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Abstract: This paper proposes an upper bound for mine productivity (useful for long-term planning)
and also a simple truck dispatch rule (useful for short-term operations) that demonstrates how tight
the upper bound can be using a simulation. It also proposes a greedy search to approximate the
productivity upper bound, which is faster and often exact. Uncertainty is added to the simulation
in order to verify how the productivity responds to it. Typically, the productivity’s upper bound
is less tight close to its saturation point as a function of the number of trucks, where adding more
trucks only increases queues. Furthermore, more uncertainty in the model typically leads to a less
tight upper bound. The results conducted using real data from an open pit mine in Brazil show that
the gap between the productivity upper bound and the productivity realization using the proposed
dispatch rule for a homogeneous fleet can be less than 2%, but it can be as large as 12% near the
productivity saturation point without uncertainty. Even though this gap seems to become arbitrarily
small as the number of trucks and the simulation horizon increase, the productivity upper bound is
never violated, which validates it as an upper bound and induces optimality for the dispatch rule.

Keywords: mine productivity; upper bound; truck dispatch rule

1. Introduction

Mining is a process of extracting valuable materials from underground and open pit
mines. These materials, known as ores, are typically a combination of minerals, natural
rocks, and sediments, which have economic value when refined. During the last few
decades, mining has played an important role in the economic development of several
countries, especially in emerging countries [1]. However, mining is a very complex in-
dustrial operation, and its progress must contain several planning stages, starting with
prospecting for ore bodies and ending with the final reclamation of the land after the mine is
closed. In addition, a mining project must maximize the net present value (NPV), extracting
the ore at the lowest possible cost over the mine’s life cycle and, therefore, making the effort
of such labor worthwhile.

In open pit mines, where operating costs are very high, it is even more essential to
maximize the productivity of a minimum cost. Among the most expensive open pit mine
operations, haulage and material handling stand out, accounting for 50–60% of the total
operating costs [2]. In order to reduce this cost and thereby maximize the NPV of the
mining project, a fleet management system (FMS) is required, whose goal is to solve two
problems: (i) find the shortest path to travel between each pair of locations (loading and
dumping sites) in the mine (shortest path problem) and (ii) determine the number of truck
trips required for each path and then dispatch the trucks to the locations in real-time, which
is the focus of this paper.

Hence, the FMS can be single-stage or multi-stage. The single-stage approaches
dispatch trucks without considering any production targets or constraints and typically
consist of heuristics based on rules of thumb [3,4]. However, multi-stage approaches have a
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great advantage over single-stage approaches by dividing problem into two sequential sub-
problems [5,6]. This division into stages introduces the second level of knowledge to the
FMS, which improves the quality of the solutions, as well as allowing them to better adapt
to real scenarios with uncertainties. The first sub-problem consists of efficiently allocating
haulage resources for excavation activities based on truck loads, aiming to maximize the
truck productivity (truck and shovel allocation problem—upper stage), and the second sub-
problem consists of dispatching trucks to a loading or a dumping site (truck dispatching
problem—lower stage) [7].

Although it has not been extensively investigated as the upper stage sub-problem,
the truck dispatching problem is essential for the FMS. It is by solving the lower stage
sub-problem that planning comes into play to achieve the production targets defined
in the previous stage. Formally, the truck dispatching problem, which can be treated
as an assignment problem [5,8] or a transportation problem [9–11] is real-time decision
making associated with the destinations of trucks to satisfy the production requirements
in a mining operation. To achieve these requirements, one or more objectives are usually
defined, including the maximization of mine productivity or the minimization of truck
inactivity (whether through idle time, waiting time, or loading/dumping time). Therefore,
several formulations of this optimization problem have already been proposed, as well as
different solutions to these formulations.

Since the truck dispatch problem also occurs in fuel and package deliveries, taxis and
ride-hailing services, and other industries that have to manage fleets of vehicles, some
approaches used to solve the dispatch problem in other contexts have been naturally
adopted for the problem applied in the mining industry. However, the transition of
approaches in different contexts can be inappropriate. In open pit mines, some important
particularities must be considered in the optimization problem. For example, the travel
distance between two locations is usually short, the time taken for the truck to load or
dump is often longer than the travel time, and the frequency of demand at each location is
often higher [2].

Therefore, the efficiency of a solution to the truck dispatch problem aimed at maxi-
mizing the mine’s productivity is strictly related to the fleet size and the haulage distances.
A fleet with an insufficient number of trucks (under-truck) will result in substantially
unproductive periods and a fleet with a high number of trucks (over-truck) may lead to
queues for loading or dumping. Thus, several methods have been proposed to select the
optimal size of the truck fleet in the truck dispatching problem, i.e., the number of trucks is
considered to be a decision variable, which avoids the aforementioned problems. Generally,
these methods are based on match factor [12–15], artificial intelligence [16–18], operations
research [19–22], life cycle cost analysis [23,24], or discrete event simulation [25–27]. How-
ever, the major drawback of these works is that they were developed to address only the
equipment selection and sizing problem, in particular, the size of the haulage fleet handling
the dump materials, and typically disregard the truck dispatch rules [15]. On the other
hand, dispatching rules have been studied apart from fleet sizing, based on optimization
models with operations research [28,29], dynamic truck allocation [30,31], heuristics with
real-time data [32,33], simulations [34], or artificial intelligence [35]. This paper sheds some
light on the interface between long-term fleet sizing with productivity estimation and its
realization in the short term with a specific dispatch rule.

From this perspective, we define a linear programming model that derives the upper
bound for mine productivity by considering trucks of a heterogeneous fleet allocated in
cycles (pairs of loading–dumping sites). In addition, we propose a simple truck dispatch
rule that leads to mine productivity, found in a discrete event simulation, close to this
upper bound. Through a case study in an open pit mine in Brazil, we also show that the
simulation takes into account fleet size problems, and the results obtained can be feasibly
implemented in real-world situations.
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2. Mine Model

The mine model used in this paper considers a productive cycle of individual trucks
in a mine which are assigned to a loading site, dispatched to the chosen loading site where
they are loaded, assigned to a dumping site, dispatched to the chosen dumping site where
they are finally dumped and start the cycle all over again, as shown in Figure 1. The
degree of freedom lies in determining where to assign the trucks to load or dump at each
moment, which must maximize the mine productivity in the long term. In the next section,
an upper bound for mine productivity is proposed using linear programming, which is
latter approximated by a greedy search. The mine productivity is physically realized by a
discrete event simulation using a simple truck dispatch rule. The loading and dumping
points are shared truck resources with respective service times, which may result in truck
queues. Truck queues are explicitly modeled in the simulation, where they are used to
schedule new events, and they are implicitly modeled during optimization, where trucks
are allocated up to the total occupation of the loading or dumping points (i.e., from this
point on, more trucks would result only in queues and not in productivity gains).

truck
cycle

empty haulage

loaded haulage

dumping
loading

Figure 1. Truck cycle with its four states.

2.1. Optimization Problem

In order to derive an upper bound for long-term mine productivity, trucks are consid-
ered to be allocated in cycles defined by pairs of loading–dumping sites, where the cycle
times are given by

tc,iu ,i`,im = 2
diu ,i`
vim

+ tu,iu ,im + t`,i`,im , ∀iu, i`, im (1)

where diu ,i` is the distance between the dumping site iu and the loading site i`, vim is the
truck speed for model im, tu,iu ,im is the dumping time at the dumping site iu for truck model
im, and t`,i`,im is the loading time at the loading site i` for truck model im. The trucks are
allowed to change their loading and dumping sites after each load or dump operation.
Hence, in order to derive an upper bound for the productivity, the number of trucks of
model im allocated in the cycle defined by loading site i` and dumping site iu is a non-
negative real number Niu ,i`,im , where fractions denote the truck’s relative time slice in each
cycle. The resulting productivity of this allocation is given by

Niu ,i`,im Lim
tc,iu ,i`,im

(2)

where Lim is the load of truck model im, and tc,iu ,i`,im is the respective cycle time.
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The maximum number of trucks that a resource (e.g., loading or dumping site) can
support in a cycle without queues is given by

tc,iu ,i`,im
tu,iu ,im

or
tc,iu ,i`,im
t`,i`,im

(3)

so that each truck occupies a cycle time slice with the length given by the service time and
serviced in a continuous way without queuing. Hence, the occupation due to an allocated
number of trucks Niu ,i`,im is given by

Niu ,i`,im tu,iu ,im
tc,iu ,i`,im

or
Niu ,i`,im t`,i`,im

tc,iu ,i`,im
(4)

which must be, at most, 1 to prevent the generation of queues.
The linear optimization problem for maximum productivity can be written as

maximize
nu

∑
iu=1

n`

∑
i`=1

nm

∑
im=1

Niu ,i`,im Lim
tc,iu ,i`,im

(5)

subject to
n`

∑
i`=1

nm

∑
im=1

Niu ,i`,im tu,iu ,im
tc,iu ,i`,im

≤ 1, ∀iu (6)

nu

∑
iu=1

nm

∑
im=1

Niu ,i`,im t`,i`,im
tc,iu ,i`,im

≤ 1, ∀i` (7)

nu

∑
iu=1

n`

∑
i`=1

Niu ,i`,im ≤ nt,im , ∀im (8)

0 ≤ Niu ,i`,im ≤ nt,im , ∀iu, i`, im (9)

where Niu ,i`,im (design variable) is the number of trucks of model im allocated in the cycle
between the dumping site iu and the loading site i`, nt,im is the number of available trucks
of model im, nu is the number of dumping sites, n` is the number of loading sites, and nm
is the number of truck models. The problem is basically a productivity maximization (5)
problem subject to resource constraints (6)–(8).

Greedy Search

The linear problem (5)–(9) maximizes a conical combination (i.e., a linear function
with positive coefficients) on the design variables N (number of allocated trucks) subject to
upper bounded conical combinations on N. If only one resource constraint is considered,
the exact solution would be to allocate trucks with the largest benefit–cost ratios, where
benefit is be given by the objective coefficients and cost is caused by the constraint coef-
ficients. Considering all three resource constraints, a greedy search is then proposed to
find an approximate solution to the linear problem (5)–(9) by allocating trucks to the most
productive cycles (i.e., the ones relative to the largest objective coefficients), up to their
resource availability bound given by the most restrictive resource constraint.

Algorithm 1 depicts this greedy search. Lines 1 and 2 initialize the output parameters.
Lines 3 and 4 initialize the cycle time and cycle productivity. Lines 5–7 initialize the resource
(dumping sites, loading sites and trucks) allocation. Line 8 initializes the remaining cycle
indicator. Line 10 finds the most productive remaining cycle. Line 11 allocates trucks
according to the resource availability. Lines 12–14 update the resource availability. Lines 15
and 16 update the output parameters. Lines 17–26 update the remaining cycle indicator.
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Algorithm 1 Greedy search for mine productivity.

Input
d ∈ Rnu×n` distance between the dumping and loading sites

tu ∈ Rnu×nm truck dumping time
t` ∈ Rn`×nm truck loading time

nt ∈ Rnm number of trucks
v ∈ Rnm truck speed
L ∈ Rnm truck load

Output
P ∈ R mine productivity

N ∈ Rnu×n`×nm number of trucks in each loading–dumping cycle
1: P← 0
2: Niu ,i`,im ← 0, ∀iu, i`, im

3: tc,iu ,i`,im ← 2
diu ,i`
vim

+ tu,iu ,im + t`,i`,im , ∀iu, i`, im . cycle time

4: Pc ←
Lim

tc,iu ,i` ,im
, ∀iu, i`, im . cycle productivity

5: nr,im ← nt,im, ∀im . remaining trucks
6: au,iu ← 0, ∀iu . dumping site occupation
7: a`,i` ← 0, ∀i` . loading site occupation
8: biu ,i`,im ← 1, ∀iu, i`, im . remaining cycles
9: while any nr,im > 0 and any biu ,i`,im = 1 do

10: (i?u, i?` , i?m)← arg maxiu ,i`,im Pc,iu ,i`,im : biu ,i`,im = 1 . best cycle

11: nmin ← min
{

nr,i?m ,
(1−au,i?u

)tc,i?u ,i?
`

,i?m
tu,i?u ,i?m

,
(1−a`,i?

`
)tc,i?u ,i?

`
,i?m

t`,i?
`

,i?m

}
. allocation

12: au,i?u ← au,i?u +
nmintu,i?u ,i?m

tc,i?u ,i?
`

,i?m

13: a`,i?`
← a`,i?`

+
nmint`,i?

`
,i?m

tc,i?u ,i?
`

,i?m
14: nr,i?m ← nr,i?m − nmin

15: P← P +
nminLi?m
tc,i?u ,i?

`
,i?m

16: Ni?u ,i?` ,i?m ← nmin
17: bi?u ,i?` ,i?m ← 0
18: if au,i?u ≥ 0.999 then
19: bi?u ,i`,im ← 0, ∀i`, im
20: end if
21: if a`,i?`

≥ 0.999 then
22: biu ,i?` ,im ← 0, ∀iu, im
23: end if
24: if nr,i?m ≤ 0.001 then
25: biu ,i`,i?m ← 0, ∀iu, i`
26: end if
27: end while
28: return P, N

2.2. Simulation

The truck cycles can be simulated using a discrete event system simulation considering
a dispatch rule, as depicted in Figure 2. Initially, one event is scheduled in the event calendar
for each truck. In order to improve the simulation warm up, the trucks are distributed on
dumping sites according to their respective cycle capacities obtained from the optimization
model (5)–(9). The simulator then basically fires the next event in the calendar at each time,
until the time horizon is reached. Each fired event schedules a new event in the calendar
and changes the respective truck state. The scheduled times may follow a particular
probability distribution, leading to a stochastic simulation and considering that uncertainty
sources in different locations in the mine are unrelated, so that random numbers following
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a probability distribution may be considered realizations of the respective uncertainty.
Despite being simple, this computational model may be extended to consider further
model details, as needed, and it is specially useful for short-term operation.

start

initial schedule in
event calendar

fire next event
in calendar

time greater
than horizon?

end

yes

no

Loading end
1. dispatch to dumping point;
2. schedule arrival at dumping point.

Events of each truck

Arrival at dumping point
1. update queue time;
2. schedule dumping end.

Dumping end
1. log truck payload;
2. dispatch to loading point;
3. schedule arrival at loading point.

Arrival at loading point
1. update queue time;
2. schedule loading end.

Figure 2. Discrete event simulator for mining truck cycles in a time horizon.

Dispatch Rule

Considering that the solution to the productivity optimization problem tends to be
greedy, as considered by its respective approximate solution by Algorithm 1, it is consistent
to also derive a greedy solution for the dispatch rule, where the fastest cycles are filled first.
Hence, the proposed dispatch rule is to route trucks to services (i.e., loading or dumping)
which will finish first in a prediction at the moment of dispatch, as depicted in Algorithm 2
to dispatch to a loading site. The algorithm to dispatch to a dumping site is analogous.
This dispatch rule is easy to implement and, as shown in the results section of this paper,
it leads to an almost optimal solution when compared to the productivity upper bounds
provided by the optimization model (5)–(9),

Algorithm 2 Dispatch rule to a loading site.

Input
t ∈ R current time

d ∈ Rnu×n` distance between the dumping and loading sites
t` ∈ Rnu×nm truck loading time

v ∈ Rnm truck speed
iu ∈ N current dumping site
im ∈ N truck model

t̃q ∈ Rn` loading queue time

Output
i` ∈ N next loading site

t̃q ∈ Rn` loading queue time
1: th,j` ← diu ,j`/vim , ∀j` . transit time
2: t̃j` ← max{t̃q,j` , t + th,j`}. ∀j` . loading starting time prediction
3: i` ← arg minj` t̃j` + t`,j` . select the earliest loading finishing time prediction
4: t̃q,i` ← t̃i` + t`,i` . update queue time
5: return i`, t̃q

Following Algorithm 2, the predicted service (i.e., dumping and loading) finish time
is tracked in a variable t̃q. During the dispatch, the predicted service finish time t̃js + t̃s,js ,
s ∈ {u, `}, is calculated for each destination server js, considering the service time ts,js and
the predicted service starting time t̃js , which in turn depends on the transit time th,js , the
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current time t, and the predicted last finish time of the respective server t̃q,js . The truck is
then dispatched to the server is with the earliest predicted service finish time, which is set
to the respective service finish time in t̃q,is. For stochastic simulations, the mean values of
the respective probability distributions are considered in the prediction.

3. Results

The main objective of the tests in the next subsections is to show how tight the
proposed upper bound for productivity can be, and this is verified by a physical realization
obtained from a simulation using the simple proposed truck dispatch rule.

3.1. Simulated Productivity Convergence and Its Upper Bound

Figure 3 shows the productivity convergence for a discrete event system simulation for

d =

 4095 3427 2700 5200 5394 5189 4617 4615 2293 2617 2816 3135 3242 3587 3862
4198 3029 2770 5300 5400 6626 4800 4800 3325 3516 3374 3436 3210 2638 4000
3554 2907 2704 5509 5736 5534 4985 4995 1607 1932 2212 2475 2529 2926 4248

m, (10)

nu = 3 dumping sites, n` = 15 loading sites, nm = 2 truck models, dumping time tu,
given in Table 1, loading time t` in Table 2, truck speed v, given in Table 3, truck load
L, given in Table 4, and a fully available truck number nt = (12, 9). These data were
obtained from 7 months of real operation in the Pico mine in Brazil, where the truck models
were, respectively, CAT-785C and CAT-789D. Pico is a mine in Itabirito city, in the state
of Minas Gerais in Brazil, which has been in operation since 1942 with a processed iron
ore production capacity of 22Mt/year. Notice from Figure 3 that one day of simulation
is enough for a long-term productivity estimation (actually, the productivity looks steady
after 12 hours of model simulation), and also that the simulated productivity is never
larger than the upper bound. The gap between the simulated steady state productivity and
its upper bound is mostly explained by the heterogeneous fleet, in particular, due to the
25% difference in the load capacity between the two truck models. A queue priority for
more productive models would make the gap smaller, but this is beyond the scope of this
paper and could be a research theme for further investigation. The next section shows a
homogeneous fleet simulation, which leads to much tighter gaps.

Figure 3. Productive convergence using a discrete event system simulation for the mine, which must
be bellow the upper bound given by the linear optimization problem (5)–(9).
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Table 1. Dumping time tu for each truck model (i.e., they are the same for every dumping site)
following a triangular distribution in the interval [a, b] with the mode at c.

Truck Model im Minimum a (s) Maximum b (s) Mode c (s)

1 23 47 35
2 30 54 42

Table 2. Loading time t` for each truck model (i.e., they are the same for every loading site) following
a triangular distribution in the interval [a, b] with the mode at c.

Truck Model im Minimum a (s) Maximum b (s) Mode c (s)

1 146 298 222
2 185 349 267

Table 3. Truck speed v for each truck model following a triangular distribution in the interval [a, b]
with the mode at c.

Truck Model im Minimum a (km/h) Maximum b (km/h) Mode c (km/h)

1 15 31 23
2 17 33 25

Table 4. Truck load L for each truck model following a triangular distribution in the interval [a, b]
with the mode at c.

Truck Model im Minimum a (t) Maximum b (t) Mode c (t)

1 138 148 143
2 189 201 195

3.2. Fleet Sizing

Figure 4 shows the increase in mine productivity with the number of available CAT-
789D trucks until a saturation point is reached, where more trucks will only generate queues.
This case study considers the distance (10) between nu = 3 dumping sites and n` = 15
loading sites, as well as the parameters in Tables 1–4 for truck model 2 (i.e., CAT-789D).
Notice that the greedy search solution matches the optimal solution, which is typical, but
does not always happen (sometimes the greedy search productivity is a little smaller just
before the saturation point). This quantifies the optimality of the greedy search. Notice
from Figures 4 and 5 that the simulated productivity, which is a feasible realization of trucks
in the mine, starts close to the optimal productivity upper bound given by the solution
of (5)–(9), gradually becoming smaller than the upper bound because of queues as the
number of trucks increases. The simulated productivity ends close to the upper bound
again (with a gap inferior to 2%), as the number of trucks is large enough to occupy all
loading and dumping services without gaps. This quantifies the optimality of the dispatch
rule and also quantifies how tight the upper bound can be. Finally, notice also that greater
uncertainty in the simulation leads to lower productivity due to unforeseen queues, whose
gap becomes smaller as the number of trucks gets further from the saturation point. For
50% of the uncertainty (i.e., triangular distribution with mean c = µ, minimum a = 0.5µ
and maximum b = 1.5µ), the gap between the simulated productivity and its upper bound
can become as large as 25%. Finally, notice that as the number of trucks gets large enough,
all simulated productivity tends toward the upper bound (curiously, all with a relative
error about 2%), no matter what the uncertainty involved is and so does the greedy search
solution. This result shows how robust to uncertainty the proposed dispatch rule is, as
well as how optimal the greedy search solution is. These results are depicted in detail and
obtained for more mine instances in the next section.
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Figure 4. Mine productivity as a function of number of trucks available in the mine. Models
with uncertainty p ∈ {20%, 50%} consider the average productivity of 30 runs using symmetric
triangular distributions with the mean at µ, whose minimum and maximum values are at (1− p)µ
and (1 + p)µ, respectively.

0 20 40 60 80 100 120 140 160
number of trucks

10−2

10−1

pr
od

uc
tiv

ity
 g

ap

simulated (0% of uncertainty)
simulated (20% of uncertainty)
simulated (50% of uncertainty)

Figure 5. The mine’s realized productivity gap to the upper bound as a function of the number
of trucks available in the mine. Models with uncertainty p ∈ {20%, 50%} consider the average
productivity of 30 runs using symmetric triangular distributions with the mean at µ, whose minimum
and maximum values are at (1− p)µ and (1 + p)µ respectively.

3.3. A Tight Upper Bound

Figure 6 shows how small the gap between the productivity upper bound and its
realization is with and without uncertainty. Figure 6 also shows the greedy search solution
gap to the exact linear programming solution. Notice how optimal the greedy search
approximation tends to be. Indeed, it is very often optimal up to the machine floating
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point precision of 2−52 ≈ 10−16. Furthermore, the gap between the upper bound and its
realization with the simulation is relatively small (typically 1%) for a enough large number
of trucks, even for greater uncertainties. The independence on the uncertainty is due to
the greater number of trucks that fill in the time gaps caused by prediction errors of the
dispatch rule. This experiment considers the average gap for ten different instances with
three dumping points, up to fifteen loading points and one hundred and sixty trucks (a
relatively large number of trucks, as shown in Figure 4 for the largest instance), where
the distances between the loading and dumping points are random numbers with equal
probabilities in the range [500, 5000] m, the loading times are random numbers with equal
probabilities in the range [240, 300] s, and the unloading times are random numbers with
equal probabilities in the range [50, 70]s.

It is also noteworthy in Figure 6 that the gap to the upper bound does not vary much
over the 15 instance sizes simulated on 10 different mine parameters (i.e., 150 different
mine instances). This empirical evidence may be investigated further in order to find any
justifying reason, which could be used to refine the dispatch rule or even the upper bound.
Finally, the simulated mine productivity (with or without uncertainty) is consistently below
the upper bound, which validates the upper bound, but it is also noteworthy that the
productivity asymptotic convergence from below (as shown in Figure 3) is fundamental for
this numerical result.

0 2 4 6 8 10 12 14
number of loaders

10−16

10−14

10−12

10−10

10−8
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greedy search
simulated (0% of uncertainty)
simulated (20% of uncertainty)
simulated (50% of uncertainty)

Figure 6. Average mine realized productivity gap to the upper bound for 10 different random
instances with 160 trucks as a function of the number of loaders available in the mine. Models
with uncertainty p ∈ {20%, 50%} consider the average productivity of 30 runs using symmetric
triangular distributions with the mean at µ, whose minimum and maximum values are at (1− p)µ
and (1 + p)µ respectively.

4. Conclusions

The mine productivity’s upper bound proposed in this paper is considerably tight
when the number of trucks becomes large and it can be quickly obtained, especially if the
proposed greedy search is used. This makes it suitable for the long-term planning of a
mine (e.g., truck and shovel allocation problem). On the other hand, if the simulation is
slower, it provides a physical realization of the mine operation. Furthermore, more details
can be added to the simulation, making it suitable for short-term planning (e.g., truck
dispatch problem).
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The simple dispatch rule proposed in this paper leads to a productivity level close the
its upper bound for homogeneous fleets, which indicates the suitability of the rules. When
queues in the mine are small or when there are too many trucks in the mine, the proposed
dispatch rule tends to provide a productivity level close to its upper bound. Considering
that the dispatch rule is greedy, the good agreement between the greedy search and the
linear programming productivity upper bound supports the good performance of the
dispatch rule.

The approach introduced in this paper to couple long-term and short-term policies
may serve to derive new objectives other than maximization of productivity (e.g., the
maximization of shovel or truck utilization or the maximization of adherence to production
specifications, as proposed in other papers) and their respective dispatch rules. Further-
more, as an instance of this approach, this paper introduces a new simple-to-implement
and fast-to-run upper bound and its respective dispatch rule to maximize mine production
from long-term planning to short-term operation with an agreement between the long-term
planning and short-term operation of as close as 2%.
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