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Abstract: Biomolecules and extracts from natural products are gaining increasing interest due to 
their beneficial properties for human health, low toxicity, environmental compatibility and 
sustainability. In this work, keratin, chitosan and peppermint essential oil have been used for the 
preparation of coatings on titanium substrates for biomedical implants/devices. All these coatings 
were obtained from local natural products/byproducts: keratin from discarded wool, chitosan from 
shrimp shells and peppermint essential oils from a local production. The above cited molecules 
were selected for their ability to stimulate soft tissue adhesion (keratin), anti-inflammatory activity 
(chitosan) and antibacterial activity (keratin after metal ion doping, chitosan and mint oil). The 
coatings were characterized by means of SEM-EDS, FTIR, zeta potential, wettability, tape and 
scratch tests, and cell and bacteria cultures. The coatings were successfully obtained for all the 
considered natural substances with good adhesion to the titanium substrates. All the coatings are 
chemically stable in water and the continuous coatings are mechanically resistant and protective 
for the metallic substrates. The keratin coatings are hydrophilic while the mint oil and chitosan 
coatings are hydrophobic; nanofibers, instead of continuous coatings, behave as more 
hydrophobic. At the physiological pH, the keratin and mint oil coatings are negatively charged 
when in contact with an aqueous environment, while the chitosan ones are positively charged. The 
oriented keratin fibers are able to drive fibroblast alignment. The Ag-doped keratin fibers and mint 
coating show antibacterial properties. 
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1. Introduction 

Natural products are gaining increasing interest in the field of medicine due to their numerous 
beneficial properties (such as antioxidant, antibacterial, anti-inflammatory) and few side effects (e.g., 
limited toxicity and bacterial resistance). Moreover, they can be often obtained from abundant 
byproducts of different industries (food and beverages or textile, to cite some examples). 

Among natural products, keratin, chitosan and peppermint essential oils have been selected in 
the present research as possible substances for the obtainment of coatings of interest in the 
biomedical field. 

Keratin has been selected for its ability to stimulate soft tissue growth [1,2] and the possibility to 
be doped with metal ions to confer antibacterial activity [3]. Chitosan has been selected for its 
antibacterial and antioxidant properties [4] and peppermint essential oil for its antibacterial 
properties [5]. 

All these substances were obtained from industrial byproducts or local products in order to 
promote a sustainable use of resources, with the transformation of byproducts in high added value 
products and to sustain local economies. 

In this view, keratin was obtained from discarded wool, chitosan from shrimp shells and 
peppermint essential oil from the local mint production. 

Keratin, chitosan and peppermint essential oil were used to prepare organic natural coatings 
onto commercially pure titanium and Ti6Al4V alloy. Samples were characterized by means of 
SEM-EDS, FTIR, zeta potential, wettability, tape and scratch tests, and cell and bacteria cultures. 

2. Materials and Methods 

Keratin was obtained by discarded wool from the textile industry by sulfitolysis with sodium 
metabisulfite, purified and freeze-dried in powder, as described in [6]. Keratin coatings, in the form 
of random or oriented sub-micrometric fibers, on polished or grooved commercially pure titanium 
surfaces, were obtained, from keratin solutions in formic acid, by electrospinning as described in 
[6,7]. Moreover, keratin continuous coatings were obtained on polished commercially pure titanium 
substrates, from keratin solution in water, by manual application and spreading of a drop of solution 
and further drying in air. All the coatings were thermally treated for 2 h at 180 °C to confer them 
stability [8]. Part of the random submicrometric fiber coatings was soaked in silver nitrate aqueous 
solution in order to obtain silver doping [3]. 

Chitosan was obtained from shrimps’ shells (Genis hf). Continuous chitosan coatings were 
prepared onto chemically treated Ti6Al4V substrates. The chemical treatments in [9] foresee an acid 
etching followed by a controlled oxidation to obtain a nanotextured surface rich in hydroxyl groups. 
Chitosan grafting was performed directly, using tresyl chloride as a good outgoing group or using 
polydopamine as a linker.  

Peppermint essential oil coatings were performed on chemically treated Ti6Al4V substrates (as 
for chitosan coatings) by means of application and spreading of a drop of pure oil and further drying 
at 37 °C in an incubator [10].  

Surface morphology and semi-quantitative chemical composition were investigated by means 
of Scanning Electron Microscopy equipped with Energy Dispersive Spectroscopy (FESEM-EDS 
SUPRATM 40, Zeiss and Merlin Gemini Zeiss). The appearance and distribution of mint essential oil 
coating (which is autofluorescent) was investigated by means of fluorescent microscopy (Zeiss 
LSM900, Zeiss, Oberkochen, Germany). The characteristic chemical groups of the coating molecules 
were further determined by means of Fourier Transformed Infrared Spectroscopy (Tensor 37 
micro-FTIR with Hyperion 2000 Microscope-Bruker Optics, Ettlingen, Germany). The adhesion of 
the coatings to the substrates was evaluated by means of tape test (ASTM D 3359-97) and scratch 
tests (CSM, Revetest machine). The wettability of the coatings was evaluated by means of contact 
angle measurements (sessile drop method, DSA-100, KRÜSS GmbH, Hamburg, Germany) with 
ultrapure water as wetting fluid. 
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Surface charge in the function of pH was determined by zeta potential electrokinetic 
measurements (SurPASS, Anton Paar, adjustable gap cell) in 0.001 M KCl titrated with 0.05 M HCl 
and 0.05 M NaOH. 

The antibacterial activity of silver-doped keratin coatings and of peppermint essential oil 
coatings was evaluated against Staphylococcus aureus, since it is one of the most widespread 
pathogens [3,10]. 

The biocompatibility and fibroblast guidance ability of submicrometric fiber keratin coatings 
was evaluated with human gingival fibroblasts, because the application of these materials is 
intended in contact with soft tissues [3,6,7]. 

3. Results and Discussion 

The appearance of the various coatings is shown in Figure 1 through SEM micrographs for 
keratin and chitosan coatings (obtained by direct grafting) and fluorescence microscopy image for 
peppermint essential oil, as examples. 

The SEM micrographs of the continuous keratin (Figure 1a) and chitosan coatings (Figure 1c) 
and the fluorescence image of the peppermint essential oil coating (Figure 1d) highlight 
homogeneous and substantially smooth coatings (except of sub micrometric spot-like features in the 
keratin coating). On the other hand, as expected, the keratin electrospun coatings are characterized 
by sub-micrometric mainly regular fibers. It can be noticed that all the continuous coatings 
completely cover the substrate topography, exposing the biological environment to the topography 
and to the chemistry of the coatings. Differently, the sub-micrometric keratin fibers can be 
modulated in order to completely cover the substrate or partially expose it; this can be of interest if 
the substrate features are a complementary stimulus for the cells, as previously demonstrated by the 
authors with aligned submicrometric keratin fibers deposited on grooved titanium substrates [7]. 

 
Figure 1. SEM micrographs of (a) keratin continuous coating, (b) keratin electrospun 
sub-micrometric fibers coating, (c) chitosan (direct grafting) continuous coating and (d) a 
fluorescence microscopy image of peppermint essential oil coating. 

The FTIR spectra (not reported) confirm for all the tested samples the effectiveness of the 
coating, evidencing the presence of the characteristic vibration peaks of the keratin, chitosan and 
peppermint essential oil constituents on the coated surfaces. All the coatings that resulted stable in 
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water and FTIR spectra (as well as SEM and fluorescence observations) confirm their presence after 
two weeks soaking in aqueous media. 

The adhesion of the continuous keratin coatings, chitosan and peppermint essential oil coatings 
to the titanium substrates is optimal (5B classification according to ASTM D 3359-97 standard, no 
detachment). A certain reduction in adhesion (compared to the continuous coatings) has been 
evidenced for the fibrous keratin coating, and this can be associated to the lower availability of 
contact points for adhesion. Proper surface treatments are currently under investigation to take these 
coatings also to the same standard of the continuous ones. 

The scratch tests evidenced a good adhesion for the continuous keratin coatings and 
peppermint essential oil coatings, confirming the tape test results. Moreover, these tests evidenced a 
significant protection ability of the coating for the metallic substrate. In fact, despite the plastic 
deformation of the metal during the test (due to the application of a progressive load up to 10 N with 
a diamond indenter), no damages of the surface occurred on the coated samples, which is different 
to the uncoated ones [11]. 

Water wettability of the coatings investigated here is reported in Figure 2. 
The keratin continuous coatings are more hydrophilic than the titanium substrate. This 

behavior can be associated with the hydrophilic nature of keratin, reported in the literature [12]. On 
the other hand, the sub-micrometric fiber keratin coatings show an increase in the contact angle 
which can be attributed to the peculiar topography, rather than to the coating chemistry [6]. Both the 
chitosan and peppermint essential oil coatings are more hydrophobic than the Ti6Al4V substrate, 
and this behavior can be mainly associated to their chemistry. The contact angle measurements were 
an effective and simple technique to characterize the water wettability of these materials and to 
confirm and verify the coating presence. 

 
Figure 2. Water wettability of the different tested coatings. 

Maintenance of surface hydrophobicity confirmed the permanence of the chitosan and 
peppermint essential oil coatings on the titanium substrates after soaking in water-based media. 

The zeta potential titration curves of the bare and coated substrates are reported in Figure 3. 
Figure 3a shows the zeta potential vs. pH of commercially pure titanium bare or keratin coated. 

Ti-cp has an isoelectric point close to 4 (as reported in the literature [13]), consistent with the absence 
of specific functional groups. The introduction of keratin, both as continuous coating or as 
submicrometric fibers, shifts the isoelectric point to more acidic values (3.4 and 2.8, respectively) and 
exposes functional groups with acidic behavior (COOH of the keratin molecules). The presence of 
these acidic functional groups is confirmed by the plateau in the basic region, observable in both 
curves. 

The chemically treated Ti6Al4 alloy (Ti6Al4V–CT) has a very acidic Isoelectric Point (IEP) (close 
to 2 and obtained only by curve interpolation) due to exposition of the acidic OH groups, as 
previously reported by the authors [14,15]. The mint essential oil coating shifts the IEP close to 4 in 
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accordance with the absence of specific charged functional groups. This feature is confirmed by the 
absence of a plateau in the curve. Finally, chitosan coating shifts the IEP to basic values (8.5) in 
accordance with the IEP of chitosan [16] and the presence of basic amino groups. In this case, only 
the measurement of zeta potential in the basic range was possible due to chitosan swelling at 
moderately acid pH.  

The bare substrates, keratin and mint essential oil coatings have acidic IEPs and consequently 
are negatively charged at the physiological pH. On the other hand, chitosan has a basic IEP and 
consequently it is the only surface positively charged at the physiological pH. 

All the measurements, except those of the keratin continuous coating at pH 3.7, show a very 
small standard deviation, which can be associated with their chemical stability in aqueous media in 
a wide pH range [14]. 

 
Figure 3. Zeta potential titration curves. (a) Ti-cp and its continuous or fibrous coatings, (b) 
Ti6Al4V-CT and its mint essential oil or chitosan coatings. 

Bacterial adhesion (in terms of biofilm formation) was reduced by one order of magnitude on 
the mint essential oil coatings and by three orders of magnitude on the silver-doped keratin coatings, 
evidencing mainly a bacteriostatic effect for mint and an active antibacterial activity for the 
silver-doped keratin fibers.  

The keratin coated samples resulted completely biocompatible for human gingival fibroblast 
cells, both with and without silver doping. A significant increase in fibroblast proliferation was 
observed for the keratin coated samples with respect to the bare substrate [6]. Moreover, the aligned 
keratin fibers are able to drive fibroblast orientation [7]. 
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4. Conclusions 

Keratin, chitosan and peppermint essential oil coatings were successfully obtained on titanium 
surfaces. Keratin was obtained from discarded wool, chitosan from shrimp shells and peppermint 
essential oil from local production with a sustainable use of resources and promotion of local 
economies. Numerous techniques (such as SEM-EDS, FTIR, fluorescence microscopy, wettability 
and zeta potential measurements) were effective and complementary for the complete chemical and 
physical characterization of the coatings. 

All the coatings have good adhesion to the substrates, good stability in water-based media and 
the ability to protect the metallic substrate. The keratin coatings are hydrophilic while the mint oil 
and chitosan coatings are hydrophobic. At the physiological pH, the keratin and mint oil coatings 
are negatively charged while the chitosan ones are positively charged.  

The biological tests evidenced that the oriented keratin fibers are able to drive fibroblast 
alignment and that the Ag-doped keratin fibers and mint coatings have antibacterial properties. 

In conclusion, the natural coatings proposed here, obtained from abundant byproducts or local 
productions, are promising for the improvement of the biological properties of titanium substrates 
with a sustainable use of resources. 
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