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Simple Summary: Determining avian power line collision risk is complicated by numerous factors
that influence how, when, and where birds collide with electrical infrastructures. These factors relate
to power line collision sensitivity and exposure; however, models describing collision risk often do
not address exposure adequately. We explored the importance of power line collision exposure by
investigating how it contributed to power line collision risk models for Lesser Flamingos Phoeniconaias
minor in South Africa. Our best models suggested that, for Lesser Flamingos, flight height (exposure)
and habitat suitability (exposure) were important predictors of collision risk; however, regular
nocturnal flights (sensitivity) indicate a need for wire markers that account for nocturnal behavior.

Abstract: Lesser Flamingos Phoeniconaias minor regularly collide with power lines in South Africa.
Attaching light-emitting markers to overhead wires seems to be an effective mitigation measure;
however, the cost of these devices is prohibitive of large-scale installation. Spatial predictions about
flamingo collision risk are thus important for achieving efficient and effective proactive mitigation. In
this study, collision risk was defined as a combination of factors related to threat exposure. A habitat
suitability index was developed according to changes in surface water occurrence and Chlorophyll-a
concentrations, which proved accurate in predicting Lesser Flamingo occurrence. Habitat suitability,
and three other species and threat exposure variables, were then used in logistic regression models
predicting the occurrence of historic collisions. The most parsimonious model included habitat
suitability and flight height. Flamingos were only at risk of collision with power lines when flying
lower than 50 m and within 3 km from the water’s edge. High-risk power line sections were thus
identified from 3 km buffers around waterbodies ranked according to habitat suitability, which
significantly reduced the number of power line spans predicted for proactive marking. While our
models indicated that aspects related to exposure were important for predicting flamingo power
line collisions, aspects related to sensitivity (e.g., nocturnal behavior) must also guide the choice
of mitigation.

Keywords: bird flight diverters; habitat suitability; Lesser Flamingo; power line collisions; risk
exposure; risk sensitivity; flight height; mortality; telemetry

1. Introduction

A rising human population and concomitant higher demand for electricity is increasing
the exposure of wildlife to the threat of power lines worldwide [1,2]. Avian interactions with
power lines result in significant mortalities across distribution and transmission grids. Due
to the scale of the problem, these interactions cannot be wholly recorded. Models related
to the risk of avian mortalities on power infrastructures (e.g., [3,4]) are thus necessary to
predict the spatial distribution of impacts for selected species of conservation concern.

Birds 2023, 4, 315–329. https://doi.org/10.3390/birds4040027 https://www.mdpi.com/journal/birds

https://doi.org/10.3390/birds4040027
https://doi.org/10.3390/birds4040027
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/birds
https://www.mdpi.com
https://orcid.org/0000-0001-9010-7597
https://orcid.org/0000-0002-0266-7939
https://doi.org/10.3390/birds4040027
https://www.mdpi.com/journal/birds
https://www.mdpi.com/article/10.3390/birds4040027?type=check_update&version=1


Birds 2023, 4 316

There has been a call [4–6] for utilities to make a paradigm shift in their approach to dealing
with avian collisions with power lines, from reactive to proactive mitigation [7]. A challenge
to adopting a proactive mitigation strategy is to obtain a sufficient understanding about the
sensitivity of target species (why, how, and to what extent they are affected), as only then
can informed predictions be made about future exposure to the risk of power line collisions
(where and when they could be affected).

The origin of risk assessment stretches back more than two millennia, being introduced
as a decision-making tool by the Athenians [8]. It builds on the premise that risk implies
the presence of a certain degree of uncertainty, and, as such, the decision-making process
must inherently rely on a mix of qualitative and quantitative data, linking experience
and facts [9]. The engineering approach to risk assessment is defined as probability x
consequence, hence, an increase in either results in an increase in risk [10]. Two other risk
assessment approaches are widely recognized: the actuarial approach and the ecotoxilogical
approach [10]. Holton [11] (p. 22) gives a general definition of risk as “. . .exposure to a
proposition of which one is uncertain” and notes further that there cannot be risk without
both exposure and uncertainty.

Extinction theory provides a framework for defining the level of risk that certain
threats hold for species survival on a global scale, whereby extinction risk is a combination
of intrinsic and extrinsic factors. The relationship between different intrinsic and extrinsic
factors is often poorly understood because of complicated interactions, and thus identifying
potential drivers may be spurious [12]. When modeling the risk of a specific threat to
a species, extrinsic and intrinsic risk factors are referred to as exposure and sensitivity,
respectively [13]. These terms are commonly applied to the field of ecotoxicology, where
sensitivity and exposure measurements form critical steps in the ecological risk assessment
paradigm [14]. However, studies from other fields of conservation research rarely model
sensitivity and exposure together [15,16], and thus risk may be inadequately described.
Single-species risk models usually deal only with factors related to exposure, as sensitivity
is mostly assumed to be uniform for all members of a species.

Studies modeling the risk of avian collisions with other electrical infrastructures such
as wind turbines (e.g., [17–19]) are more frequently reported than those for power lines.
This is likely because of a difference in the spatial organization of power line towers and
wind turbines; models for linear infrastructures are more complex than radially aggregated
ones. For power lines, modeling procedures include a variety of strategies to identify and
classify collision risk, but are generally based on estimates of sensitivity, exposure, or a
combination of both.

Sensitivity to anthropogenic threats can vary between species. These differences
are usually intrinsic, with species being susceptible to a threat based on their ability to
sustain, avoid, or adapt to different levels of exposure [20]. For birds, sensitivity with
respect to collisions with man-made structures is largely dependent on morphological
factors related to vision constraints, e.g., limited binocular visual fields [21], as well as
flight, e.g., wing-loading, and low-aspect flight resulting in poor maneuverability and
avoidance capability [22,23]. These characteristics are well-represented in the Gruiformes
(cranes, bustards, and allies); previous studies have found them to incur high power line
collision mortality rates [6,24] compared to other groups. In South Africa, Gruiformes incur
a significantly higher proportion of collision mortalities compared to electrocutions.

Exposure refers to the intensity of a threat acting against a species [13,25]. With respect
to avian collisions with power lines, it is not practically possible to obtain observations
of exposure levels over space and time throughout an entire study area. Conservation
practitioners and utilities must therefore rely on models derived from estimates of the
probability of exposure. An important, but often ignored, aspect of exposure probability is
flight height (although, see [26,27]). It stands to reason that a power line cable only poses
a threat if the bird is flying at a collision risk height; thus, the probability of exposure is
high if flight height is at, or close to, cable height. The most practical way of obtaining
flight height data is to fit GPS and satellite telemetry loggers with altitude sensors to wild
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birds. Despite recent improvements in the accuracy of these altitude sensors, very few
power line collision risk models have incorporated flight height data (however, see [4]).
Flight heights have previously been recorded via direct observation (e.g., [28]), although
this method has limitations when studying wide-ranging species. Studies making use
of this approach typically correlate flight height to terrain or other habitat features to
facilitate spatial predictions of potential exposure (e.g., [29]). A caveat to this approach is
that models are limited by the spatial input data available. Interactions between different
input variables are also not always adequately investigated. For example, in addition to
habitat suitability and flight height, the abundance of the animal in question is an important
contributor to exposure; and the interaction between these factors may be a more significant
predictor than when the variables are considered separately.

The main aim of this study was to develop a theoretical framework for avian power
line collision risk modeling in South Africa. To demonstrate this framework, we wished to
identify those facets of exposure most likely to predict flamingo collisions with power lines
in South Africa.

2. Materials and Methods
2.1. Study Area

The study area was located in central South Africa and included important breeding
and feeding sites within the inland distribution of the Lesser Flamingo [30]. The bound-
aries of the study area were defined by a 100% minimum convex polygon derived from
relocations recorded by 12 GPS-tagged Lesser Flamingos, from March 2016 to November
2018 (Figure 1A). Training and test data used to build the models were taken from power
lines (Eskom Holdings Soc. Ltd., Johannesburg, South Africa - hereafter Eskom) restricted
to this area, including 13,648 km and 123,081 km of transmission and distribution lines,
respectively (Figure 1B). In South Africa, Eskom distribution lines range from 3.3 kV to
132 kV, with power pole heights from 7.5 m to 35 m. Transmission lines range between
132 kV and 765 kV. Transmission line towers include various designs, with tower heights
between 25 m and 50 m. Municipal, railway, and other power lines not owned and operated
by Eskom, South Africa’s principal power utility, were not considered for this analysis
as these data were not available. The area covered all of Gauteng, most of the Free State
and North West provinces, and large parts of Limpopo, Mpumalanga, and the Northern
Cape provinces of South Africa. It included the most productive parts of the country’s
agriculture and mining industries, radiating out from the Witwatersrand, the economic
heart of the country, which includes the cities of Johannesburg and Pretoria. Much of
the area is thus transformed, and many of the pans and other waterbodies supporting
flamingos are surrounded by human settlements. GPS-tagged flamingos were captured
at two sites, a salt pan at the Henk Joubert Nature Reserve near Delareyville (26◦42′10′ ′ S,
25◦27′21′ ′ E), North West Province, and a pan near the town of Allanridge (27◦46′8′ ′ S,
26◦38′49′ ′ E) in the Free State Province.

2.2. Data Collection

Trapping and tagging Lesser Flamingos followed methods employed by Childress
et al. [31,32]. GPS-GSM satellite transmitters (‘duck’ model, ECOTONE Telemetry, Gdynia,
Poland) were attached to the birds by means of Teflon backpack harnesses. Tagging and
telemetry methods are described in detail in Pretorius et al. [33]. Devices were set to a
GPS fix interval of one fix every 2 h, thus recording a maximum of 12 fixes a day. All
GPS fix data were projected to the appropriate UTM coordinate reference system using the
spTransform function of the package ‘rgdal’, version 1.4-6, in R [34].

Variables included in Lesser Flamingo collision risk models were considered in a
conceptual framework (Appendix A). We assumed that aspects of species sensitivity did
not vary among individuals in the population. Nocturnal flight behavior, flight dynamics,
and vision are, however, important in determining effective marker types [23]. Lesser
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Flamingo collision risk exposure variables are discussed below under three categories,
namely: habitat suitability, species exposure, and threat exposure.
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Figure 1. Maps of the study area, including model test and training points, power lines, and Lesser
Flamingo movements. (A) shows bird atlas (SABAP2) pentads, and the location of confirmed Lesser
Flamingo collision mortalities and pseudo-absences (no mortalities despite the presence of flamingos
and power lines). (B) illustrates the extent of power lines within the study area, which was defined by
100% Minimum Convex Polygon from the movements of GPS-tagged Lesser Flamingos. (C) maps the
combined flightpaths of 12 GPS-tagged Lesser Flamingos and shows extensive movements between
key breeding and feeding sites within southern Africa.

2.2.1. Habitat Suitability Variables

Kellner et al. [35] (p. 476) defines habitat suitability as “. . .the ability of a habitat to
support a viable population over an ecological timescale”. Practically, habitat suitability is
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the combined interactions between species–habitat relationships, culminating in a value
between 0 (completely unsuitable) and 1 (optimal habitat), known as a habitat suitability
index (HSI) [36]. Based on previous studies on the ecohydrology of East African lakes
and how it relates to Lesser Flamingos [37,38], a habitat suitability index was constructed
that reflected both food availability and water quality. Lesser Flamingos feed primarily
on filamentous cyanobacteria, mainly Anthrospira sp., and benthic diatoms [39]. The
abundance and distribution of these food items can be determined via remote sensing,
mapping Chlorophyll-a concentrations at waterbodies occupied by flamingos [38,40].

In order to model food availability for Lesser Flamingos, we prepared a Chlorophyll-a
index from the normalized difference chlorophyll index (NDCI) [40]. Landsat images were
obtained from the US Geological Survey’s EarthExplorer website https://earthexplorer.
usgs.gov/ (accessed 4 December 2018) for 11 scenes covering the study area between March
2016 and November 2018. One cloud-free image was used for each summer and winter
period, between the summer of 2016/2017 and winter of 2018. The final dataset thus
included 22 images (see Appendix B for Landsat scenes). All of the downloaded images
were of the Level 1 GeoTIFF Data Product from the Landsat 8 OLI_TRS sensor. When
applied to the Landsat sensor, NDCI is analogous to the normalized difference vegetation
index (NDVI) equation [36], thus NDCI = (NIR − red)/(NIR + red), where NIR and red
refer to the near-infrared and red bands, respectively. When applied to Landsat 8, the
algorithm uses bands 5 (NIR) and 4 (red): NDVI/NDCI = (B5 − B4)/(B5 + B4).

Variables related to water availability and exposure were taken from raster layers
prepared for the Global Surface Water Explorer dataset [41], which included 32 years’
data on the extent and change in water surfaces across the globe [42]. The dataset was
constructed from layers related to water availability, which included water recurrence (the
degree of inter-annual variability in the presence of water), water seasonality (the number
of months that water was present in a calendar year), and water transitions (the change
in seasonality between the first and last years of the dataset). Variables related to water
occurrence included surface water occurrence, ‘SWO’ (the frequency with which water
was present on the surface), and occurrence change intensity, ‘∆SWO’ (the change in water
occurrence intensity between two epochs). ‘Area’ was taken to be the size of waterbodies,
in ha, at maximum surface water occurrence.

2.2.2. Species Exposure Variables

Flight height was taken from flamingo GPS telemetry data and was expressed in
meters above ground level. Correlations between flight height and distance to destination
and source during inter-waterbody flights were explored, using a sample of 1138 fixes from
six of the GPS-tagged flamingos for which altitude readings were recorded. This enabled
mapping of spatially explicit variables indicative of the height that Lesser Flamingos are
likely to fly.

The relative density of flamingos at different sites was also assumed to influence
exposure, as a greater number of individuals per unit area would increase the probability
of contact with a power line cable compared to areas with a lower density of birds. Because
counting flamingos across the full extent of the study area was impossible, reporting rates
were used as a surrogate for density. Reporting rates were derived from the South African
Bird Atlas Project, a citizen-science project aimed at mapping the distribution of all southern
African bird species. Previous studies [43,44] show that reporting rates can reliably predict
species abundance, given an adequate coverage of surveys throughout the study area.

2.2.3. Threat Exposure Variables

Two threat exposure variables were considered in addition to species exposure and
habitat suitability variables, namely, cable height and distance to waterbody. Cable height
was taken to be the height of the conductor or earth wire cable of the most common type of
tower for a given voltage and was expressed as meters above ground level. Distribution
lines typically do not include earth wires, and so power pole heights were considered a

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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proxy for maximum conductor cable height and flamingo collision risk. Most transmission
lines have bundled conductors, and only the earth wires are marked. The earth wires are
attached to the tops of the towers; thus, the maximum collision risk height for flamingos
was taken to be the maximum tower height for each voltage. Distance to waterbody was
the distance, in meters, of a power line span to the nearest waterbody edge, as derived
from the surface SWO raster layer and a shapefile of Eskom power lines.

2.3. Data Analysis
2.3.1. Habitat Suitability Index

Logistic regression was used in two different models: (1) an analysis of Lesser
Flamingo habitat suitability and (2) a predictive model of Lesser Flamingo collision mor-
tality. Because the nature of the response variable is binary in logistic regression, habitat
suitability was predicted based on waterbodies visited (coded 1) against those not visited
(coded 0) by Lesser Flamingos. These data were obtained from GPS telemetry relocations,
with waterbodies not visited taken to be those bisected by Lesser Flamingo flightpaths
without the birds landing (<5 m flight height) and stopping (<1 relocation) at the wa-
terbody. Several a priori multivariate logistic regression models were constructed from
combinations of predictor variables described above: NDCI, waterbody area, SWO, ∆SWO,
water recurrence, water seasonality, and water transitions. The number of the independent
variables included in the models were reduced in two steps: Collinearity between variables
was investigated by means of a correlation matrix of Spearman’s correlations between
variables using the package ‘PerformanceAnalytics’, version 1.5.2, in R [45]. Predictor
variables that resulted in a poor fit to the logistic response were omitted from the final set
of models by means of a backward stepwise elimination process in R, using the ‘stepAIC’
function in the package ‘MASS’, version 7.3-51.1 [46]. Once the most parsimonious model
was determined using the above procedure, a habitat suitability index was created for each
of the waterbodies within the study area using the model formula and the raster calculator
in Quantum GIS (QGIS).

2.3.2. Collision Risk Models

The logistic regression model procedures above were repeated in a Lesser Flamingo
collision risk model, with the dependent response variable ‘collision’ coded 1 (n = 32)
or 0 (n = 384) for power line sections where collision mortalities have or have not been
recorded within the study area in the past 22 years (1997–2018). The (0) points used
to train the model were considered pseudo-absences selected from power line sections
within the study area. The model was built on a ratio of 1:12 presence vs. pseudo-absence
points, where the latter were selected based on a conditional random selection, where
the distance between presence and pseudo-absence points was ≥1 km, using the Create
Random Points tool in QGIS (Data Management toolbox—Sampling toolset). Selection of
pseudo-absences was random and unbalanced as this is the preferred method in regression-
based techniques for mapping distributions [47]. Collision risk was modeled against four
independent variables: habitat suitability, flight height, cable height, and reporting rate.
Final models were evaluated according to Akaike weights, based on the small sample
correction for Akaike’s Information Criteria (AICc), and ranked using delta AICc (∆AICc)
and the package ‘AICcmodavg’ in R [48]. Candidate models were those within 2∆AICc of
the top-ranked model [49].

2.3.3. Model Validation

The performance of the most parsimonious habitat suitability model was validated
in the field using a sample of 20 waterbodies. Ten of these were classified as high habitat
suitability and ten as low habitat suitability according to the habitat suitability index,
thus predicting presence and absence, respectively. Predicted, versus real, presences and
absences were then used to gauge the model’s accuracy, precision, and area-under-the-
curve (AUC) using the ConfusionMatrix function of the package ‘caret’ [50]. For collision
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risk, candidate models were assessed based on the same statistical procedures in R, except
that validation was desktop-based by generating pseudo-absences. An AUC value closer to
1.0 than 0.5 was considered significantly different to what is expected from normal. Models
with AUC values falling below 0.5 were considered a poor fit to the training data. Finally,
receiver operating characteristic (ROC) curves were plotted to illustrate the ratio between
sensitivity and (1-) specificity for candidate models. Statistical significance was α = 0.05 for
all tests.

3. Results
3.1. Lesser Flamingo Habitat Suitability

The manipulation of Landsat-8 raster bands using the NDCI algorithm produced
images clearly showing chlorophyll concentrations in waterbodies within the study area
(Figure 2). For multivariate analyses, all the candidate models included a combination
of NDCI and NDCImax, indicating that these indices, when combined, were good pre-
dictors of Lesser Flamingo food availability. The model with these two variables alone
was, however, not as strong a fit as those including ∆SWO and water recurrence. The
most parsimonious model separating waterbodies visited and those not visited by Lesser
Flamingos included change in surface water occurrence (∆SWO). Only two of the models
evaluated fell within ≤ ∆AICc, and within the 95% confidence set (Table 1).
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Table 1. The top-ranked models describing Lesser Flamingo occupancy as a function of habitat.
NDCI = normalized difference chlorophyll index. ∆SWO = change in surface water occurrence.
‘Visited’ is a binary response variable denoting Lesser Flamingo presences (1) and absences (0),
as derived from the movements of GPS-tagged individuals. K = number of model parameters,
AICc = sample correction for Akaike’s Information Criterion, ∆AICc = delta AIC, w = Akaike weight,
cum.w = cumulative w.

Model K AICc ∆AICc w cum.w

Visited ~ ∆SWO + NDCI + NDCImax 4 213.990 0.000 0.533 0.533
Visited ~ Water recurrence + NDCI + NDCImax 4 214.540 0.540 0.407 0.939
Visited ~ NDCI + NDCImax 3 218.440 4.450 0.058 0.997

Entering the model equation into a QGIS raster calculator resulted in a habitat suit-
ability index used in collision risk modeling. Field validation of a binary reclassification of
the HSI, where 0 represents waterbodies predicted not to be suitable and 1 those predicted
to be suitable for Lesser Flamingos, showed that the habitat suitability index was good at
predicting where flamingos occurred (positive predictive value, PPV = 0.92) and where
they did not (negative predictive value, NPV = 0.83), with an overall model accuracy of
0.88 (sensitivity = 0.85, specificity = 0.91).

3.2. Species Exposure

The relationship between flight height and distance to source and destination wa-
terbodies was best described by a polynomial curve (Figure 3). The relationship was
significant (R2 = 0.93, p < 0.001), and suggested that Lesser Flamingos flew higher dur-
ing the longer, middle sections of their flights, ascending and descending rapidly closer
from/to their departure point and destination. This meant that only a small portion of each
flight was at a height that exposed flamingos to potential collision mortality, i.e., during a
flight between waterbodies, they only flew at a collision risk height (<50 m) within 3 km
from the departure point and destination. The formula of the curve was used to create
a surrogate variable to denote Height for all data points used to train the final logistic
regression models.

The frequency with which Lesser Flamingos were encountered within each SABAP2
pentad containing waterbodies varied considerably (x = 3.64%, variance = 208.90%), from
0% to 100% reporting rate. Reporting rates were significantly higher for pentads from
which flamingo collision mortalities were reported, compared to those containing pseudo-
absences (Mann–Whitney U = 4018, p < 0.001).

3.3. Multivariate Collision Risk Models

Because the variables flight height and distance to waterbody were correlated, only
flight height was retained for the stepwise backwards regression. Only two variables fit the
collision response data well: flight height and habitat suitability (Table 2). These were thus
retained for the final set of models. Multivariate models suggested that an interaction term
between height and habitat suitability was most likely to provide an accurate prediction
of the risk that power line sections hold for Lesser Flamingos (Table 3). This model was
also the only one within the 95% confidence set and within ≤2 ∆AICc. Evaluating model
performance via the validation methods described above, the model with the flight height
x habitat suitability also resulted in a slightly better area-under-the-curve (AUC) statistic
and ROC curve (Figure 4) than flight height + habitat suitability.
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Table 2. Parameter coefficients and probabilities from logistic regression describing Lesser Flamingo
collision risk.

Coefficients Estimate SE z Value p

(Intercept) −3.923 1.331 −2.947 0.003
Flight height −0.014 0.005 −2.743 0.006
Habitat suitability 1.763 0.643 2.740 0.006
Reporting rate 0.013 0.009 1.36106 0.173
Cable height −0.061 0.055 −1.11236 0.266
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Table 3. Top-ranked models describing Lesser Flamingo collision risk as a function of power line col-
lision exposure. K = number of model parameters, AICc = sample correction for Akaike’s Information
Criterion, ∆AICc = delta AIC, w = Akaike weight, cum.w = cumulative w.

Model K AICc ∆AICc w cum.w

Collision ~ flight height x habitat suitability 4 209.08 0 0.73 0.73
Collision ~ flight height + habitat suitability 3 211.12 2.04 0.26 1
Collision ~ habitat suitability 2 220.13 11.05 0 1
Collision ~ flight height 2 221.34 12.26 0 1
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4. Discussion

In this study, we explored the different components of risk in predicting power line
collisions for Lesser Flamingos in South Africa. The single-species approach negated
aspects related to sensitivity in the models. In the case of the Lesser Flamingo, they may
include aspects such as flight behavior, maneuverability, and vision. Binocular vision and
visual acuity of birds as they relate to power line collision mortality has been reviewed [51].
The binocular visual fields of flamingos are narrower, but vertically longer, than some other
collision-prone species such as bustards and cranes [52]. Lesser Flamingo collisions tend to
be clumped, usually with several mortalities in one incident. Flamingos rank second out
of all groups of birds on the Eskom-EWT Partnership’s Central Incident Register in terms
of the number of mortalities (individuals) recorded per incident. Apart from restricted
visual fields, these events may be related to flight behavior as Lesser Flamingos fly in
close-knit flocks and conduct most of their inter-waterbody movements at night [33], a
fact that is assumed to affect their collision sensitivity. Aspects of flight behavior may thus
be useful for modeling the temporal aspects of collision sensitivity. Additional aspects
may also contribute to temporal changes to collision sensitivity; conditions that adversely
affect visibility, e.g., mist, fog, or inclement weather, are assumed to increase collision
sensitivity [2]. However, Pannucio et al. [53] suggest that migrating birds avoid flying
through fog and low clouds. These temporal aspects should be investigated specifically for
Lesser Flamingos to improve our interpretation of their collision sensitivity and collision
risk models.

A few assumptions have been made in the modeling of collision risk for Lesser
Flamingos, and these should be validated for a more realistic representation of some of the
parameters used. Regarding habitat suitability, NDCI should be viewed as an index only,
as it does not relate to real measurements of Chlorophyll-a; these need to be calibrated to
in situ measurements sampled from the waterbodies. Regarding our assumptions about
flamingo densities, while SABAP2 reporting rates can be used as a surrogate for species
density [43,44], we acknowledge the limitations of using citizen-science data. These authors
do, however, show that reporting rates correlate more significantly with density for larger,
more conspicuous birds; thus, we believe that our assumption in this regard is realistic.

We have demonstrated that exposure to a threat is not related to some prediction
of habitat use or suitability alone, but rather incorporates different aspects related to the
species and the threat. In the case of the Lesser Flamingo, the best model predicting collision
mortality risk included an interaction between habitat suitability along with a measure
of the exposure potential in the form of flight height. Another important consideration
is that estimates of habitat suitability cannot be made from data sampled outside of that
which is available to an animal. We believe that our sampling regime accounts for this
by using GPS-telemetry data to define the study area and the waterbodies considered
for the analysis. A challenge for multi-species collision risk models is the availability of
telemetry data for all species considered within the same study area; thorough vantage
point surveys can provide useful observations about bird flightpaths and flight heights,
although these are typically only obtained for specific locations earmarked for energy
infrastructure development.

Considering the above, we propose two frameworks for spatial species collision risk
modeling. The first involves a single species; thus, aspects of sensitivity need not be
incorporated. Collision risk models for single species should be constructed using the
following framework:

C = HSI + Exposuresp + Exposurethreat,

where C is collision risk, HSI is a habitat suitability index, Exposuresp relates to properties
of the species flight characteristics and/or population density, and Exposurethreat involves
the spatial distribution, density, and nature of the threat itself (e.g., the height of power
lines, inclusion of earth wires, etc.). A second type of collision risk model involves multiple
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species, which requires the inclusion of aspects related to species sensitivity to collision.
The sensitivity of one species is thus relative to the others included in the models. In both
cases, estimates of habitat suitability should be determined from points sampled within
the area available to the species. In the case of species not restricted to a habitat as specific
as the Lesser Flamingo, habitat suitability can be determined from species distribution
models. A simple framework for these models is given as:

Ci = Sensitivity x (HSI + Exposuresp + Exposurethreat)

and
Ctotal = ∑ (Ci)

where Ci is the collision risk for a single species, and Ctotal is the combined collision risk for
all species considered.

The above-mentioned frameworks compliment the models of Gauld et al. [20], who
incorporated GPS-tracking data to determine collision sensitivity. They differ from other
collision risk models, such as those described by D’Amico et al. [20], who developed in-
dexes based on morphological and behavioral traits as a surrogate for sensitivity.These
frameworks could be used to inform the deployment of species-specific mitigation mea-
sures. A total of twelve Lesser Flamingo collision mortalities have been recorded on the
Eskom/EWT Central Incident Register since our model was developed, nine of which were
within the study area. Six of the nine incidents were found under line sections identified as
high risk by the model (i.e., power lines within 3 km of high-quality waterbodies); thus,
proactive mitigation on high-priority line sections could have prevented these mortalities.
A preliminary study suggests that flamingo collisions could be successfully mitigated using
markers such as the Nocturnal Overhead Warning Light (‘OWL’) device, a marker with
solar-powered light-emitting diodes (LEDs), developed specifically for birds with nocturnal
habits [54]. Such devices are expensive and cannot be deployed everywhere, hence the
need to predict the location of high-risk areas for prioritizing marking interventions. New
energy generation infrastructure developments such as wind energy facilities may also
benefit from the information contained within this paper, as flamingos are susceptible to
collisions with wind turbines, and determining buffer zones is an important consideration
for environmental impact assessments.
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Appendix A

Table A1. A conceptual framework for selecting variables to include in flamingo collision risk models.
We defined collision risk to be a combination of (a) the sensitivity the species to collisions and (b) the
exposure of the species to power lines. Exposure includes habitat-, species- and threat-specific aspects.
Variables retained for the analyses are shaded gray. RISK = SENSITIVITY x EXPOSURE.

Sensitivity Exposure
Species Sensitivity Habitat Suitability Species Exposure Threat Exposure
Flight behavior Suitability Occurrence Height

Nocturnal habits 1 Food 3 Extent 4 Tower height 3

Depth 2

Flight dynamics Abundance Distance
Wing-loading 1 Availability Reporting rate 3 From water 3

Mass 1 Water recurrence 4 Individuals/ha 2 From suitable habitat 3

Flight aspect 1 Water seasonality 4

Water transition 4 Movements
Vision Flight height 3

Binocular vision 1 Occurrence
Color range 1 Water occurrence 4

1 Variables with no variation throughout the study area and population, and that cannot be quantified spatially. 2

Variables for which spatial data can be collected, but only realistic at smaller scales. 3 Variables derivable from
existing GIS data, or for which adequate surrogate information exists. 4 Variables with existing spatial data in the
form of GIS vector shapefiles or raster images.

Appendix B

Table A2. Scenes used from the Landsat 8 OLI_TRS sensor, from which the normalized difference
Chlorophyll index (NDCI) was sampled for models of Lesser Flamingo habitat suitability.

Scene Path

169 170 171 172

- - - -

Scene Row

077 - - LC08_L1TP_171077 LC08_L1TP_172077

078 LC08_L1TP_169078 LC08_L1TP_170078 LC08_L1TP_171078 LC08_L1TP_172078

079 - LC08_L1TP_170079 LC08_L1TP_171079 LC08_L1TP_172079

080 - - LC08_L1TP_171080 LC08_L1TP_172080
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