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Abstract: AI-empowered sweat metabolite analysis is an emerging and open research area with
great potential to add a third category to biometrics: chemical. Current biometrics use two types of
information to identify humans: physical (e.g., face, eyes) and behavioral (i.e., gait, typing). Sweat
offers a promising solution for enriching human identity with more discerning characteristics to
overcome the limitations of current technologies (e.g., demographic differential and vulnerability to
spoof attacks). The analysis of a biometric trait’s chemical properties holds potential for providing a
meticulous perspective on an individual. This not only changes the taxonomy for biometrics, but
also lays a foundation for more accurate and secure next-generation biometric systems. This paper
discusses existing evidence about the potential held by sweat components in representing the identity
of a person. We also highlight emerging methodologies and applications pertaining to sweat analysis
and guide the scientific community towards transformative future research directions to design
AI-empowered systems of the next generation.
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1. Introduction

Despite the increasing adoption of biometric technologies, the performance of existing
systems is proven to be degraded by various covariates, and their security is dangerously
compromised by spoofing [1–5]. Matching algorithms designed for comparing primary
identifiers (i.e., face and fingerprint) yield lower genuine scores for racial and ethnic
minorities, which not only results in a less accurate output but also makes these groups
even more vulnerable [6]. For example, the accuracy of algorithms that compare face
images is affected by skin tone. Thus, malicious individuals may concentrate on zero-effort
attacks or impersonation attempts against this weak category. In particular, morphing
attacks, by which the portraits in travel documents are forged, have been found to be more
successful for Asian females [7]. Advanced 3D printers have also been successfully used to
create inexpensive fake fingerprints and bypass authentication [8].

These limitations may be caused by how the biometric information is processed in the
pictorial approach, in which authentication is based on extrinsic features encoded in the
spatial domain. Exploiting only extrinsic or “skin deep” properties of a human can lead to
discrimination against racial and ethnic minorities and women, which thereby also leads to
inaccurate and less secure systems (e.g., facial recognition). On the other hand, intrinsic
characteristics alone can be easily imitated (e.g., brain waves biometrics). To achieve higher
reliability and accuracy, technology must also exploit intrinsic properties of a biometric
trait by accessing its chemical content. Therefore, this research leverages the ability of
selected compounds detectable in human sweat to discover more discriminative features
for representing a person’s identity [9,10].
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Recently, interesting approaches capable of providing valuable information about
individuals involving the chemical content of sweat (e.g., skin secretions) have been inves-
tigated. An individual has up to three million sweat glands. These glands are distributed
over nearly the entire body of a person. Each gland contributes a unique mixture of chem-
ical compounds [11]. Moreover, researchers have determined that the number of active
sweat-glands count on a fingertip is highly reproducible [12]. According to Jelly, 2009,
every time there is contact between persons, objects and locales, there is an exchange of
physical information. This exchange of information from the finger is caused by amino
acids associated with natural skin secretions. These secretions can be detected up to 40 years
after contact, depending on the surface [13].

Several studies have discussed a variety of analytical methods with which to reliably
detect metabolites in human sweat. These compounds seem to be related to a person’s
metabolic process and, thus, to their physical properties such as health status [14]. Fur-
thermore, since at a given time, two individuals do not exhibit the same hormone levels,
the concentrations of sweat components vary based on the person. Understanding the
content of sweat on human skin may have various relevant applications (e.g., identification
of people or infer their gender) and may benefit different fields (e.g., security, forensic,
medical) [15–18]. The use of sweat in biometric technology is challenged by a variety of
aspects, including how many metabolites are in a sample, how much sweat is required to
detect them, how they vary, and whether the deposited sample and the capture process
are repeatable.

Section 2 of this paper focuses on discussing realistic cases where sweat samples have
been successfully extracted from fingerprints as well as forensics and medical applications
of metabolites monitoring. Section 3 envisions benefits and challenges of using sweat as a
biometric modality. Section 4 explores emerging directions to build AI-empowered systems
based on sweat metabolites detection. Section 5 presents sweat-based recent technologies,
and Section 6 draws conclusions.

2. Analysis of Sweat Samples from Fingerprints

Due to the established uniqueness and persistence of their visual pattern, fingerprints
are an important and reliable source of evidence used to identify individuals in forensics
and security applications such as criminal investigations and access control, respectively.
Less attention has been given to the substances (e.g., sebum, sweat) left behind with the
impression of a fingerprint [19]. Sweat is mainly composed of water, but also minuscule
particles including minerals (e.g., sodium and magnesium) and metabolites (e.g., lactate
and urea). Metabolites are produced based on metabolic processes generally controlled
by hormones. Understanding what are the main factors impacting sweat composition is
essential to its use as a potential biomarker in various contexts, such as human health.

To process sweat, one must first investigate two crucial aspects: (1) whether there
is sweat on fingertips and samples can be collected, and (2) whether the acquisition of
sweat samples from fingerprints across subjects is uniform. Recent studies have focused
on analysing how amino acids are distributed in sweat collected from fingertips by using
techniques that can separate the lipid content of human sweat from water. The bioaffinity
sensing methodology, referred to as bioassay, was able to extract and measure the amount
of amino acids in fingerprint content based on absorbance intensities.

Sweat as a research field is growing. An interesting study has explored sweat as
a test for drug response [20]. Drug metabolites have been successfully identified in the
sweat samples associated with latent fingerprints [21]. Findings also show that there
is a significant correlation between drug response from sweat analysis and those based
on salivary tests. Further research has explored the use of finger sweat to determine
gender from fingerprints, a revolutionary approach that has recently exploited sweat
metabolites [11]. Sweat has been used as an indicator of certain disease states [22,23].
The examination of chloride levels in sweat may provide an indication of cystic fibrosis;
sweat can also aid the detection of inflammation [24]. Furthermore, analyzing sweat of
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patients with renal failure has been linked to a significant rise in magnesium, calcium, and
phosphate, indicating disease-specific changes in sweat ion concentrations [25].

2.1. Use of Sweat Metabolites in Forensics

Mass-spectroscopy-based methods, including bioaffinity systems, have allowed re-
searchers to measure up to hundreds of metabolites in a single sweat sample, but due to
the need for reagents, these approaches are inconvenient, not conducted in real-time, high
in cost, and cause degradation of the sample. The technique separates metabolites using
liquid chromatography (i.e., chemical reagents) and detects them based on their unique
mass-to-charge ratio and induced fragmentation. Although matching latent fingerprints
has been a universally accepted and reliable identification method, researchers have demon-
strated that the pictorial comparison does not exploit the information content in a latent
fingerprint to its full potential.

In 2015, Huynh et al. directed attention to the biochemical content in a fingerprint
(i.e., concentrations of specific amino acids) using a biocatalytic assay rather than analyzing
only the physical image [11]. Their work is the first proof of a system that can use the
content of sweat left on a surface (i.e., latent) to estimate the gender of the originator.
These researchers focused their analysis on the biochemical content in the fingerprint
through a biocatalytic assay. In particular, multiple metabolites found in trace amounts
of sweat, such as lactate, urea, and glutamate, were detected and the concentrations of
each were considered. The method used a straightforward enzymatic cascade that exploits
the colorimetric properties of the substrates that produce visible color changes. These
biomarkers can be detected in sweat metabolites at wavelengths covered by imaging
spectrometers. The content present in the sweat left behind, namely the amino acids, was
also used to determine the gender of the originator based upon the quantity of specific
metabolites which is theorized to be a byproduct of the hormone differences between males
and females [11].

In 2018, Mindy et al. discussed the use of biocatalytic enzyme cascades to differentiate
people based on lactate, urea, and glutamate metabolites detected in sweat [10]. Results
confirm that the levels of all three markers sufficiently differ among people.

In 2017, Agudelo et al. proposed the use of sweat content as a mechanism for con-
tinuous authentication and tracking [26]. In this system, a sensor is placed at the points
of skin contact with a device used to acquire sweat samples. The user’s profile is built
by continuously measuring sweat levels at various times of the day during a monitoring
period. The biochemical input is converted into output signals that are then statistically an-
alyzed to establish the identity of the person holding or wearing the device. This approach
is contact based, and the process is slow, with no imaging utilized.

2.2. Use of Metabolites for Coronary Heart Disease Detection

Coronary heart disease (CHD) typically has a long asymptomatic pre-clinical period,
and is not diagnosed until the individual experiences symptoms of a myocardial infarction
or stroke, or worse, sudden death. Symptoms may be atypical, which often leads to a delay
in diagnosis, particularly for women, who die from CHD at a rate of one in four nationally.
There are strong indications that heart disease is more common among service members
and veterans [27]. Stress, smoking, post-traumatic stress, and hypertension are known risk
factors for heart disease and are more common among members of the military than the
general population.

Existing preventive strategies based on classic risk factors do not capture the complex
nature of CHD, with many CHD presentations occurring in the absence of traditional risk
factors [22,27,28]. Furthermore, conventional CHD testing methods can take several days
to weeks to produce the results. Interesting studies have compared the diagnostic utility
of established nuclear and echocardiographic stress testing methodologies with newer
techniques such as coronary computerized tomography and cardiac magnetic resonance
imaging and highlight their inherent limitations in patients with underlying left ventricular
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dysfunction. The reliability of single-photon emission computerized tomography (SPECT)
is limited by the analysis regional wall motion abnormalities that can also be present in
idiopathic dilated cardiomyopathy (DCM), and by cases in which patients are affected by
with balanced ischemia [29].

Previous research has pointed out that metabolic disturbances may help with CHD
diagnosis. Lower levels of selected metabolites are associated with increased risk of
incident CHD. Recent studies have also successfully related circulating metabolites to
CHD, including biomarkers that can be detected in eccrine sweat. These advances may
promise a better understanding of CHD. Scientists examined whether metabolomics could
be used to predict signs of CHD in people [22,23]. In one study, 141 circulating metabolites
were examined for estimating the risk of CHD in a population of over 70,000 Europeans.
Among these 141 metabolites under study, the researchers discovered 24 metabolites that
were connected to CHD [22]. A subset of these 24 discriminative metabolites, including
the amino acids methionine, glutamine and histidine, has been found in human eccrine
sweat [30]. Twenty-four metabolites were significantly and independently associated with
incident CHD. These metabolites were mainly acyl-alkyl-PCs and diacyl-PCs. In particular,
5 of these 24 metabolites were found to be inversely correlated with CHD risk. The strength
of this correlation is comparable to those of classic risk factors. Although more research
is required to investigate the connection between newly discovered metabolites and the
development of CHD, these biomarkers can be detected at wavelengths covered by imaging
spectrometers. Their impact has not yet been examined through image analysis.

3. Exploiting Sweat Metabolites as a Future Biometric Modality

Sweat is currently analyzed using methods that are not suitable for real-time appli-
cations and require specially trained operators. Existing bioassay systems can inspect
the chemical content in the sweat of finger marks; however, this approach requires the
samples to be treated with costly reagent kits that destroy metabolites. Active research
is exploring a contactless manner with which to acquire the sweat metabolites from fin-
gertips via hyperspectral imaging (HSI) [31,32]. HSI has gained a lot of interest in various
fields, including agriculture and medical research [33–35]. HSI technology can capture rich
spectral information for the purpose of object identification, chemical analysis, identifying
materials, and even biometric application. A hyperspectral image is a three-dimensional
hypercube over many contiguous spectral bands. Unlike traditional color images, the 3-D
channels are feature rich due to the hundreds of wavelengths that are encoded across
the pixel. The use of hundreds of wavelength responses across the region of interest
may encode characteristics that are currently undetectable with traditional three-channel
imaging systems.

Building a deeper profile of the identity makes the link between the genuine person
and the digital representation stronger, and, subsequently, the system processing it more
resilient to spoofing. Presentation attacks (PAs) that would challenge the security of existing
fingerprint systems are easy to detect through HSI sweat analysis, combining visual and
chemical characteristics. Attacks that use artificial sweat or skin-like materials lack sweat’s
biochemical components and, thus, will be easily identified as fake/artificial. Attacks that
utilize sweat maliciously obtained from the target individual will also fail since the system
operates by associating sweat’s compounds with certain pixels.

Using an HSI perspective of sweat as biometric technology has the benefits of existing
systems without the underlying drawbacks. In traditional fingerprint identification, unique
visual (extrinsic) characteristics are derived from the ridges and compared with stored
data. Since the technology is vulnerable to spoofing, liveness detection modules need to
be integrated in the system. These algorithms exploit characteristics of vitality such as
perspiration without linking them to an identity. Thus, attacks that use artificial sweat
or sweat samples acquired from an impostor can succeed. Heart rate-based recognition
relies on 101 features describing heart rate variability (HRV), an intrinsic property that is
limited by performance degradation due to the influence of various physiological factors



Digital 2023, 3 141

(e.g., respiration) as well as by constrained acquisition, since the heartbeat sensor must
be placed on top of a fingertip’s vein [36]. Furthermore, the system can be easily spoofed
by presenting to the sensor an artificial finger equipped with a pipe that pumps saltwater
to simulate blood flow. Finger vein authentication is based on extrinsic properties of
an intrinsic pattern, i.e., blood vessels underneath the skin of the fingers. Due to their
sub-dermal nature, finger veins can only be captured using a near-infrared light beam
shone on one side of the finger, highlighting the vein pattern. Although this technology
is touchless and accurate, it is deceivable with a printout of the finger vein pattern [37].
Electrocardiogram (ECG) biometrics are intrinsic, accurate and resistant to stealing and
spoofing; however, it is possible to exploit previously captured ECG signals and deceive
the system [38,39]. Electroencephalography (EEG) biometrics record intrinsic electrical
properties of a brain, but researchers have demonstrated the viability of attacks that imitate
a user’s mental reaction [27].

When biometric data refers to the chemical content of a trait that is processed in the
hyperspectral domain, typical techniques for spoofing (e.g., artificial fingerprints made in
silicon or gelatin, high-resolution photograph, printouts, etc.) would not work. Beyond
liveness detection typically based on image processing of grey-scale or RGB biometric data,
HSI analysis enables a variety of anti-spoofing approaches including blood flow pattern,
since in hypercubes data more characteristics are visible compared to traditional images.
Applying HSI analysis to biometrics is a new field and may aid the discovery of novel
features such as statistics extracted by using the spectral component. To succeed, a spoof
attack must reproduce exactly the pixelwise reflectance spectrum across a continuous range
of wavelengths, a characteristic that is not captured by existing biometric systems.

Demographic differentials have been assessed in existing computer vision-based bio-
metric technologies. In fingerprint systems, although recent studies have demonstrated the
possibility of extracting gender clues from sensor-based fingerprint images, existing sensing
technologies may limit what can be discovered from this biometric trait. The impact may
vary based on the specific technology, for example, in minutiae-based matching systems,
those biases are present. A recent study from A. Jain focuses on exploring demographic
differentials in fingerprint recognition across four major demographic groups for two
state-of-the-art (SOTA) fingerprint matchers operating in verification and identification
modes [40]. Experiments on more than 15K individuals show that demographic differen-
tials in SOTA fingerprint recognition systems decrease as the matcher accuracy increases.

Deep learning-based matchers may behave differently, thus, a related investigation
about potential biases must be carried out. In such frameworks, even the typical relationship
between image quality and matching accuracy may be questionable. Thus, the presence
and the extent of biases require research efforts.

In recent chemistry literature, a technique to determine demographic biases (gender)
based on a panel of sweat metabolites has been discussed. This technique separates metabo-
lites using liquid chromatography (i.e., chemical reagents), and detects them based on their
unique mass-to-charge ratio and induced fragmentation [11]. Mass-spectroscopy-based
methods, including bioaffinity systems, have allowed researchers to measure metabolites in
a single sweat sample, but due to the need for reagents, these approaches are inconvenient,
not conducted in real-time, high in cost, and cause degradation of the sample. HSI is a
novel methodology that involves the acquisition of chemicals and discovery biases may
represent one of the main contributions of future research.

4. Analyzing Biochemical Content through Imaging: Where Are We?

Sweat pores have been previously detected through color changes of a specific polymer
in contact with sweat, creating a map of the pores featured by a unique dotted pattern [41].
Recent research has pushed the boundaries of biometric sensing and imaging by capturing
hypercubes of human fingers and analysed the related spectra through statistical machine
learning [42]. This study considered whether alteration of the data may be derived from
applying hand sanitizer right before the acquisition and the utility of the collected image
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since such a product may deprive the skin from sebum and dissolve its lipid levels [42].
By focusing on the spectrum associated with hyperspectral images of human fingers,
the authors investigated variations before and after the application of a commercial hand
sanitizer. The images collected at Mason from 50 subjects and captured in a temporal range
of 1, 10, and 25 min after participants used the product [43]. Subjects were campus students,
their families, friends, or people who came to the lab interested to participate. Eligible
participants were of an age greater than 18, without metabolic diseases, not pregnant, and
not overweight. Subjects with known health issues, those under hormone therapy or those
with cuts on their finger were excluded from the study.

The hyperspectral instrument used was the Resonon PIKA L camera that covers wave-
lengths from 378 nm to 1023 nm. It featured a spectral resolution of 2.1nm, for a total of 300
spectral channels with the image resolution of 400 × 900 pixels. Each collected hypercube
is a multi-dimensional array of 400 × 900 × 300. For each individual, the dataset contains
three identical scans on the right-hand index fingers that make up to six hypercubes. There-
fore, a total of 300 hypercubes were obtained from 100 individuals. They explored various
signal processing techniques and found differences in the spectra generated from the data
before and after the sanitizer product had been used. However, selected pre-processing ap-
proaches that account for and correct baseline shifting (i.e., SG and Detrend) can attenuate
these unwanted changes. This analysis will be extended to incorporate potential changes
due to the use of cosmetics (e.g., hand cream).

5. Recent Technologies Using Sweat Metabolites

Recently, there has been development in the technology used to detect sweat metabo-
lites, nutrients, and biomarkers. In 2022, Komkova et al. developed the lactate biosensor
of the lactate oxidase–Prussian Blue enzyme–nanozyme type. They utilized a siloxane-
perfluorosulfonated ionomer composite membrane to immobilize the enzyme–nanozyme.
This allows the biosensor to show flux independence in the whole range of physiolog-
ical sweat secretion rates. Integrating with high-accuracy wearable electronic devices,
the biosensors are capable of real-time remote monitoring of sweat lactate concentration
and its secretion rate simultaneously [44]. In sweat, copper is a biomarker of Wilson’s
disease and liver cirrhosis. In the same year, Yang et al. developed a revolutionary wearable
microfluidic nanosensor that can effectively identify and measure the amount of copper
excreted in sweat. The sensor is created using advanced printing technology and boasts
seamless integration with a wireless smartphone-based readout system. The device can be
effortlessly applied to the skin and has the additional capability of actively inducing perspi-
ration. This stimulation helps maintain a balanced concentration of heavy metals in relation
to the sample volume and sweat rate. Their system solved common issues in sensors, such
as sweat rate normalization and reliable continuous monitoring [45]. In another study,
Laochai et al. detected cortisol in artificial sweat by developing the thread-based electro-
chemical immunosensor using immobilization of anti-cortisol on a L-cys/AuNPs/MXene
modified conductive thread electrode. Due to the cortisol processes, the blocking of electron
transfer, oxidation current towards the antigen–antibody binding interaction decreases,
and cortisol is detected electrochemically. The immunosensor presented in this study
provides exceptional sensitivity, reproducibility, and long-term storage stability. With
the integration of the technology on a wristband, this device has the potential to be used as
a wearable electrochemical sensor for sweat cortisol [46]. Wang et al. designed a wearable
electrochemical biosensor that can analyze all essential amino acids and vitamins in sweat
continuously, during physical exercise and at rest. Consisting of graphene electrodes and
integrating with modules for iontophoresis-based sweat induction, microfluidic sweat sam-
pling, signal processing and calibration, and wireless communication, the biosensor allows
the assessment of the risk of metabolic syndrome and early identification of abnormal
health conditions [47].
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6. Conclusions

This paper discusses the new and challenging topic of detecting sweat metabolites
through hyperspectral imaging to design the next-generation AI-empowered systems. HSI
can generate a fine representation of an object by capturing its light reflectance pattern,
which can be related to chemical composition. This technology holds potential to benefit
the disciplines invested in spectroscopy (e.g., biochemistry). Applying HSI to analyze the
content of sweat is non-invasive, fast and does not require the use of reagents, unlike the
existing methods based on bioassays. The concentrations of the biochemical content in
human sweat have been measured using imaging spectrometers that, although accurate,
are expensive and time consuming.To date, no imaging has been applied yet. This paper
directs the community to investigate how to exploit and link new findings in chemistry
to AI, creating new representations based on biomarkers quantified in the hyperspectral
domain. The proposed research will have lasting effects on the field, encouraging other
researchers as well as industry to continue working towards a HSI sweat-based systems.
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