
Citation: Sharifi, F.; Rasaii, A.;

Pasdar, A.; Hessabi, S.; Lee, Y.C. On

the Effectiveness of Fog Offloading in

a Mobility-Aware Healthcare

Environment. Digital 2023, 3, 300–318.

https://doi.org/10.3390/

digital3040019

Academic Editor: Geoffrey Fox

Received: 9 October 2023

Revised: 11 November 2023

Accepted: 20 November 2023

Published: 23 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

On the Effectiveness of Fog Offloading in a Mobility-Aware
Healthcare Environment
Ferdous Sharifi 1,2 , Ali Rasaii 2, Amirmohammad Pasdar 1,3, Shaahin Hessabi 2 and Young Choon Lee 1,*

1 School of Computing, Macquarie University, Sydney 2109, Australia;
ferdous.sharifi@hdr.mq.edu.au or f.sharifi95@sharif.edu (F.S.);
amirmohammad.pasdar@hdr.mq.edu.au or a.pasdar@adfa.edu.au (A.P.)

2 Department of Computer Engineering, Sharif University of Technology, Tehran 11155-9517, Iran;
arasaii@mpi-inf.mpg.de (A.R.); hessabi@sharif.edu (S.H.)

3 School of Systems & Computing, University of New South Wales, Canberra, ACT 2600, Australia
* Correspondence: young.lee@mq.edu.au

Abstract: The emergence of fog computing has significantly enhanced real-time data processing
by bringing computation resources closer to data sources. This adoption is very beneficial in the
healthcare sector, where abundant time-sensitive processing tasks exist. Although such adoption
is very promising, there is a challenge with the limited computational capacity of fog nodes. This
challenge becomes even more critical when mobile IoT nodes enter the network, potentially increasing
the network load. To address this challenge, this paper presents a framework that leverages a Many-
to-One offloading (M2One) policy designed for modelling the dynamic nature and time-critical aspect
of processing tasks in the healthcare domain. The framework benefits the multi-tier structure of the
fog layer, making efficient use of the computing capacity of mobile fog nodes to enhance the overall
computing capability of the fog network. Moreover, this framework accounts for mobile IoT nodes
that generate an unpredictable volume of tasks at unpredictable intervals. Under the proposed policy,
a first-tier fog node, called the coordinator fog node, efficiently manages all requests offloaded by
the IoT nodes and allocates them to the fog nodes. It considers factors like the limited energy in the
mobile nodes, the communication channel status, and low-latency demands to distribute requests
among fog nodes and meet the stringent latency requirements of healthcare applications. Through
extensive simulations in a healthcare scenario, the policy’s effectiveness showed an improvement of
approximately 30% in average delay compared to cloud computing and a significant reduction in
network usage.

Keywords: fog computing; Internet of Things; computation offloading; fog offloading; mobility-aware
offloading; healthcare-monitoring system

1. Introduction

Today, a tremendous amount of data is generated from massively distributed smart
devices that comprise the Internet of Things (IoT). The International Data Corporation
(IDC) has projected that the digital data volume will surge from the 33 zettabytes in 2018
to 175 zettabytes by 2025 [1]. In contemporary implementations of IoT applications, most
data requiring storage, analysis, and decision-making are typically transmitted to cloud-
based data centres [2]. This process places significant strain on the network infrastructure,
especially in terms of data transmission costs. A more-critical challenge arises for time-
sensitive and location-aware applications, such as patient monitoring or autonomous
vehicles [3]. Given these applications’ stringent demands for ultra-low latency, relying on
distant cloud resources becomes inadequate. Additionally, most IoT devices have limited
power resources, and to prolong their lifespan, it is crucial to manage power consumption
by scheduling computational tasks on devices with higher power and computational
capabilities [4].

Digital 2023, 3, 300–318. https://doi.org/10.3390/digital3040019 https://www.mdpi.com/journal/digital

https://doi.org/10.3390/digital3040019
https://doi.org/10.3390/digital3040019
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/digital
https://www.mdpi.com
https://orcid.org/0000-0002-4551-6233
https://orcid.org/0000-0003-3193-2567
https://doi.org/10.3390/digital3040019
https://www.mdpi.com/journal/digital
https://www.mdpi.com/article/10.3390/digital3040019?type=check_update&version=1

Digital 2023, 3 301

In 2014, CISCO introduced fog computing as a solution to the aforementioned chal-
lenges [5]. Fog computing strategically situates computation, storage, networking, decision-
making, and data management between IoT devices and the cloud. The research com-
munity has also proposed other computing paradigms, like edge computing, to tackle
these issues [3]. Although some papers use fog computing and edge computing inter-
changeably, they are not synonymous. The OpenFog Consortium draws a clear distinction,
describing fog computing as a hierarchical approach that delivers computing, networking,
storage, and decision-making capabilities across the entire spectrum from the cloud to IoT
devices [6]. In contrast, edge computing primarily operates near IoT devices, constituting
the initial hop from these devices rather than encompassing the entirety of IoT nodes [3].

Figure 1 presents the fog computing framework used in this paper. This framework
comprises three layers: the IoT layer, housing end devices; the fog layer, featuring fog
nodes arranged hierarchically with limited computing power; and the cloud layer, where
cloud data centres are situated.

Cloud data centers

Cloud data centers

Cloud gateway

Cloud gateway

Cloud storage

Fog storage

Fog storage

C
lo

u
d

 L
ay

er
Io

T
La

ye
r

..
.

A Specific IoT Domain

C
o

rr
e

sp
o

n
d

in
g

Fo
g

D
o

m
a

in

Fo
g

La
ye

r Fo
g_

ti
er

_n
Fo

g_
ti

er
_1

..
.

Figure 1. System model.

The IoT layer is where IoT devices, or end devices, are located and raw data are
produced. IoT nodes are diverse regarding computing power, storage capability, and the
communication protocol. The fog layer consists of all nodes located in the thing-to-cloud
continuum. These nodes are divided into several tiers. Fog nodes, which are located in the
vicinity of IoT nodes, are on the first tier. These nodes are typically one hop away from IoT
nodes. The nodes that are two hops away are on the second tier, and so on. The last tier,
which is the closest tier to the cloud, is called tier n. As we move from things to the cloud,
the computing power, storage capability, and communication link bandwidth increase.
Offloaded requests can be processed on the first tier of the fog layer or offloaded to higher
tiers or in the cloud. Horizontal offloading is another feature of this framework. Horizontal
offloading means sending a request to a node, not in the corresponding thing to the cloud

Digital 2023, 3 302

continuum, but added to the path to take advantage of fog computing. Therefore, this
framework considers fog-to-upper tier fog and fog-to-same tier fog interactions.

The cloud layer is where cloud servers with massive computing and storage resources
are located. If fog nodes cannot fulfil the IoT application’s objectives (for example, necessary
computing capabilities and memory or deadline), requests are offloaded to the cloud. Cloud
servers can perform heavy computational processing on the data received from fog nodes
and permanently store information.

Although fog computing brings several advantages, some challenges should be ad-
dressed to reap all the benefits of fog computing. These challenges include architecture de-
sign, mobility management, content caching, and computation offloading [7]. Among these
challenges, in this work, we focused on computation offloading. Computation offloading
enables IoT devices to offload computation tasks to fog or cloud servers and receive the
results after the servers execute the tasks [8]. In this way, we can free end devices from
heavy computing tasks, reduce their energy consumption, and significantly advance the
completion time of tasks. However, how many offloaded tasks should be executed in the
fog layer and which fog nodes should execute them are vital problems that must be solved.

This paper presents an approach to the healthcare-monitoring environment, incorpo-
rating the mobility of patients and fog nodes. Our approach focuses on collecting vital
signs from each patient and transmitting these data to a designated fog node, known as the
coordinator fog node, for processing. By accounting for mobility and simulating real-world
scenarios, we created a dynamic environment where task generation and fog node comput-
ing capacity evolve over time. To effectively manage the generated tasks and allocate them
to the existing fog nodes in the area, we propose a many-to-one computation offloading
policy called the M2One policy. Under this policy, all data collected by the sensors are
forwarded to the coordinator fog node, which assumes responsibility for distributing these
tasks among available fog nodes within the network. This distribution is performed to
meet the stringent latency requirements of healthcare applications while considering the
constraints of the available fog nodes. The coordinator fog node, conveniently situated
just one hop away from the sensors, is the entry point to the cloud layer in traditional
cloud computing.

The coordinator fog node’s task allocation decisions hinge on several critical factors,
including the computing power of fog nodes, the amount of time spent in the processing
queue of fog nodes, which is known as the queuing delay, the communication delay, the
communication channel status in terms of packet loss, and the energy constraints of the
mobile fog nodes. These five factors are important because they directly affect latency,
and ignoring any of them leads to a long execution time or request loss. A long execution
time happens when a fog node receives a noisy request (a request with a low signal-to-noise
ratio) due to an inappropriate communication channel. In this case, the coordinator fog
node has to resend the offloaded request to another computing node. Request loss occurs
when the offloaded request misses its deadline due to a long queuing delay or when a
mobile fog node becomes unavailable due to limited energy.

The main contributions are as follows:

• Development of a many-to-one computation offloading policy: We introduce a novel
approach specifically designed to manage multi-objective computation offloading,
considering the dynamic mobility of fog nodes. This strategy employs advanced
algorithms that dynamically allocate and distribute computational tasks in a many-to-
one setup. It assesses queuing delays in fog nodes, the communication channel status,
and the battery life of the mobile fog nodes. This method addresses the complexities
presented by the mobile nature of fog nodes.

• Deploying of a multi-tier fog layer for enhanced resource utilisation: We adopted a
multi-tier fog layer to maximise the utilisation of diverse fog node capacities. This
unique setup involves intelligently allocating tasks across various tiers, leveraging
their distinct computational capabilities to enhance overall network efficiency.

Digital 2023, 3 303

• Validation of the proposed policy in a dynamic healthcare environment: The effec-
tiveness of the proposed policy was validated by implementing it within a healthcare-
monitoring system. This involved a simulated healthcare scenario that accounted for
the dynamic mobility of both fog nodes and patients. The created dynamic environ-
ment closely mimicked real-world conditions, where the fog layer’s task generation
and computing capabilities evolve over time.

This paper significantly extends our previous work [9] by (1) incorporating patient
mobility into our model, creating a dynamic fog computing environment with varying data
generation rates, and (2) conducting extensive experiments for the comprehensiveness of
our findings.

Our simulations using the iFogSim simulator [10] revealed a request threshold for
optimal fog capacity usage and highlighted the Quality of Service (QoS) benefits of increas-
ing the computing capacity of the fog nodes. Additionally, our findings showed that the
current fog nodes efficiently handle requests from mobile patients, but the same number of
requests from static patients leads to higher average delays. Overall, our proposed method
consistently outperformed traditional cloud computing, reducing average delays by an
impressive 30%.

The rest of this paper is organised as follows. In Section 2, a review of the related
work is presented. Then, we discuss the mobility model of fog nodes and present our
computation offloading policy, the M2One policy, in Section 3. Section 4 describes the
simulation settings. Our experimental results are discussed in Section 5. Finally, the paper
is concluded in Section 6.

2. Related Work

In recent years, in the field of fog and edge computing, the research on computation
offloading strategies has become a hot issue. Researchers have proposed various computa-
tion offloading strategies for different goals. These proposed strategies generally can be
categorised into single-objective and multi-objective approaches.

In a single-objective approach, the computation-offloading strategy aims to decide
where a task should be executed to improve the desired quality of service parameter, which
can be latency, energy consumption, or cost. In contrast, in a multi-objective method,
the focus is on the effect of several parameters on each other, and the decision about where
the task should be executed is made based on the trade-off between several parameters.

2.1. Single-Objective Approaches

In the realm of vehicular networks, an approach aiming to strike a balance between
latency and task quality allocation was introduced by [11]. To commence the process,
a client vehicle initiates a one-hop probe message broadcast to identify nearby fog nodes
within its communication range and, subsequently, collects their responses. Following this,
the client vehicle transmits a request to a designated zone head, including details regarding
the offloading tasks and potential fog node candidates. Ultimately, the zone head employs
a task-allocation algorithm to make informed decisions about task execution locations.
An effective resource provisioning strategy was introduced by [12] to mitigate latency vio-
lations. This approach leverages Bayesian learning techniques to make informed decisions
regarding the dynamic scaling of fog resources, determining both resource increases and
decreases as needed. A policy for on-demand computation offloading in fog networks was
presented in [13]. In this approach, a host node seeking additional computational resources
beyond its own capabilities dynamically identifies accessible nodes and establishes an
on-demand local resource provider network. A framework for multi-hop computation
offloading in vehicular fog computing was introduced by [14]. This framework deals with
critical decisions such as choosing between in-vehicle or remote computation, selecting
appropriate fog nodes, and distributing the load between inter-fog nodes, all guided by
the queuing theory principles. In mobile edge computing, a decision-making system for
offloading, driven by user context information, was introduced by [15]. This method

Digital 2023, 3 304

encompasses four distinct phases: monitoring, analysis, planning, and execution, enabling
it to determine whether to execute computations locally, offload them to edge devices,
or send them to the cloud.

In [16], two distinct challenges related to optimal computation offloading were put
forth: one involving energy constraints and the other centred around time constraints.
In each of these problems, they maintained one parameter as a constant and aimed to
minimise the other. Their approach involved the application of a straightforward greedy
methodology to formulate a computation-offloading strategy. This strategy considered
various factors, including the attributes of the communication channels, computation
and communication power consumption models, the status of already assigned and allo-
cated tasks, as well as the characteristics of the current task. A proactive task-offloading
framework known as the virtual edge was introduced by [17]. This innovative framework
leverages the concept of virtual edge nodes, each comprising multiple vehicles with char-
acteristics such as low relative moving speeds and strong wireless connectivity. When a
vehicle encounters the need to offload computation tasks, it creates a new virtual edge and
transfers the tasks to it or delegates them to a nearby virtual edge, offering a solution to the
task-offloading challenge within this context.

To extend the operational lifespan of battery-powered fog nodes, a novel smart energy
management approach was proposed by [18]. Their solution involved equipping fog nodes
with solar panels that facilitate battery recharging. These nodes effectively manage their
energy resources by dynamically switching between requesting and computing devices as
needed. The study conducted by [19] focused on developing a resource scheduling and a
dynamic offloading optimisation model tailored for a multi-user mobile edge computing
system. Through their work, they successfully formulated and solved an optimisation
problem. This endeavour led to the creation of an iterative algorithm, which, in turn,
enabled the determination of optimal strategies for various factors, including transmission
power allocation, clock frequency control, offloading ratio, and the received power split
ratio within the system.

2.2. Multi-Objective Approaches

The research conducted in [20] centred on addressing latency and reliability-sensitive
computational tasks for fog computing in a swarm of drones application. They formulated
an optimisation problem that concurrently considered reliability, latency, and energy con-
sumption for task allocation. Their solution involved the development of a distributed
task-allocation algorithm based on the proximal Jacobi ADMM method. To minimise
the cost of energy consumption, delay, and price, Reference [21] proposed a user-centric
computation offloading model. Their approach considered a mixed integer nonlinear
programming model as an optimisation problem. They proposed a branch-and-bound
algorithm that relied on linear relaxation improvement to solve it. In a different context,
a dynamic computing offloading model based on genetic algorithms was introduced by [22]
to reduce the energy consumption and the delay of task execution in edge computing net-
works. This model incorporated a task weight cost model that considered both processing
delay and energy consumption.

In [23], the authors considered various factors, including energy consumption, trans-
mission delay, QoS requirements, power limits, and wireless fronthaul constraints, in the
context of fog-computing-based healthcare-monitoring systems. They formulated an op-
timisation problem aimed at minimising the cost–utility of medical users. This problem
was transformed into three decoupling sub-problems for the solution. In the research
conducted in [24], the authors delved into a joint problem involving cooperative resource
assignment and computation task offloading in mobile edge computing. They aimed to
minimise latency while adhering to transmission power, energy consumption, and CPU
cycle frequency constraints. To address this, they proposed an iterative algorithm based
on Lagrangian dual-decomposition, monotonic optimisation techniques, and the Shengjin
formula method.

Digital 2023, 3 305

Although the mentioned prior works showcased certain advantages and improve-
ments, the challenge lied in their comprehensive evaluation metrics. Most previous method-
ologies focused on limited objectives, such as latency or energy consumption, and some
considered only two specific objectives. This limited focus on their evaluation criteria may
impact the accuracy and completeness of their results. Moreover, as indicated in Table 1,
the frameworks considered in these studies differed, potentially neglecting important fea-
tures of a real fog computing environment (e.g., mobility of fog nodes and IoT nodes) and
the full capabilities of a fog computing architecture (e.g., multi-tier fog layer, horizontal of-
floading). Therefore, our objective was to propose a multi-objective computation-offloading
strategy that simultaneously considers latency, energy consumption, and communication
channel status. Additionally, we aimed to leverage the multi-tier nature of fog computing
in a simulation of a real-world environment to enhance the computing capacity of the
fog layer.

Table 1. Comparison of the architectures used in the previous works.

Reference [25] [11] [26] [13] [20] [12] M2One Policy

Three-Layer Architecture * X × X × × X X
Multi-Tier Fog Layer × X × × × X X

Horizontal Offloading X × X X X X X
IoT Node Mobility X × × X × × X
Fog Node Mobility × X × × X × X

* The references that are marked by × have a two-layer architecture and those with X have a three-layer
architecture.

3. Mobility Model and Proposed Offloading Policy

Within this section, we begin by exploring the mobility model of fog nodes, delving
into the handover and migration processes involved as fog nodes move. Subsequently, we
introduce the M2One policy and our computation-offloading strategy and elaborate on the
developed offloading algorithm.

3.1. Mobility Model

This paper delves into the realm of fog node and IoT device mobility. The mobility of
IoT devices primarily impacts request generation. As long as a mobile IoT device resides
within the designated area, the tasks it generates are routed to the existing fog nodes within
that area. When an IoT device departs from the area, it has no bearing on the functionality
of the fog environment.

Fog node mobility holds significant importance as these nodes are responsible for
processing generated tasks. Any fog node leaving the area without appropriate request
management can threaten the system’s reliability. Consequently, it is imperative to develop
a model for fog node mobility within this context; therefore, we propose a simple model
for the mobility of fog nodes. This model divides each layer into domains where a single
IoT application is implemented. The mobility of fog nodes is just considered for the first-
tier fog nodes. It is not far from reality because the fog nodes located in the upper tiers
(e.g., cloudlets, base stations) are stronger in computing power and storage capability and
usually have a fixed location.

According to the stated assumptions, we can consider two types of movement for mo-
bile fog nodes: in-domain movement and off-domain movement. Limited energy resources
on IoT nodes mandate low-power and short-range wireless technologies (e.g., BLE, ZigBee);
hence, their domain is limited to the distance they can cover, and in-domain movement does
not lead to disconnection. Off-domain movement causes problems for the IoT node, which
has sent its requests directly to the off-domain fog node, and the requests are offloaded to
the off-domain fog node by neighbouring fog nodes. To mitigate disconnection problems,
we considered an area called the boundary area around the domain. This area comprises
about 30% of its corresponding domain. The boundary area and mobility procedure are

Digital 2023, 3 306

depicted in Figure 2. A mobile fog node will likely leave the domain when it enters the
boundary area. Hence, the handover process and migration process begin to avoid missing
the requests that already exist in the off-domain fog node.

Boundary Area

Main Domain in
Fog Layer

W
ireless Sign

al B
ou

n
d

ary

Migration Time

Handover Time

(3)

(2)
(1)

Figure 2. Mobility procedure and boundary area of a specific domain. (1) The IoT node stops sending
requests to the off-domain fog node; (2) the IoT node starts a new interaction with a new in-domain
fog node; (3) the off-domain fog node sends a copy of the existing request in its processing queue to a
new in-domain fog node.

The handover process involves finding a new fog node for the IoT node directly
connected to that off-domain fog node. As depicted in Figure 2, in Step (1), the IoT node
stops sending requests to that off-domain fog node, and then, in Step (2), it starts a new
interaction with a fog node in the domain.

The migration process involves moving a copy of existing requests in the queue of the
off-domain fog node to a new fog node in the domain (Step (3) in Figure 2). At this time,
neighbouring nodes stop offloading new requests to that off-domain fog node, but existing
requests are processed at that off-domain fog node until they leave the boundary area.
When that off-domain fog node leaves the boundary area, the fog node that has received
the copy of requests starts processing them.

3.2. M2One Policy: A Fog Node Collaboration Policy

In this section, we introduce the M2One policy in which fog nodes collaborate to
handle the requests sent from IoT nodes. The M2One policy manages in a many-to-one
scenario where all IoT nodes of a specific application offload their requests to one fog node
called the coordinator fog node. In other words, in each domain of fog nodes, there is a
central node responsible for managing and deciding where to process requests. The first
node of the things-to-cloud continuum that receives requests sent from IoT nodes is selected
as the coordinator fog node in our scheme. This decision is made based on the fog nodes’
computing power, queuing delay, transmission and propagation delay, channel status, and
the battery life of the mobile fog nodes. The list of notations that have been used in this
section is detailed in the Abbreviation section.

Offloading algorithm: In the proposed policy, we assumed there are j fog nodes F1,
F2, . . . , Fj, and one of them is the coordinator fog node (Fj∗). As the fog network manager,
the coordinator fog node knows the network topology. It records fog nodes’ location (locj),
fog nodes’ computing power (ηj), and the mobility status of fog nodes in a table, which is
called the Coordinator Fog Node (CoFN) table. The coordinator fog node also adds a cloud
to its table in case fog nodes cannot fulfil the request objectives (for instance, when fog
nodes lack sufficient computing capacity or necessary memory to process a request prior to

Digital 2023, 3 307

the deadline). The information in this table is updated when a fog node leaves/enters the
domain or a mobile fog node changes its location.

We assumed there are m IoT nodes in the network. These IoT nodes generate i requests
R1, R2, . . . , Ri. Each request sent from an IoT node m (Rm

i) contains the ID, the location of
the IoT node that generated the request (loci

m), the type of request that can be heavy (Rm
i:H)

or light (Rm
i:L), the length of request in bit (leni), the needed computational resource (ωi),

and the deadline (θi). The requests that can be divided into several sub-tasks are considered
heavy; otherwise, they are light. The CoFN table information and Ri data are utilised when
deciding which fog node to offload a request for processing. Algorithm 1 describes the
process of selecting an appropriate node for offloading.

In the first step, the needed computational resources of request (ωi) are compared with
the computing power of all fog nodes (ηj) of the CoFN table. The fog nodes that can fulfil
ωi are added to the selected nodes list (Lines 4–6). Then, for all selected nodes, the estimated
serving time (Test.

serve(i,j)) is calculated (Lines 7–8) based on Equation (1).

Algorithm 1 M2One: Proposed Offloading Policy

Require: Rm
i {ID, loci

m, Type, leni, ωi, θi}
Ensure: Selected node for offloading (Fj)

1: function OFFLOADINGPOLICY(Rm
i)

2: Add all fog nodes to CoFN Table
3: Add Cloud to CoFN Table
4: for all Fj in CoFN Table do
5: if ηj ≥ ωi then
6: Add Fj to Selected-Nodes

7: for all Fj in Selected-Nodes do
8: Calculate Test.

serve(i,j)
9: if Test.

serve(i,j) ≥ θi then
10: Remove Fj from Selected-Nodes

11: Sort Selected-Nodes list
12: Select two nodes with minimum Test.

serve(i,j)
13: Remove two selected nodes from Selected-Nodes list
14: for all node in Two-Selected-Nodes do
15: if Is it mobile then
16: Calculate Eest.

(i,j)
17: Calculate RSSI
18: if (Eest.

(i,j) ≤ Eth OR RSSI ≤ RSSIth) then
19: Remove this mobile node
20: else
21: Calculate RSSI
22: if RSSI ≤ RSSIth then
23: Remove this node
24: if Two-Selected-Nodes list is empty then
25: go to (12)
26: else
27: Return node with the least Test.

serve(i,j)

Estimated serving time: The estimated serving time is the required time for serving Ri
in Fj. Test.

serve(i,j) is a function of the required time to send Ri from the coordinator fog node
(Fj∗) to Fj (Tsend(i,j)) and the required time to process Ri in Fj (Tprocess(i,j)). For simplicity,

Digital 2023, 3 308

the required time to send back a response to the IoT node has been omitted in the equations.

Test.
serve(i,j) = Tsend(i,j) + Tprocess(i,j) (1)

Tsend(i,j) is the sum of the transmission delay (Ttrans(j∗ ,j)) and propagation delay
(Tprop(j∗ ,j)). It is obtained by Equation (2). Rj∗ j is the channel bit rate between Fj∗ and
Fj; dj∗ j is the distance between Fj∗ and Fj; v is the speed of light.

Tsend(i,j) = Ttrans(i,j) + Tprop(i,j) =
j

∑
l

leni
Rj∗ l

+
dj∗ j

v
(2)

Tprocess(i,j) is the sum of the required time to wait in the Fj queue (T j
queuing) and the

required time to execute Ri in Fj (Texe(i,j)) and is calculated by Equation (3).

Tprocess(i,j) = T j
queuing + Texe(i,j) (3)

T j
queuing and Texe(i,j) are calculated by Equations (4) and (5), respectively. χ

j
Ri:L

is the

number of light requests in the Fj queue; χ
j
Ri:H

is the number of heavy requests in the Fj
queue; Texe(i∗ ,j) is the execution time of the running request (Ri∗). The running request runs
in Fj when an offloaded request Ri arrives.

T j
queuing = χ

j
Ri:L

(Texe(i:L,j)) + χ
j
Ri:H

(Texe(i:H,j)) + Texe(i∗ ,j) (4)

Texe(i,j) =
ωi
ηj

(5)

After calculating Test.
serve(i,j) for all fog nodes, two fog nodes that have met the deadline

and have the shortest serving time are selected (Lines 9–13). If the selected node is a
mobile fog node, its battery life and channel status are checked (Lines 14–19). Otherwise,
the channel status is just checked (Lines 20–23). The battery life is checked based on the
remaining energy consumption of each mobile fog node, and the channel status is checked
based on the Received Signal Strength Indicator (RSSI). The fog node will remain in the
two_selected_nodes list if its Eest.

(i,j) and RSSI are greater than the threshold that has been

considered for each case. Finally, the node with less Test.
serve(i,j) is selected as the destination

of offloading.
Energy consumption of mobile fog node: The battery life of the mobile fog nodes

is a limiting factor in the offloading strategies. Therefore, it is necessary to check the
battery status of the mobile fog nodes before offloading requests to them. In this way, we
can be sure that the mobile fog node will remain active until the end of the computation.
For this purpose, in the M2One policy, a threshold is considered for the remaining energy
of the mobile fog nodes (Eth). Eth is compared with estimated energy (Eest.

(i,j)) (Line 19),
and the node that can fulfil the energy requirement will remain in the two_selected_nodes
list. Eest.

(i,j) is the remaining energy in Fj after processing Ri. It is a function of the needed

energy for queuing requests’ execution and transmission, Ej
queuing, as well as the execution

and transmission energy of the running request Ri∗ , denoted as Eexe(i∗ ,j) and Esend(i∗ ,j),
respectively, as described in Equations (6) and (7). Einit is the initial energy of the mobile
fog nodes before offloading Ri to them.

Eest.
(i,j) = Einit − (Ej

queuing + Eexe(i∗ ,j) + Esend(i∗ ,j∗)) (6)

Digital 2023, 3 309

Ej
queuing = χ

j
Ri:L

(Eexe(i:L,j) + Esend(i:L,j∗))+

χ
j
Ri:H

(Eexe(i:H,j) + Esend(i:H,j∗)) + Eexe(i,j) + Esend(i,j∗) (7)

Eexe(i,j) is the required energy to execute Ri in Fj. Esend(i,j∗) is the required energy to
transmit the response from Fj to Fj∗ . Pexe(i,j) is the power consumption of Fj when Ri is
executing. It is different for light and heavy requests. Pt is the transmission power.

Esend(i,j∗) = Pt.Tsend(i,j∗) (8)

RSSI: The received signal strength indicator indicates the signal power of a message
received by a node. The proposed offloading policy channel status is checked for the
first-tier fog nodes because these nodes usually use low-power wireless communication
protocols, which are more vulnerable to noise. The channel status of the selected node is
calculated by Equation (9) and, then, compared with a threshold value (RSSIth).

In Equation (9), n is the path loss exponent, which varies depending on the environ-
ment, d is the distance between the transmitting and receiving devices, and A is the signal
strength received from a node located at a reference distance. In Equation (10), Pt is the
transmission power and Pt(d0) is the path loss at a reference distance (d0).

RSSI = A − 10n log10 d (9)

A = Pt − Pt(d0) (10)

Eexe(i,j) = Pexe(i,j).Texe(i,j) (11)

4. Simulation Setup

In this section, the M2One policy was implemented on a healthcare-monitoring archi-
tecture. The simulated application scenario is a healthcare application that collects vital
signs, processes them, and then, reports the patient’s status. The simulations were carried
out in iFogSim [10], which is an often-used simulation tool because of its flexibility.

4.1. Healthcare Monitoring Architecture

The healthcare monitoring system is among the most-popular applications of fog
computing. It uses a large number of sensors and requires real-time and low-latency
processing. In this paper, we considered a hospital environment, where a patient’s clinical
data, such as blood pressure, body temperature, blood oxygen level, respiration rate,
and ECG signals, are collected by sensors. The collected data are then sent to the cloud
for processing, and finally, the patient status (high-risk, normal, low-risk) is sent back to
an actuator. The sensors, such as blood pressure and body temperature, produce light
requests, but requests that are produced by the ECG tool are heavy. The heavy request
usually needs pre-processing and can be divided into several light requests.

To evaluate the effectiveness of fog computing in this scenario, we used the architecture
shown in Figure 3. In the first layer of this architecture, there were four static patients and
three mobile patients. The arrival times of these mobile patients were chosen randomly,
and their duration within the simulated area was determined randomly, spanning from
2% to 10% of the simulation’s total time. They also walked in a random direction with
an average speed of 1 m per second. Four light sensors, one heavy sensor, and one
actuator were considered for each patient. The patients were in a room with an area of
10.5 m × 6.5 m, which is the size of a typical four-bed hospital room. There were two tiers in
the fog layer. In the first tier, there were four fog nodes, where two of them were fixed, and
the two others were mobile. There was a static fog node in the second tier. Table 2 shows
the overall configurations of the devices and connection links used in our simulations.

Digital 2023, 3 310

4.2. Mobility Scenario

As mentioned in the previous subsection, two mobile fog nodes were in the first tier of
the fog layer. During the simulation, the first mobile fog node left the application domain,
and after a while, a new mobile fog node entered and remained in the domain until the end
of the simulation. The average speed of a mobile fog node was considered 1 m/s, and they
moved in a predefined direction. The reason for considering a predefined direction was to
ensure that the mobile fog node moved in the different parts of the domain. As shown in
Figure 3, there was a boundary area around the first tier of the fog layer. This area included
about 30% of the domain.

Main domain

10.5 m

Io
T L

ay
er

Se
co

nd
_t

ie
r F

og

2 Km

8000 Km

Cloud

Boundary area
Main domain

802.11.a, 5
4Mbps 802.15.4, 250Kbps

802.15.4, 250Kbps

Coordinator Fog

802.11.n, 100Mbps

802.11.n,

100Mbps

6.5
 m

Fir
st_

tie
r F

og

3.5 m

10
 G

bp
s

10
 G

bp
s

Fog_tier2

10.5 m

6.5
 m

Figure 3. Simulated architecture for healthcare application.

When a mobile fog node entered the boundary area, the coordinator fog node stopped
offloading a new request to it. That mobile fog node also sent a copy of its queuing requests
to the coordinator fog node. When the mobile fog node left the boundary area and quit the
domain, the coordinator fog node offloaded that mobile fog node’s corresponding requests
to other fog nodes with a priority. In other words, the coordinator fog node calculated
the time each request spent in that mobile fog node queue, subtracted this time from the
deadline, and considered this new value as a new deadline. When a new mobile fog node
entered the boundary area from outside the domain, the coordinator fog node added it to
its table, but offloaded no request to this new mobile fog node until it entered the main
domain of the application.

Digital 2023, 3 311

Table 2. Simulation parameters.

Channel Bit Rate

SensorLight-Fj∗ 250 Kbps SensorHeavy-Fj∗ 54 Mbps

Fj∗ -MobileFog 100 Mbps Fj∗ -StaticFog 100 Mbps

Fj∗ -Fogtier2 10 Gbps Fogtier2-Cloud 10 Gbps

Requests

ωi leni Pexe(i,j)

Light Request 100 100 B 100 mW

Heavy Request 800 80 KB 400 mW

Constant Values

Pt 100 mW v 3 × 108

Einit 18 Wh d0 1 m

Eth 5 Wh θi 1 s

RSSIth −80 dB n U [1.6–1.8]

of Light Sensors/Patient 4 # of Heavy Sensors/Patient 1

4.3. Operation Modes and Configurations

To evaluate the advantages of the proposed offloading policy, we conducted a com-
parative analysis of light/heavy requests’ service delay and network usage across three
distinct operational modes. The first mode, referred to as Cloud, simulated traditional
cloud computing, where all requests were routed to cloud servers. The second mode,
denoted as M2One_FogCloud, implemented the M2One policy within a three-layer fog
computing framework. Here, offloaded tasks can be executed in the fog or cloud layers.
The third mode, named M2One_FogOnly, involved the distribution of requests between
the first and second tiers of the fog layer based on the M2One policy. This mode employed a
two-layer fog computing framework, with all IoT-generated requests exclusively processed
within the fog layer.

In the simulation setup of this study, we conducted an extensive investigation into
the impact of varying fog node computing power and the number of patients on the delay
and network usage metrics. To facilitate this analysis, we designed two distinct sets of
configurations. In the first set of configurations, we modified the computing capacity of the
fog nodes, as detailed in Table 3. This allowed us to explore how changes in the fog node
computational capabilities influenced our experimental outcomes.

Table 3. The configurations of the different fog node computing power capacity scenarios.

Config. 1 Config. 2 Config. 3

Cloud_MIPS 44,800 44,800 44,800

Second_tier Fog_MIPS 2240 4480 8960

First_tier Fogs_MIPS 1400 2800 5600

In the second set of configurations, we maintained a fixed computing capacity for the
fog nodes while varying the number of patients, as specified in Table 4. This adjustment
altered the computational demands and prompted us to adapt the simulated area size.
To align with the standard dimensions of hospital rooms, we adjusted the simulated area
size based on the number of patients. Specifically, we adhered to the standard size for a bed
in a multiple-bed room, which is 7.48 m2, and ensured a requisite 2.5 m spacing between
beds [27].

Digital 2023, 3 312

Table 4. The configurations of the different number of patients scenarios.

Varying Static Patients

Number of Static Patients 2 4 6 8

Varying Mobile Patients

Number of Mobile Patients 0 4 8 12

Additionally, we conducted an in-depth examination to assess the impact of the
simulation time on our results. Throughout these investigations, we varied the simulation
time from 600 to 3600 s. Notably, our findings revealed that altering the simulation time
did not yield significant variations in the results when calculating the average delay.
Furthermore, for the request’s emit intervals, we opted for a 2 s interval for heavy requests
and a 10 s interval for light requests. This deliberate choice of intervals afforded ample
time to execute critical actions, particularly in emergencies.

5. Experimental Results

This section presents the simulation results of the different configurations. These
results are presented for different fog node computing power scenarios and different
numbers of patient scenarios.

5.1. The Effect of Fog Node Computing Power on Evaluation Metrics

In this paper, we conducted a series of simulations to investigate the impact of fog node
computing power on average delay and network usage within various operation modes.
Our default configuration, referred to as Config. 2 (Second_tier Fog_MIPS: 4480, First_tier
Fog_MIPS: 2800), served as the baseline for our analysis. We explored the consequences of
both increasing and decreasing the computing power capacity in each operation mode and
the disparities in the average delay and network usage between different operation modes.

Generally, as shown in Figure 4, we observed a significant improvement in our
evaluation metrics, such as the average delay and network usage, when the fog node
computing power was increased. This improvement was particularly pronounced in
the M2one_FogCloud and M2one_FogOnly operation modes. In the M2one_FogCloud
mode, by doubling the computing power of fog nodes, we observed a notable decrease in
average delay for both light and heavy requests, amounting to approximately 45% and
49%, respectively.

0

50

100

150

200

250

300

350

400

M2One_FogCloud Cloud M2One_FogOnly

Li
gh

t
re

q
u

es
ts

 a
ve

ra
ge

 d
el

ay
 (

m
s)

C1 (2240, 1400)

C2 (4480, 2800)

C3 (8960, 5600)

(a)

0

200

400

600

800

1000

M2One_FogCloud Cloud M2One_FogOnly

H
ea

vy
 r

eq
u

es
ts

 a
ve

ra
ge

 d
el

ay
 (

m
s) C1 (2240, 1400)

C2 (4480, 2800)

C3 (8960, 5600)

(b)

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

M2One_FogCloud Cloud M2One_FogOnly

N
et

w
o

rk
 u

sa
ge

 (
B

yt
e)

C1 (2240, 1400)

C2 (4480, 2800)

C3 (8960, 5600)

(c)

Figure 4. Average delay and network usage in the different fog node computing power scenarios.
Config. # = C# (Fogtier2_MIPS, Fogtier1_MIPS). (a) Light requests’ average delay; (b) heavy requests’
average delay; (c) network usage.

Furthermore, a decrease in fog node computing power by half led to a significant
increase in the average delay of both light and heavy requests, with increases of approxi-
mately 38% and 1%, respectively. Notably, the heavy request average delay was comparable
between C1 (Second_tier Fog_MIPS: 2240, First_tier Fog_MIPS: 1400) and C2 (Second_tier
Fog_MIPS: 4480, First_tier Fog_MIPS: 2800); however, an interesting divergence emerged.

Digital 2023, 3 313

As shown in Figure 5b, in C1, about 82% of requests were routed to the cloud, while
in C2, only 7% of requests were processed in the cloud, with the remainder being handled
in the fog layer. This observation suggested that the C2 values represented a threshold for
computing power in our simulated scenario. Although all requests in C2 were processed in
the fog layer, the fog nodes were not sufficiently powerful, resulting in an average delay
nearly identical to that of the cloud. This indicated that the computation delay of fog nodes
in C2 was comparable to the transmission delay to the cloud.

In the M2one_FogOnly mode, we found that the network performance was highly
dependent on the computing power of the fog nodes. Figure 4 illustrates that the average
delay of both light and heavy requests exhibited significant variations with changes in fog
node capacity.

Concerning network usage, we observed distinct patterns across the various op-
eration modes (Figure 4c). Notably, the highest network usage was observed in the
Cloud mode, where all requests were forwarded to the cloud data centres. Conversely,
the M2one_FogOnly mode exhibited the lowest network usage since no requests were sent
to the cloud, and all processing occurred locally, resulting in minimal bandwidth usage.

In the M2one_FogCloud mode, we observed a noteworthy increase in network usage
when the fog node capacity was reduced by half. This increase, approximately 12-times,
can be attributed to routing most heavy requests to the cloud, as previously discussed. Al-
though C1 and C2 exhibited similar average delay values for heavy requests, their network
usage patterns diverged significantly. C2 experienced substantially lower network usage
due to the efficient processing of requests within the fog layer. Furthermore, doubling
the computing power of fog nodes in the M2one_FogCloud mode resulted in a remark-
able 30% reduction in network usage. This reduction aligned network usage with the
M2one_FogOnly mode, as no requests were sent to the cloud in this configuration.

0
200
400
600
800

1000
1200
1400
1600
1800

C1 (2240, 1400) C2 (4480, 2800) C3 (8960, 5600)

N
u

m
b

er
 o

f
p

er
fo

rm
ed

 L
ig

h
t

re
q

u
es

ts

in
 d

if
fe

re
n

t
co

m
p

u
ta

ti
o

n
al

 n
o

d
e

Computing Capacity of (Fog_tier2, Fog_tier1)

Mob_Fog_0 Mob_Fog_1 Static_Fog

Coordinator_Fog Fog_tier2 Cloud

(a)

0
200
400
600
800

1000
1200
1400
1600
1800

C1 (2240, 1400) C2 (4480, 2800) C3 (8960, 5600)

N
u

m
b

er
 o

f
p

er
fo

rm
ed

 H
ea

vy
 r

eq
u

es
t

in
 d

if
fe

re
n

t
co

m
p

u
ta

ti
o

n
al

 n
o

d
e

Computing Capacity of (Fog_tier2, Fog_tier1)

Mob_Fog_0 Mob_Fog_1 Static_Fog
Coordinator_Fog Fog_tier2 Cloud

(b)

Figure 5. Number of requests performed in each computational node in the M2One_FogCloud mode
in the different fog nodes capacity scenarios. (a) Light requests; (b) heavy requests.

5.2. The Effect of Number of Static/Mobile Patients on Evaluation Metrics

To investigate the impact of increasing the number of requests offloaded to fog nodes,
we focused on patient load scenarios ranging from 2 to 8 individuals. To ensure a realistic
representation, we adjusted the size of the hospital rooms to align with standard dimensions.

As depicted in Figure 6, our findings indicated a notable trend when increasing the
number of patients in the M2one_FogCloud mode. Specifically, we observed that, as the
number of patients increased from 2 to 8, the average delay for both light and heavy requests
increased by approximately 100% and 40%, respectively. A similar pattern emerged in
the M2one_FogOnly mode, with an increase of approximately 185% for light requests and
36% for heavy requests. This discrepancy in average delay between M2one_FogOnly and
M2one_FogCloud can be attributed to the coexistence of heavy requests in the fog layer
in M2one_FogOnly, leading to extended processing times for light requests. However,
an intriguing observation arose when we explored the performance of light and heavy
requests for patient counts exceeding four.

Digital 2023, 3 314

0

50

100

150

200

250

300

350

400

450

500

M2One_FogCloud Cloud M2One_FogOnly

Li
gh

t
re

q
u

es
ts

 a
ve

ra
ge

 d
el

ay
 (

m
s)

2 4 6 8

(a)

0

100

200

300

400

500

600

700

M2One_FogCloud Cloud M2One_FogOnly

H
ea

vy
 r

eq
u

es
ts

 a
ve

ra
ge

 d
el

ay
 (

m
s)

2 4 6 8

(b)

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

M2One_FogCloud Cloud M2One_FogOnly

N
et

w
o

rk
 u

sa
ge

 (
B

yt
e)

2 4 6 8

(c)

Figure 6. Average delay and network usage in the different number of static patients scenarios.
(a) Light requests’ average delay; (b) heavy requests’ average delay; (c) network usage.

In these cases, as illustrated in Figure 7b, all additional requests beyond four patients
were forwarded to the cloud due to the limitations of the existing fog nodes. Consequently,
heavy requests’ average delays for 6 and 8 patients became almost identical. As discussed
earlier, the available fog node capacity can adequately support up to four patients; surpass-
ing this threshold caused heavy request delays in the M2One_FogCloud mode to mimic
those in the Cloud mode.

0

500

1000

1500

2000

2500

3000

2 4 6 8

N
u

m
b

er
 o

f
p

er
fo

rm
ed

 L
ig

h
t

re
q

u
es

ts

in
 d

if
fe

re
n

t
co

m
p

u
ta

ti
o

n
al

 n
o

d
e

Number of Static Patients

Mob_Fog_0 Mob_Fog_1
Static_Fog Coordinator_Fog
Fog_tier2 Cloud

(a)

0

500

1000

1500

2000

2500

3000

2 4 6 8

N
u

m
b

er
 o

f
p

er
fo

rm
ed

 H
ea

vy
 r

eq
u

es
t

in
 d

if
fe

re
n

t
co

m
p

u
ta

ti
o

n
al

 n
o

d
e

Number of Static Patients

Mob_Fog_0 Mob_Fog_1
Static_Fog Coordinator_Fog
Fog_tier2 Cloud

(b)

Figure 7. Number of requests performed in each computational node in the M2One_FogCloud mode
in the different number of static patient scenarios. (a) Light requests; (b) heavy requests.

An essential consideration that emerged from our study was the necessity to tailor fog
node computing capacity to the requested volume of a given area. In certain environments,
such as hospitals, we had static patients and mobile patients moving between various loca-
tions. To examine the impact of mobile patients, we introduced a scenario with four static
patients in a room and varied the number of mobile patients from 0 to 12. Our results,
presented in Figure 8, indicated that the presence of mobile patients had a limited effect on
the average delay of both light and heavy requests. Mobile patients generated requests for
only a fraction of their time within an area, and their sporadic presence ensured that the
delay remained relatively constant across different mobile patient counts.

0

50

100

150

200

250

300

350

400

450

500

M2One_FogCloud Cloud M2One_FogOnly

Li
gh

t
re

q
u

es
ts

 a
ve

ra
ge

 d
el

ay
 (

m
s)

0 4 8 12

(a)

0

100

200

300

400

500

600

700

M2One_FogCloud Cloud M2One_FogOnly

H
ea

vy
 r

eq
u

es
ts

 a
ve

ra
ge

 d
el

ay
 (

m
s)

0 4 8 12

(b)

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

M2One_FogCloud Cloud M2One_FogOnly

N
et

w
o

rk
 u

sa
ge

 (
B

yt
e)

0 4 8 12

(c)

Figure 8. Average delay and network usage in the different number of mobile patients scenarios.
(a) Light requests’ average delay; (b) heavy requests’ average delay; (c) network usage.

Digital 2023, 3 315

Interestingly, when we increased the mobile patient count to 12, the total number of
light and heavy requests generated equalled the number generated when there were 6 static
patients. However, Figures 7b and 9b highlight a crucial distinction: the percentage of heavy
requests sent to the cloud in the presence of 12 mobile patients was approximately 10% less
than the percentage when 6 static patients were present. This suggested that distributing
request generation over time, instead of generating requests within a specific time window,
can significantly alleviate the load on fog nodes and expedite request processing.

0

500

1000

1500

2000

2500

3000

0 4 8 12

N
u

m
b

e
r

o
f

p
er

fo
rm

e
d

 L
ig

h
t

re
q

u
e

st
s

in

d
if

fe
re

n
t

co
m

p
u

ta
ti

o
n

al
 n

o
d

e

Number of mobile patients

Mob_Fog_0 Mob_Fog_1
Static_Fog Coordinator_Fog
Fog_tier2 Cloud

(a)

0

500

1000

1500

2000

2500

3000

0 4 8 12

N
u

m
b

er
 o

f
p

er
fo

rm
e

d
 H

ea
vy

 r
eq

u
e

st
 in

d

if
fe

re
n

t
co

m
p

u
ta

ti
o

n
al

 n
o

d
e

Number of mobile patients

Mob_Fog_0 Mob_Fog_1
Static_Fog Coordinator_Fog
Fog_tier2 Cloud

(b)

Figure 9. Number of requests performed in each computational node in the M2One_FogCloud mode
in the different number of mobile patient scenarios. (a) Light requests; (b) heavy requests.

Turning our attention to network usage, as shown in Figure 6c, an increase in static
patient count led to a corresponding rise in network utilisation. Specifically, when we
increased the number of static patients from 4 to 8, network usage surged by approxi-
mately 11-times in the M2One_FogCloud mode and 3.5-times in the Cloud mode. Notably,
Figure 8c reveals a different trend when we introduced 12 mobile patients, resulting in
network usage that was approximately 30% lower than that observed with 6 static patients.

5.3. Results Discussion

In summary, our study underscored the significant influence of network parameters
on the performance of a fog computing network. However, within the context of our
simulations, the proposed method, when applied within a three-layer architecture compris-
ing the IoT layer, fog layer, and cloud layer, consistently outperformed traditional cloud
computing, due to over 90% of heavy requests and all light requests being processed within
the fog layer. We observed an impressive improvement of approximately 30% in average
delay and a significant reduction of 90% in network usage compared to cloud computing.
Notably, further enhancements could be achieved by deploying more-robust fog nodes
within the fog layer of our network infrastructure. If the fog layer is sufficiently empowered
to manage all types of requests, an additional 60% decrease in average delay, alongside a
substantial reduction in network usage, could be observed.

Applications vary in their time sensitivity and computational intensity, with some
requiring both aspects. Consequently, the selection and quantity of fog nodes should be
tailored to meet specific application requirements.

6. Conclusions

The dynamic landscape of IoT applications coupled with the rise of fog comput-
ing offers a substantial opportunity to enhance Quality of Service (QoS) significantly.
Computation offloading is a vital bridge between the IoT and fog nodes, strategically
distributing computational tasks across multiple resource-constrained processing nodes.
Within this realm, our contribution, the Many-to-One (M2One) policy, stands as a strategic
offloading approach that considers pivotal factors, including queuing and transmission
delays, communication channel status, and the limited battery life of mobile fog nodes.
Implementing the M2One policy within a healthcare-monitoring architecture showcased
remarkable adaptability to the ever-changing mobility patterns of patients and fog nodes.

Digital 2023, 3 316

Through extensive experimentation, we carefully studied changes in the network parame-
ters, specifically examining changes in the fog nodes’ computing capacities and the volume
of generated requests. These investigations shed light on the consequential impact on
both the average delay and network usage. Our performance analysis illustrated that our
proposed policy led to an approximate 30% enhancement in average delay in comparison
to cloud computing. Additionally, a considerable 90% reduction in network usage was
observed, underscoring the effectiveness of our framework in meeting the demanding
latency requirements of healthcare applications. While the primary focus of this study
revolved around healthcare applications, the implications of our results extend across vari-
ous sectors that generate copious real-time data, such as video surveillance, autonomous
vehicles, and sports analytics applications.

Moving forward, future work will concentrate on enhancing the precision of mobile
fog nodes and user location determination. We aim to propose a mobility prediction ap-
proach to forecast the next locations of mobile nodes, further optimising task allocation
and resource utilisation. Additionally, our focus will extend to exploring adaptive mecha-
nisms to accommodate diverse IoT applications, ensuring robustness and scalability in fog
computing environments.

Author Contributions: Conceptualisation, F.S., S.H. and Y.C.L.; formal analysis, F.S., S.H. and Y.C.L.;
investigation, F.S., A.R., A.P., S.H. and Y.C.L.; methodology, F.S., S.H. and Y.C.L.; software, F.S.
and A.R.; validation, F.S., A.R., A.P., S.H. and Y.C.L.; visualisation, F.S. and A.P.; writing—original
draft, F.S. and A.P.; writing—review and editing, F.S., A.P., S.H. and Y.C.L.; project administration,
Y.C.L.; supervision, S.H. and Y.C.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data is unavailable due to privacy or ethical restrictions.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

Fj Fog node j
Fj∗ Coordinator fog node
Rm

i Request i generated by the IoT node m
Rm

i:L A light request
Rm

i:H A heavy request
Ri∗ The request that is running on Fj
leni Request size of Rm

i (in bits)
ωi Needed computational resources of Rm

i
θi Deadline (max latency required) of Rm

i
ηj Computing power of Fj (in MIPS)
Test.

serve(i,j) The estimated time for serving Ri in Fj

Tsend(i,j) The required time to send Ri to Fj
Ttrans(j∗ ,j) Transmission delay to send Ri from Fj∗ to Fj
Tprop(j∗ ,j) Propagation delay to send Ri from Fj∗ to Fj
Tprocess(i,j) The required time to process Ri in Fj

T j
queuing The required time to wait in the Fj queue

Texe(i,j) The required time to execute Ri in Fj

χ
j
Ri:L

Number of light request in the Fj queue

χ
j
Ri:H

Number of heavy request in the Fj queue
Rj∗ j Channel bit rate between Fj∗ and Fj

Digital 2023, 3 317

Eest.
(i,j) The remaining energy in Fj after processing Ri

Ej
queuing The queuing requests’ processing energy

Eexe(i,j) The required energy to execute Ri in Fj
Esend(j,j∗) The transmission energy
Pexe(i,j) The power consumption of Fj during execution
Pt The transmission power

References
1. IDC. The Digitization of the World From Edge to Core. Available online: https://www.seagate.com/files/www-content/our-

story/trends/files/idc-seagate-dataage-whitepaper.pdf (accessed on 20 November 2023)
2. Ravandi, B.; Papapanagiotou, T. A self-learning scheduling in cloud software defined block storage. In Proceedings of the IEEE

10th International Conference on Cloud Computing, Honolulu, HI, USA, 25–30 June 2017; pp. 415–422.
3. Yousefpour, A.; Fung, C.; Nguyen, T.; Kadiyala, K.; Jalali, F.; Niakanlahiji, A.; Kong, J.; Jue, J. All one needs to know about fog

computing and related edge computing paradigms: A complete survey. J. Syst. Archit. 2019, 98, 289–330. [CrossRef]
4. Kong, L.; Tan, J.; Huang, J.; Wang, S.; Jin, X.; Zeng, P.; Khan, M.; Das, S. Edge-computing-driven internet of things: A survey.

ACM Comput. Surv. 2022, 55, 1–41. [CrossRef]
5. CISCO. Cisco Fog Computing Solutions: Unleash the Power of the Internet of Things. 2015. Available online: https://docplayer.

net/20003565-Cisco-fog-computing-solutions-unleash-the-power-of-the-internet-of-things.html (accessed on 20 Nov 2023).
6. OpenFog. Openfog Reference Architecture for Fog Computing. 2017. Available online: https://www.iiconsortium.org/pdf/

OpenFog_Reference_Architecture_2_09_17.pdf (accessed on 20 Nov 2023).
7. Lin, H.; Zeadally, S.; Chen, Z.; Labiod, H.; Wang, L. A survey on computation offloading modeling for edge computing. J. Netw.

Comput. Appl. 2020, 169, 102781. [CrossRef]
8. Sharifi, F.; Hessabi, S.; Rasaii, A. The Effect of Fog Offloading on the Energy Consumption of Computational Nodes. In Proceedings

of the 4th International Symposium on Real-Time and Embedded Systems and Technologies, Tehran, Iran, 30–31 May 2022; pp. 1–6.
9. Sharifi, F.; Rasaii, A.; Honarmand, M.; Hessabi, S.; Choon Lee, Y. Mobility-Aware Fog Offloading. In Proceedings of the 24th

Asia-Pacific Network Operations and Management Symposium (APNOMS), Sejong, Republic of Korea, 6–8 September 2023;
pp. 24–29.

10. Gupta, H.; Vahid-Dastjerdi, A.; Ghosh, S.; Buyya, R. iFogSim: A toolkit for modeling and simulation of resource management
techniques in the Internet of Things, Edge and Fog computing environments. Softw. Pract. Exp. 2017, 47, 1275–1296. [CrossRef]

11. Zhu, C.; Pastor, G.; Xiao, Y.; Li, Y.; Ylae-Jaeaeski, A. Fog following me: Latency and quality balanced task allocation in vehicular
fog computing. In Proceedings of the 15th Annual IEEE International Conference on Sensing, Communication, and Networking,
Hong Kong, China, 11–13 June 2018; pp. 1–9.

12. Etemadi, M.; Ghobaei-Arani, M.; Shahidinejad, A. Resource provisioning for IoT services in the fog computing environment:
An autonomic approach. Comput. Commun. 2020, 161, 109–131. [CrossRef]

13. Jin, Y.; Lee, H. On-Demand Computation Offloading Architecture in Fog Networks. Electronics 2019, 8, 1076. [CrossRef]
14. Hussain, M.; Bed, M. CODE-V: Multi-hop computation offloading in vehicular fog computing. Future Gener. Comput. Syst. 2021,

116, 86–102. [CrossRef]
15. Farahbakhsh, F.; Shahidinejad, A.; Ghobaei-Arani, M. Context-aware computation offloading for mobile edge computing.

J. Ambient. Intell. Humaniz. Comput. 2021, 14, 5123–5135. [CrossRef]
16. Li, K. Heuristic computation offloading algorithms for mobile users in fog computing. ACM Trans. Embed. Comput. Syst. 2021,

20, 11. [CrossRef]
17. Cha, N.; Wu, C.; Yoshinaga, T.; Ji, Y.; Yau, K. Virtual edge: Exploring computation offloading in collaborative vehicular edge

computing. IEEE Access 2021, 9, 37739–37751. [CrossRef]
18. Bozorgchenani, A.; Disabato, S.; Tarchi, D.; Roveri, M. An energy harvesting solution for computation offloading in Fog

Computing networks. Comput. Commun. 2020, 160, 577–587. [CrossRef]
19. Zhou, S.; Jadoon, W.; Shuja, J. Machine learning-based offloading strategy for lightweight user mobile edge computing tasks.

Complexity 2021, 2021, 6455617. [CrossRef]
20. Hou, X.; Ren, Z.; Wang, J.; Zheng, S.; Cheng, W.; Zhang, H. Distributed fog computing for latency and reliability guaranteed

swarm of drones. IEEE Access 2020, 8, 7117–7130. [CrossRef]
21. Deng, X.; Sun, Z.; Li, D.; Luo, J.; Wan, S. User-centric computation offloading for edge computing. IEEE Internet Things J. 2021,

8, 12559–12568. [CrossRef]
22. Li, C.; Cai, Q.; Zhang, C.; Ma, B.; Luo, Y. Computation offloading and service allocation in mobile edge computing. J. Supercomput.

2021, 77, 13933–13962. [CrossRef]
23. Qiu, Y.; Zhang, H.; Long, K. Computation offloading and wireless resource management for healthcare monitoring in fog-

computing-based internet of medical things. IEEE Internet Things J. 2021, 8, 15875–15883. [CrossRef]
24. Kuang, Z.; Ma, Z.; Li, Z.; Deng, X. Cooperative computation offloading and resource allocation for delay minimization in mobile

edge computing. J. Syst. Archit. 2021, 118, 102167. [CrossRef]
25. Zhu, Q.; Si, B.; Yang, F.; Ma, Y. Task offloading decision in fog computing system. China Commun. 2017, 14, 59–68. [CrossRef]

https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
http://doi.org/10.1016/j.sysarc.2019.02.009
http://dx.doi.org/10.1145/3555308
https://docplayer.net/20003565-Cisco-fog-computing-solutions-unleash-the-power-of-the-internet-of-things.html
https://docplayer.net/20003565-Cisco-fog-computing-solutions-unleash-the-power-of-the-internet-of-things.html
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
http://dx.doi.org/10.1016/j.jnca.2020.102781
http://dx.doi.org/10.1002/spe.2509
http://dx.doi.org/10.1016/j.comcom.2020.07.028
http://dx.doi.org/10.3390/electronics8101076
http://dx.doi.org/10.1016/j.future.2020.09.039
http://dx.doi.org/10.1007/s12652-021-03030-1
http://dx.doi.org/10.1145/3426852
http://dx.doi.org/10.1109/ACCESS.2021.3063246
http://dx.doi.org/10.1016/j.comcom.2020.06.032
http://dx.doi.org/10.1155/2021/6455617
http://dx.doi.org/10.1109/ACCESS.2020.2964073
http://dx.doi.org/10.1109/JIOT.2021.3057694
http://dx.doi.org/10.1007/s11227-021-03749-w
http://dx.doi.org/10.1109/JIOT.2021.3066604
http://dx.doi.org/10.1016/j.sysarc.2021.102167
http://dx.doi.org/10.1109/CC.2017.8233651

Digital 2023, 3 318

26. Yousefpour, A.; Ishigaki, G.; Gour, R.; Jue, J. On reducing IoT service delay via fog offloading. IEEE Internet Things J. 2018,
5, 998–1010. [CrossRef]

27. Cahnman, S. Design Guidelines for Short-Stay Patient Units. 2017. Available online: https://www.hfmmagazine.com/articles/
2841-design-guidelines-for-short-stay-patient-units (accessed on 20 Nov 2023)

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/JIOT.2017.2788802
https://www.hfmmagazine.com/articles/2841-design-guidelines-for-short-stay-patient-units
https://www.hfmmagazine.com/articles/2841-design-guidelines-for-short-stay-patient-units

	Introduction
	Related Work
	Single-Objective Approaches
	Multi-Objective Approaches

	Mobility Model and Proposed Offloading Policy
	Mobility Model
	M2One Policy: A Fog Node Collaboration Policy

	Simulation Setup
	Healthcare Monitoring Architecture
	Mobility Scenario
	Operation Modes and Configurations

	Experimental Results
	The Effect of Fog Node Computing Power on Evaluation Metrics
	The Effect of Number of Static/Mobile Patients on Evaluation Metrics
	Results Discussion

	Conclusions
	References

