
Citation: Ramya, R.S.; Bharath, K.K.;

Revanth Krishna, K.; Jaswanth Reddy,

K.; Sri Bhuvan, M.; Venugopal, K.R.

Traffic Signal Control System Using

Contour Approximation Deep

Q-Learning. Eng. Proc. 2024, 62, 19.

https://doi.org/10.3390/

engproc2024062019

Academic Editors: Geetha Ganesan,

Xiaochun Cheng and Valentina Emilia

Published: 22 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

Traffic Signal Control System Using Contour Approximation
Deep Q-Learning †

R. S. Ramya *, K. K. Bharath , K. Revanth Krishna, Kancham Jaswanth Reddy , Maddipudi Sri Bhuvan
and K. R. Venugopal

Department of Computer Science, Dayananda Sagar College of Engineering, Bangalore 560111, India;
bharathkk0603@gmail.com (K.K.B.); rvnthkrishna@gmail.com (K.R.K.);
kanchamjaswanthreddy@gmail.com (K.J.R.); bhuvanmaddipudi@gmail.com (M.S.B.);
venugopalkr@gmail.com (K.R.V.)
* Correspondence: dr.ramya-cse@dayanandasagar.edu
† Presented at the 2nd Computing Congress 2023, Chennai, India, 28–29 December 2023.

Abstract: A reliable transit system is essential and offers a lot of advantages. However, traffic has
always been an issue in major cities, and one of the main causes of congestion in these places is
intersections. To reduce traffic, a reliable traffic control system must be put in place. This research
sheds light on how to consider dynamic traffic at intersections and minimize traffic congestion using
an end-to-end deep reinforcement learning approach. The goal of the model is to reduce waiting times
at these crossings by controlling traffic in various scenarios after receiving the necessary training.

Keywords: deep Q-learning; artificial intelligence; machine learning; traffic signal control system

1. Introduction

Over time, there has been a rise in the number of people moving around, which has
led to an increase in traffic. Numerous negative effects of increased traffic include longer
travel times and higher pollution levels brought on by the increased fuel consumption of
cars. Currently, a traditional, three-phase, pre-timed signal system that includes red, yellow,
and green phases is employed.

This signaling system works with a set duration based on the provided timings. This
approach, however, does not account for the dynamic traffic that moves through each lane
at intersections.

There is ongoing research being conducted to provide new approaches to the problem
of traffic congestion. Numerous approaches are now being used to address this issue as
a result of the technology sector’s rapid growth [1,2]. One such instance is the Internet
of Things [3,4] where traffic is efficiently controlled using cameras and other sensors.
Wireless sensor networks (WSN) [5] and the use of embedded platforms [6] are two more
effective techniques.

However, the fields of artificial intelligence and machine learning have given rise
to many methods which are effective in controlling traffic. Reinforcement learning (RL)
is a practical method for controlling traffic signals [7]. The use of deep reinforcement
learning [8], which introduces a feature-based state representation and rewards idea, is one
example among many.

This technique makes TSC scalable. The deep convolutional neural network [9] used
in this technique, which also uses deep reinforcement learning, collects parameters from
the raw traffic data, such as the locations, speeds, and waiting times of the cars.

In this paper, we present a traffic control system that takes images of traffic intersec-
tions with dynamically flowing vehicles as the input and performs traffic signaling. The
model’s objective is to decrease the average waiting time at crossings while also identifying
emergency vehicles and opening the lane in which they are traveling to give them top
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priority. We run the model on different scenarios and compare it with other proposed traffic
signal control systems.

The contributions of this paper are as follows:
1. We propose an off-policy end-to-end deep reinforcement learning [10] based traffic

signal control system to control dynamic traffic efficiently at intersections with top priority
for emergency vehicles.

2. The model proposes detecting emergency vehicles on any of the sides of the
intersection and aims to reduce their waiting time by clearing the traffic in that lane.

2. Related Work

Several other machine learning models that have been used to propose a traffic signal
control system are studied here.

A deep reinforcement learning model is created in [11] to control the traffic light
cycle. By compiling the traffic patterns, the complex traffic situation in the United States
is assessed. Small grids are used to divide up the entire traffic intersection. In this model,
states, rewards, and actions are all used.

Using a Gaussian convolutional neural network is an alternative strategy. A graph
convolutional neural network is developed in [9]. Agents are established in a distributed
manner to design a policy to run a traffic signal at an intersection using the recommended
method as opposed to speaking to other agents directly. The suggested method can locate
comparable policies using an FCNN twice as fast as the conventional RL-based method,
and it is also better equipped to handle variations in traffic demand. In the context of six
crossings, the outcomes of NFQI employing the GCNN, FCNN, and fixed-timing control
were compared.

Chen et al. [12] utilized a five-layered convolution with a (2 × 2) filter size without
a pooling layer. The unique method used by the authors (PCNN) involved simulating
periodic traffic data using deep neural networks based on convolution. The study folded
the time-series to create the input, which incorporated historical and real-time traffic data.
They replicated the amount of congestion from the previous time slot in the matrix to
illustrate the relationship between a new time slot and the recent past.

Convolution neural networks are suggested as a possible implementation of the traffic
sign recognition method by Shustanov et al. [13]. The paper also shows alternative CNN
designs side by side for comparison. The TensorFlow library and CUDA’s massively
parallel architecture for multithreaded programming are used to train the neural network.
On a mobile GPU, the full detection and recognition procedure for traffic signs is carried
out in real time.

The author used TensorFlow, a deep learning framework, to tackle the identification
of traffic signs issues. Training and testing were carried out on the GTSRB dataset.

Modern reinforcement learning (RL) techniques for online signal controller optimiza-
tion were put forth by Mousavi et al. [14]. In this way, the set of approaching vehicles
(incoming lane, speed, waiting time, queue length), as well as the present signal assign-
ment (enabled phase), frequently determine the status of the intersection. An RL agent
must optimize a technique that links state mapping to signal (phase) assignment. Deep
Q-learning techniques are frequently used for this type of learning with the goal of learning
the projected future value from each action in a particular state. The controller is then told
to take the best steps it can going forward.

Table 1 shows the comparison of different reinforcement learning methods.
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Table 1. Different reinforcement models.

Sl No. Year Reinforcement
Method Used Working Applications

1 2020 Model-based Monte
Carlo

Utilises sampling to estimate the
Markov decision

process dynamics.

Used in situations where there are
a lot of data to process. There is a
guarantee that the estimations will

be quite accurate.

2 2018 Policy-based gradient

The policy gradient-based method
directly learns from the policy

rather than modeling the
value function.

Utilized in autonomous vehicle
design where the state consists of
convoluted situations provided to

agents.

3 2018 Actor critic

The actor critic
technique estimates

and updates both the policy and
value functions.

There are many actor critic
methods such as A2C that are

used in
autonomous driving.

4 2019 Q Learning

It is a temporal difference method,
an off-policy method where a Q-

value is estimated to optimize the
actions.

It is used extensively in training
agents to play games and has been
proven effective in being able to

learn complex rules.

5 2017 Deep reinforcement
Learning

It employs neural networks that
do not explicitly specify the

characteristics; instead, they use
the state

as input the directly.

It is utilized in tasks where
the state

is not easily representable, such as
tasks where the screen itself acts as

a state.

3. Problem Definition

In this section, we define the problem statement for our traffic signal control system.
Consider a single crossroads where traffic flows in all four directions. Traffic signals

are used to indicate whether or not vehicles in a lane are allowed to proceed or must halt.
We consider STOP (indicated by a red light) and GO (indicated by a green light) as the
two possible states for the signal in order to keep things simple. We adhere to left-hand
traffic laws, but this has no impact on the model, which can be adjusted to operate under
right-hand situations as well.

The transitions for the signal are indicated below. Following the same method men-
tioned in the above paragraph, four different states are possible.

1. Signal 1 is green, and the rest are red
2. Signal 2 is green, and the rest are red
3. Signal 3 is green, and the rest are red
4. Signal 4 is green, and the rest are red
The intersection can be modeled using a Markov decision process. It provides a mathe-

matical framework for representing environments in reinforcement learning applications. [10]
For our application, we define a quadruple MDP (Markov decision process) to represent
the environment as follows:

< St, At, Rt+1, St+1 > (1)

where St represents the current state, At represents the action taken by the agent, St+1 is the
state reached when action At is taken at state St, and Rt+1 is the reward for taking action
At at St and reaching St+1.

4. Traffic Signal Control Design

In this section, we introduce the different aspects of the proposed model, such as the
environment, reward, and actions.
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4.1. Environment

Figure 1 represents the environment where we conduct our experimentation. A
surveillance camera placed at the crossroads allows us to record the status as seen in this
context. Since these data are essential for instructing the RL agent, the camera should be
set up so that it can adequately watch traffic from all four lanes.
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4.2. Reward

Since the main goal of this experiment is to minimize the average waiting time at
junctions, this parameter can act as a good reward. The average waiting time is calculated
by summing up the waiting time (time between stopping at red light and starting at green
light) of each vehicle in every lane and then dividing by the total number of vehicles. Once
we have obtained the average waiting time, we need to consider the negative of this number
as a reward. This is because the reward acts as a positive signal for our RL agent and it
is trying to maximize the reward. While this approach is simple, it can also increase the
complexity of computation, as the average waiting time can become a very large number
in the case of heavy traffic.

4.3. Actions

The agent can take four given actions at any given time, i.e., make any one of the four
signals green and the rest stay red. This is a simplified version of the actual way that signals
work in reality, as yellow lights are used to ask vehicles to slow down. However, since the
duration of yellow lights is constant, it is not something complex enough to be learned by
our agent. However, we can train our agent in these four actions, and it will still be able to
work in environments which use yellow lights, because that depends on the design of the
environment and does not affect the learning curve of the agent.

5. Algorithm

The algorithm of the Q-network is presented in Algorithm 1. The algorithm works by
first obtaining the state at any time t. It can then take one of two paths—one path chooses
to “explore”, i.e., choose a random action, and the other path chooses “exploitation”, i.e., it
chooses an action based on the Q-value output of the Q-network. Once the action is sent to
the environment, the rewards and the next state are received. These values are then used to
fit the Q-network. This process takes place infinitely and the Q-network is eventually able
to converge on the policy.
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Algorithm 1

1. while t← 1toN do
2. s = getState()
3. a = 0
4. ε = εo − t
5. if rand(0, φ) 〈 ε then
6. a = rand(0, 4)
7. else
8. probs = CA DQN(state)
9. a = max(probs)
10. end if
11. send action to env()
12. r = receive reward()
13. s’ = getState()
14. target = copy(Q-network)
15. calculate Q-value
16. targetNetwork.Q-value = calculated Q-value
17. loss = MSELoss()
18. optimizer = Adam()
19. add tuple into replay buffer
20. if t%Ω = 0 then
21. sample BRB tuples from replay buffer
22. target = copy(Q-network)
23. for BRB tuples sampled do
24. calculate Q-value
25. targetNetwork.Q-value = calculated Q-value
26. loss = MSELoss()
27. optimizer = Adam()
28. end for
29. end if
30. end while

6. Handling Emergency Vehicles

Once we have trained an effective object detection algorithm, the idea is to narrow
down the lane that has the maximum number of emergency vehicles at that timestep and
free up that lane.

A disadvantage of this approach is that we will not be taking the magnitude of the
emergency of the vehicles into account, but the only way of knowing this would be if the
vehicles themselves transmit information to our algorithm, which cannot be expected of
all vehicles.

Our algorithm will, however, ensure fairness by selecting a random lane among the
lanes with the maximum number of emergency vehicles, if there is a deadlock. For the
purpose of addressing emergency vehicles, we use YOLOv7. YOLOv7 is currently the
latest architecture [15] of the popular You Only Look Once object detection algorithm that
is capable of predicting better bounding boxes at a high speed. Training results are shown
in Figure 2.
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7. Results

Figure 3 shows a graph of the training results which represent the average waiting
time of vehicles for our model.
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