-
ters, compared to the receiving antenna.

The distribution antenna obviously achieved better values for the Smith chart and
VSWR parameters, compared to the receiving antenna. But the receiving antenna shows a
bigger value of the gain (Figure 8) for the chosen frequencies from the same range. The
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gain of the receiving antenna is around −62 dB and the gain of the distribution antenna is
about −87 dB.
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On all diagrams, the blue marker shows the frequency of the biggest gain, and the red
marker shows the frequency of the best impedance match, i.e., the best power efficiency
across the band.
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The appropriate parameters, topology and place of the impedance-matching circuit
were determined after the simulation.
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The design of the local GSM amplifying system has been developed through the
optimization of the S-matrix of the system in the simulation environment.

4. Simulation and Analysis for Optimization

The S-parameters model of the real RF amplifier was used in the simulation schematic.
Similarly, S-matrix models were prepared to present correctly the behavior of the connecting
coax cables. The parameters of those models depend on the length of each particular
cable [11].

The impedance-matching schematics (Figure 9) at the input and load network of the
amplifying system were designed with discrete passive elements, whose parameters were
calculated automatically by the programming module, part of the simulation program and
based on Matlab.
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Figure 9. Equivalent circuit for impedance conversion from parallel to series topology (a); equivalent
circuit for impedance conversion from series to parallel topology (b); Impedance-matching circuit
without any conversion (c).

XA, XB are the reactances after the respective dotted line; XAB, XBC are the reactances
between the respective dotted lines; C1, C2, L represents the capacitances and inductance
of the respective lumped elements in the circuits; RA, rA rB represents the respective
resistances in the circuits, RL is the load.

Impedance-matching components (Figure 9) were calculated by applying the following
mathematical model [9,12]:

rA= RB =
RA

1 + q2
A
=

RL

1 + q2
A

, (1)

xA =
XA

1+ 1
q2

A

, (2)

The load quality factor is

QL =
XAB
rA

, (3)

The series reactance to the right of line b is

xA= xAB − xA = (QL − qA)rA, (4)

The quality factor of the reactance to the right of line b is

qB =
xB
rB

=
R

XB
=

R
XBC

, (5)



Eng. Proc. 2024, 60, 24 7 of 8

The active and reactive components of the matched impedance Z are obtained by (4):

RB= R = rB

(
1 + q2

B

)
(6)

and

XB= xB

(
1+

1
q2

B

)
(7)

The values of the above-mentioned physical quantities were calculated automatically
in the simulation environment, which provided an integrated Matlab programming module,
and Equations (1)–(7) above were preset in advance.

5. Conclusions

The results and analysis of the measurements show that it is necessary to inset an
impedance-matching component also in the output network of the amplifying system,
between the RF amplifier output port and the distribution antenna. Assuming the fixed
construction of the antennas, the components that can be improved are the RF amplifier,
the length of the cable to optimal values and the parameters of the discrete elements of the
impedance-matching transformation circuits.

The exploration of the problem could be expanded towards the goals of reaching
more effective RF power distribution of the GSM signal at a particular place, concerning
the achievement of higher data traffic speed in areas of weak network coverage, supplied
by the GSM service provider. The main quality parameters of the RF signal in the GSM
network discussed in this exploration are the maximum and average power values of the
distributed signal and real data traffic speed.

The present paper displays some practical results and analyses of the design and
exploration of a local RF amplifying system, developed to receive, amplify, transmit and
spread LTE and 4G GSM signals across a small area of a village home yard where 4G service
signal is very weak or not reliable.
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