
Citation: Rouhana, R.; Stommel, M.;

Stanko, M.; Muth, M. Novel Method

of Carbon Precursor Masking to

Generate Controlled Perforations in a

Carbon Film. Macromol 2022, 2,

554–561. https://doi.org/10.3390/

macromol2040036

Academic Editor: Ana

María Díez-Pascual

Received: 14 November 2022

Accepted: 29 November 2022

Published: 5 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Novel Method of Carbon Precursor Masking to Generate
Controlled Perforations in a Carbon Film
Rami Rouhana 1,* , Markus Stommel 2 , Michael Stanko 1 and Markus Muth 1

1 Chair of Plastics Technology, TU Dortmund University, Leonhard-Euler-Str. 5, 44227 Dortmund, Germany
2 Leibniz Institute of Polymer Research, Hohe Str. 6, 01069 Dresden, Germany
* Correspondence: rami.rouhana@tu-dortmund.de; Tel.: +49-231-755-6069

Abstract: A patterned carbon film was produced from Linear Low-Density Polyethylene (LLDPE) by
the implementation of a novel method named Chemical Masking Perforation (CMP). The following
paper describes this procedure, starting with the sulfonation of the precursor polymer LLDPE with
Chlorosulphonic acid to stabilize the material, followed by Fourier-transform infrared spectroscopy
(FTIR) evaluation to compare the atomic bonds from the stabilized film as well as from the masked
sections of the film. To finalize, the cross-linked film was carbonized in an oven at 950 ◦C. The
outcome of this process was a carbon film with a thickness similar to a carbon fiber diameter of 8 µm
with controllable size and distribution.

Keywords: sulfonating; composite; thin films; patterned film; cross-linked; polyethylene; carbon film

1. Introduction

Carbon films have several applications in many industries such as electronics, nuclear
research, nano-devices, and electron microscopy [1–8]. Laser perforation, surface etching,
and mechanical stamping are methods developed to generate functional perforation ge-
ometries through carbon films [9]. This paper presented a novel method for the perforation
and topological patterning of carbon-based material. The resultant perforated carbon films
can be used to construct biomimetic platelet matrix composites similar to the structures
described in the work of Sakhavand et al. [10,11] and Rouhana and Stommel [12], and
structures investigated by Behr et al. [13,14] and Mirkhalaf et al. [15]. Generating periodic
porosity in brittle material also allows crack arresting and improves toughness [16–18].
Such structures show high toughness properties compared with bulk ceramics and stiff-
ness and strength properties that can be tailored to an intended application. Generating
perforated carbon films with an energy-efficient and accurate method could allow the
construction of carbon platelet composites and carbon film laminates with varying proper-
ties and applications. Successful manufacturing of patterned carbon foils as described by
Rouhana and Stommel [12] would allow the design of novel composites with potentially
similar mechanical properties as carbon fiber composites.

Other properties can also be exploited, such as thermal and electrical conductivity, as
explained in the paper of Choi et al. [19], where organic photovoltaic cells were fabricated
from carbon nanosheets with PE as the precursor material, reaching conductivity values of
1100 S/cm. Meanwhile, thermal properties can also be enhanced in composite materials
using carbon fibers, leading to better thermal conductivity that can be achieved when
the fibers have an optimal orientation within the matrix [20]. This can be mitigated by
implementing carbon films, which can be better aligned and have a higher-conductivity
flat surface.

For the manufacturing of high-strength carbon structures, different precursor materials
can be used, such as PAN (Polyacrylonitrile), Pitch, Polyolefin, Lignin, and
others [21,22]. Those precursor materials are generally shaped in the required form as fiber
by spinning methods or films by known extrusion methods [23,24]. After obtaining the
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desired geometries, the material proceeds through a stabilization step which alters the
molecular structure of the material to avoid pyrolysis in the carbonization oven. Instead,
it carbonizes by maintaining the carbon-carbon bonds and losing all other atoms in the
molecular structure [25]. For example, in the process of carbon fiber production, a polymer
such as PAN is chemically stabilized with oxygen at 350 ◦C before carbonization at a
minimum of 950 ◦C in a chemically inert environment [26].

Chemical masking combined with etching is used to eliminate the unmasked zone in
patterning methods [6]. The novel method described in this article eliminates, by pyrolysis,
the masked zone, as the chemical stabilization of the polymer is not allowed. In other
words, the polymer-selective crosslinking induces carbonization in stabilized unmasked
zones and pyrolysis in masked zones.

2. Materials and Methods
2.1. Sulfornation

LLDPE (Long-chain Low-Density Polyethylene) was selected as a precursor as it
is available in film form with 27 µm thickness or thinner and can be stabilized using a
high concentration Sulfuric of Chlorosulphonic acids [27]. The LLDPE film used had a
crystallinity of 40–50% and was purchased from Carl Roth [28]. Chlorosulphonic acid
with a concentration of 99% [29] was selected for stabilization as it can be used at room
temperature, in contrast to sulfuric acid, which requires heating to 140 ◦C to properly
stabilize the LLDPE polymer [25,27,30,31]. Polytetrafluoroethylene (PTFE) is used as a
masking material due to its high resistance to the used acid.

Two plates of PTFE were machined with the intended patterning geometry, which
consists of small pillars with circular tops arranged in an equilateral array, as seen in
Figure 1. This geometrical distribution is based on the work of Gordon et al. [32] and Jones
and Gordon [33], resulting in an isotropic structure and relatively high toughness for a
brittle material. The clamps were used to cover the film from both sides in the disk areas
using additional pressure to prohibit the acid from reaching the masked areas, as shown in
Figure 1. The figure shows the polymer film in black color with pins under it and above it
that are aligned to cover the same circular patch from both sides. Surrounding the pins in a
dark gray color is the acid, which works as the cross-linking activator.

1 
 

 
Figure 1. Photograph of the PTFE machined clamp: setup for masked stabilization and complete
view of the pins and fluid channels.

Additional perforation geometries can also be produced by changing the PTFE clamp
pattern, as shown in Figure 2. This geometry is inspired by bio-based Nacre material, with
hierarchical high-stiffness hexagonal plates bonded by a high-plasticity matrix, resulting in
a high-stiffness composite [12]. The acid is added between the clamps at room temperature
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and left for twelve to twenty-four hours depending on the film thickness so that the polymer
film crosslinks in unmasked areas. The acid has a penetration depth of 30 µm [34], and
thus it can stabilize the total thickness of the LLDPE film.
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Figure 2. Optical microscope image of crosslinked LLDPE with nacre pattern geometry.

The stabilized film was evaluated with FTIR measurement to assess the quality of
the stabilization and the masking. This measurement method can evaluate the chemical
composition of a material by measuring the vibration frequency of the atomic bonds. Many
atomic bonds, especially carbon-hydrogen bonds, have a signature resonance frequency [22].
By measuring those frequencies, it is possible to identify the dominant atom bonds. The
measurement results are later shown in Figures 5 and 6.

2.2. Carbonization

The obtained film was later washed with distilled water and carbonized in an inert
argon gas environment with a heating ramp of 16 ◦C per minute to reach 950 ◦C and remain
at peak temperature for five minutes. It is essential to mention that further experiments were
also conducted using nitrogen gas as an inert environment for the oven. The sample was
then cooled at a similar rate until reaching room temperature. The film was supported by a
thin-gauge stainless steel mesh without any restriction of shrinkage. Applying tension load
or restricting the shrinkage of the material during carbonization allows better alignment of
the carbon chains and improves the mechanical properties of the final carbon material [21].

3. Results

The obtained result after the sulfonation was a black LLDPE film with transparent
dots, as seen in Figure 3. The more LLDPE shifted in color from transparent to black, the
more it crosslinked.

Under the masked area, the acid penetrated a certain depth in the plane of the film.
The results showed this “Transition Zone” at the edge of the masked area in the order of
20 µm, as shown in Figure 4. This transition thickness would be a reference for patterning
geometry scale and tolerances as it determines what would be the smallest zone that the
acid cannot laterally reach under the masking pins and the smallest geometry features
possible to produce with this method of masking-induced perforation.
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Figure 4. Optical microscope image of the stabilization “Transition Zone”.

As LLDPE molecules mainly consist of carbon-hydrogen bonds, the areas where the
acid reacted are expected to have less C–H stretching and H–C–H bending
transmittance [21,30]. The FTIR measurement in Figure 5 showed the expected values
with signature band zone 2840–2950 cm−1, which represents –CH2 stretching. Additionally,
the 1440–1465 cm−1 zone is also significant, which represents –CH2 bending as shown
in Figure 6. For crosslinked material, the transmittance was reduced significantly rela-
tive to the regular material and the masked areas maintained considerable transmittance,
indicating less crosslinking and limited acid reaction.
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Figure 6. FTIR comparing regular LLDPE film and masked and stabilized film in a 1400 cm−1 to
1500 cm−1 range.

The polymer film, which had an original thickness of 27 µm, was converted to a carbon
film of 8 µm thickness, thus shrinking by ~70% in thickness. The circular patterns generated
by masking had a diameter of 1.5 mm and, after carbonization, were reduced to an average
diameter of 0.8 mm, representing a shrinkage of ~47% in the plane of the film. The final
carbon film is shown in Figure 7 with traces of impurities resulting from the chemical
process. Here, the edge of the perforated hole can also be seen as a smooth geometry
without cracks or imperfections that could be achieved with this method, decreasing the
possibility of crack propagation.
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4. Conclusions

An accurate method to produce patterned carbon films could be achieved by the
implementation of the Chemical Masking Perforation. Based on the FTIR analysis, the
polyethylene film was successfully stabilized with chlorosulphonic acid at room tempera-
ture in the unmasked sections with nearly 20 µm of acid penetration into the masked
sections. Regardless, once the stabilized film went through the carbonization in the
oven, an accurate holey pattern throughout the film was formed by the pyrolysis of
masked zones.

It is important to recall that this method is not limited to just one pattern throughout
the whole film. As shown in this paper, CMP can be used to produce other perfora-
tion patterns depending on the design of the masking clamps. Other geometries can
include tensile specimens for strengths analysis of the carbon foil, hexagonal pattern per-
foration resulting in connected hexagonal tablets, or others. This method offers a new
technology for carbon film design and manufacturing that can offer enhanced mechanical,
thermal, and electrical properties for different applications. Our motivation was to produce
carbon foils comparable to carbon fibers used in structural composite applications; this
method shows that the manufacturing of such foils is possible after further improvement of
the process.
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