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Abstract: This study aims to investigate the effect of ridged (micro-grooved) surface finish over the
trunnion surface on the mechanics (stress, strain, and deformation) of the head–neck taper interface in
hip implants. Using finite element modelling, the study focused on the geometric parameters of such
micro-grooves to study how they would mechanically affect stress and deformation fields after the
assembly procedure. As such, five different 2D models with varying micro-groove height and spacing
were produced and assembled under an impaction assembly force of 4 kN in a 32 mm CoCrMo
head engaged with a 12/14 Ti-6Al-4V neck. The results showed that lower von Mises stresses could
be induced by either an increase or decrease in spacing against the base model (Model 1), which
probably signifies that the relationship between the ridge spacing and stress may depend on the
level of spacing. It was concluded that the geometrical parameters of the ridges (and their non-linear
interactions) impact not only the stress and strain fields but also the assembly loading time at which
the maximal stress and plastic deformation occur.
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1. Introduction

Hip replacement surgery is a common treatment for relieving patients of the dis-
comfort induced by damaged hip joint components. This procedure has seen substantial
advancement by collecting data and information through analysis of retrieved implants [1,2]
and finite element analysis of hip implants [3,4]. Modular metallic and/or ceramic hip
implants are used to replace the natural bone structural systems instead of using monoblock
implants [5]. The geometry of such implants can be adjusted to the patient’s anatomical and
physical characteristics, and various components of these implants can be manufactured
from various materials, too [1,5]. Even with providing these flexibilities, patients who
receive implants may face problematic issues such as implant loosening and premature
functional failure due to fretting wear and corrosion at the engaging interfaces of the
implants [1,5,6]. Fretting corrosion at the head–neck taper junction causes the release of
metallic/ionic debris into the soft tissues in the body, leading to regional tissue reactions,
infection, and in some cases, implant failure [6]. Researchers have always been interested in
improving the design of such implants and providing recommendations for the assembly
procedure, which can, altogether, result in higher interfacial engagement and lower wear,
and hence, a better integrity at the head–neck taper junction [7,8].

Finite element analysis (FEA) is one of the commonly used approaches to investigating
the strength and integrity of head–neck junctions in hip joint implants. This approach
provides an opportunity to play with the design parameters of the implant and shed light
on parameters which are difficult to measure in experimental investigations. Although
pull-off tests and in vivo analysis are usually conducted, they have multiple limitations
in reflecting the complex mechanics of the head–neck interface, and in most cases, they
are time-consuming and expensive to conduct. Given these reasons, FEA is preferred by
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some researchers for analysing the mechanics of the head–neck junction in a well-replicated
virtual environment. The analysis of contact mechanics at the head–neck interface is com-
plex, and the literature confirms that there are many studies to improve the understanding
of this interface [7–10]. An FEA study was conducted by Gustafson et al. [10] where a
micro-grooved Ti-6Al-4V neck was assembled with a CoCrMo head with various impaction
forces of 4, 8 and 12 kN. Stress concentration and deformation of the micro-grooves were
captured and analysed using FEA.

Previous research has found that various factors such as assembly force, taper an-
gle mismatch, and material combination can significantly affect the strength of the junc-
tion [3,4,11,12]. The surface finish of the head and neck components is one of the key
parameters affecting the mechanics of the junction. The surface finish parameter has been
shown to affect the tribological performance of an interface in simplified pin-on-disk geome-
tries. For instance, Landolt et al. [13] showed that the relative roughness of two contacting
bodies can change the mechanical and chemical wear losses from the disk component.
Additionally, Kashyap and Ramkumar [14] investigated the influence of micro-groove
surface texturing on the tribological performance in a metal-on-polymer pin-on-disk con-
figuration. Several studies, either FEA or retrieval, have been conducted to investigate the
mechanics and fretting corrosion in the taper junction of hip implants [7,9,15,16]. In some
retrieval studies [16–18], the effect of micro-grooves on the fretting corrosion damage at
the junction interface was evaluated. An FEA study conducted by Jauch et al. [19] showed
that the stress and strain fields could noticeably be altered with a change in the height of
the micro-grooves. It was found that the proportions of the deformed micro-grooves could
change from 76% to 100% depending on the height of the micro-grooves. Since the amount
of this deformation affects the resulting contact area at the interface, the strength of the
interface is expected to change. A retrospective analysis was carried out on 269 head and
neck implants obtained from various manufacturers [18]. The study focused on examining
fretting corrosion damage in these implants. The results of the analysis indicated that
the extent of damage observed in the retrieved implants was correlated with the taper
topography [18]. On the other hand, one study conducted by Ashkanfar et al. [7] concluded
the negative effect of micro-grooves on the fretting wear of the head–neck junction. They
modelled two trunnions: one with a smooth surface and the other as micro-grooved. The
two trunnions were then engaged with a 36 mm CoCr head under an assembly force of
4 kN over a period of 0.7 ms. The findings indicated that a smooth taper resulted in a
better fixation and lower volumetric wear rate [7]. Based on these studies, there is still
inconsistency regarding the role of micro-grooved geometry in the damage of head–neck
junctions, as different studies report different results. Taking this into consideration, it
is, therefore, still unclear whether or not micro-grooves could improve the mechanical
performance of the head–neck junction. Therefore, further investigations are necessary to
better understand the mechanics of micro-grooved taper junctions.

Reviewing the literature, several hypotheses have been developed and analysed,
including one that an increase in the micro-groove height causes a change in the stress and
strain fields at the interface. However, there are still some other important aspects that
require further investigations and more understanding. For instance, the change in both the
spacing and height of micro-grooves could possibly lead to a non-linear contact behaviour
at the interface which can then affect the mechanics of the junction. This necessitates a
further analysis of wider variations in the micro-groove profile (depth, height and spacing),
as well as the unknown effect of the off-axial assembly procedure together with the material
combination on the micro-grooved junctions. In addition, the effect of the micro-groove
profile on implant stability is still unknown and requires further research. This paper,
therefore, aims to conduct a finite element study on the head–neck junction with varied
levels of micro-groove depth and spacing to investigate the influence of micro-groove
geometry on the mechanics of the junction. It aims to analyse the role of micro-groove
depth and spacing in the stress and strain fields induced at the interface, thereby generating
a better picture from the mechanics of micro-grooved junctions.
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2. FE Model

A 2D axisymmetric model (Figure 1) was produced for the head–neck junction with
the ridged trunnion surface. The analysis aimed to use very small elements at the interface
particularly close to the ridges in order to reliably determine the strain of the micro-grooves
and the mechanics of the interface.
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Figure 1. Two dimensional (2D) axisymmetric model with a micro-grooved profile on the neck
surface with the boundary conditions and loading applied to the model.

2.1. Model Design

The FEA consisted of two main components, a femoral head, and a neck (trunnion).
The design of the head and trunnion was based on dimensions detailed in a previous
study [12]. The trunnion was designed with a 12/14 design, a trunnion angle of 5.686
degrees. The 12/14 design refers to a trunnion which has a diameter of 14 mm in its distal
end, and 12 mm in the proximal end. A 32 mm head was designed with a taper angle
of 5.716 degrees, based on the dimensions available in [12]. The resulted model was of
proximal contact with a mismatch angle of 0.015 degrees. There was 1.85 mm between the
head’s flat roof surface and the trunnion’s upper surface [9,12,20].

In total, five different models for the head–neck junction were generated. The head
dimensions were the same in all the designs, and the micro-groove height and spacing
created on the trunnion’s surface were changed among the models. As per the experimental
measurements on a micro-grooved neck (CPT, Zimmer, Warsaw, IN, USA), the groove
height, depth, and spacing (introduced in Figure 2) were captured as 11 µm, 7 µm, and
200 µm, respectively. These measurements, along with the dimensions of the head and neck
components from [12], were employed to create the base model (Model 1). The addition
of the micro-grooves was assumed to have no effect on changing the outer diameters of
the neck such that a 12/14 neck design was modelled and finalised for the analysis. The
three geometrical parameters were then changed in different models, as listed in Table 1. In
two models, the height and depth were increased and decreased by 20% while the spacing
was kept as constant to the base model. In the other two models, the spacing was changed
by 20% while the height and depth were kept the same as the base model. As shown in
Figure 2, two different dimensions were considered for height and depth. The profile shape
for both the height and depth followed a sinusoidal form.
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Table 1. Geometry and dimensions for 5 models with varied micro-groove depth, height, and spacing.

Model Number Variable(s) for the 2D Models Micro-Groove Depth
(µm)

Micro-Groove Height
(µm)

Micro-Groove
Spacing (µm)

Model 1 Base model—as
per measurements 7 11 200

Model 2 With 20% reduction in depth
and height 5.6 8.8 200

Model 3 With 20% increase in depth
and height 8.4 13.2 200

Model 4 With 20% reduction in spacing 7 11 160

Model 5 With 20% increase in spacing 7 11 240

2.2. Material Model

A Ti-6Al-4V trunnion was engaged with a Co-28Cr-6Mo femoral head [12]. A multi-
linear isotropic hardening plastic model was employed to simulate the material behaviour
beyond its elastic limit. Based on these models, the plastic strain was initiated at the yield
point, and the material was deemed to have failed at the point where the ultimate tensile
strength and percentage of elongation were met. The plastic strain failure was described as
the point at which the material’s maximum elongation was achieved [12,20]. The models
created in SolidWorks were imported into the ANSYS Explicit Dynamics environment
and were defined in an axisymmetric configuration. The neck and head components were
defined with material properties from Ti and CoCr alloys, respectively (Table 2) [10,20].

Table 2. Material properties used for the two alloys used in the FE modelling.

Material
Young

Modulus
(GPa)

Poisson’s Ratio
Shear

Modulus
(GPa)

Yield Strength
(MPa)

Ultimate
Tensile

Strength (MPa)

Elongation at
Break (%)

Ti-6Al-4V 119 0.29 46.1 840 1020 15

CoCrMo 213 0.30 45.7 930 1310 29

2.3. Meshing and Boundary Conditions

The interaction between the head and neck components was modelled with a friction
coefficient of 0.21 [7]. Hex-dominant meshing was used for both the head and neck
components [20] and face sizing was applied to their common interface with a refinement
factor of 3 for producing reliable results (Figure 3). The process of mesh refinement was
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completed a number of times to achieve mesh independent results. The total number of
elements for the head and neck components in Model 1 (Table 1) was 117,497 and 111,582,
respectively. An explicit dynamics approach was used to replicate the assembly procedure
in common surgery.
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the ridges.

The total time for the analysis was taken to be 0.001 s. As the time for the load
application is around 0.0007 s [3,7], 0.0003 s was applied to provide the settling time.
Kinetic energy was monitored during the analysis to ensure that the ratio of kinetic energy
to total internal energy would not exceed 10%. The factor that controlled for the quality
of solution output was the maximum energy error. This factor stops the solution if the
principle of conservation of energy becomes poor.

As for the boundary conditions applied to the model, two boundary conditions were
employed to replicate what happens in reality. A force of 4 kN was applied to 25% of the
dead diameter [20]. This force was dynamic and varied over a time span of 0.0007 s (as
shown in Figure 4) and was followed by a settling time of 0.0003 s.
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3. Results

All the 2D models were simulated with the same methodology so that the effect of
ridges could be better understood. The procedure was carried out to analyse and compare
the stress, strain, and deformation in different models. The results included the distribution
of equivalent stress, shear stress, plastic strain, equivalent elastic strain, shear strain, and
directional deformations.

3.1. The Influence of Micro-Groove Height

The results for the stress, strain, and deformations were evaluated for each model.
In this study, the results of stress, strain, and deformations of the neck component were
included. All the results for the models are graphically illustrated. Figures 5 and 6 illustrate
the maximum von Mises stress and maximum plastic strain, respectively for the models
with various micro-groove heights.
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An increase in the micro-groove height resulted in an increase in the equivalent von
Mises stress increases (Figure 5). For Model 1, the equivalent stress generated at the neck
surface was 945.9 MPa. A decrease in the micro-groove height (Model 2) resulted in a
decrease in stress to around 937.9 MPa, while an increase in micro-groove height (Model 3)
resulted in the stress increasing to 952.4 MPa.



Biomechanics 2023, 3 602

It was observed that with a decrease in the micro-groove height, there was a decrease
in maximum plastic strains in Model 2 from 0.19528 to 0.18189 (Figure 6). With an increase
in the micro-groove height in Model 3, there was an increase in maximum plastic strain to
around 0.25728. The increase in strain in Model 3 was quite sharp when compared with the
decrease in maximum strain in Model 2.

3.2. The Influence of Micro-Groove Spacing

A decrease in micro-groove spacing (Model 4) decreased the maximum equivalent
stress to 940.3 MPa (Figure 7). However, with an increase in spacing (Model 5), a relatively
sharp decrease in stress magnitude was observed (712.5 MPa). This shows the complex
effect of the micro-grooved geometry on the mechanics of head–neck junction.
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As shown in Figure 8 for the change in micro-groove spacing, it was observed that
a decrease in micro-groove spacing resulted in a sharp increase in plastic strain. Model 5
showed a decrease in plastic strain from 0.1958 to 0.02222, whereas in Model 4 the plastic
strain increased from 0.19582 to 0.91182.
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4. Discussion

Modular head–neck junctions provide various advantages such as geometrical ad-
justments to patients’ specific requirements, and flexibility in material combination and
geometrical design parameters. Although being advantageous, this junction has been
reported to be associated with fretting corrosion, which ultimately leads to the release
of some metallic/ionic particles into the soft tissues around the implant. The stability
and strength of such a junction depend on various design parameters such as trunnion
geometry, head size, material combination, taper angle mismatch, assembly procedure, and
surface finish of the tapered interface. Micro-grooved junctions are traditionally believed
to provide a better fixation at the interface by means of plastic deformation at the tip of
ridges [3,4,11]. The literature on the micro-grooved junctions is contradictory, such that
some studies confirm the traditional view while others question it. This study aimed to
analyse the micro-grooved junctions in proximal contact using FEA. A base model was
considered for this analysis and the spacing, height, and depth of micro-grooves were
changed to evaluate how the micro-groove geometrical parameters may affect the me-
chanics of the junction. The base model was taken as a reference for comparisons in this
study (Model 1). Depending on the design of the base model (Model 1), the effect of the
micro-groove depth, height, and spacing on the mechanics of the junction was analysed.
As shown in Figure 9, high stresses occurred at the proximal end, which was the result
of the initial proximal contact occurring at the taper interface (with a proximal mismatch
angle) under the assembly load. Additionally, at the distal end of the trunnion, some high
magnitude stresses were observed. This indicated that over the course of assembly loading,
the deformation occurring in both of the contacting materials (neck and head) together
with the increasing assembly load with time, expanded the contact area towards the dis-
tal end. This occurred in the trapezoid-based configuration that existed at the interface
of the junction where the applied load was decomposed to normal and tangential load
components, resulting in a combined stress state. Under the application of the impaction
force of 4 kN, all the micro-grooves on the neck surface were deformed, which was partly
consistent with observations by Godoy et al. [15] where 76–100% of the micro-grooves were
deformed, depending on the level of assembly force. The difference in the percentages of
this study compared with those from Godoy et al. [15] could be attributed to the different
micro-groove parameters and materials properties in the two studies.
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As shown in Figure 5, the maximum von Mises stress reduced inconsiderably (by
around only 0.8%) between Model 1 and Model 2, from 945.9 to 937.9 MPa. The stresses
generated under the impaction force of 4 kN were consistent with those reported in
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Gustafson et al. [10]. The percentile increase in maximum von Mises stress from Model 1
to Model 3 was approximately 0.68%. The percentile decrease in the maximum plastic
strain from Model 1 to Model 2 was approximately 7%. However, no plastic strain was
observed in [9] with even large changes in the geometry of the micro-grooves. An increase
in plastic strain between Model 1 and Model 3 was observed, which agreed with the results
in Bechstedt et al. [9]. With an increase in the micro-groove height in Model 3, the maximum
von Mises stress and maximum plastic strain increased as per Figures 5 and 6, respectively,
which showed the proportional influence of the micro-groove height with the von Mises
stress and plastic strain. The pattern of the maximum von Mises stress over the length of
contact at the interface in all models was similar with different peak values. The results
were in agreement with the research conducted by Dransfield et al. [21], Godoy et al. [15]
and Bechstedt et al. [9] (each to some degree) and signified the influence of micro-groove
geometry in stress and strain generation at the interface. The change in the micro-groove
spacing had a different effect than that of the change in height. With a decrease in spacing
from Model 1 to Model 4, there was a slight decrease in von Mises stress from 945.9 to
939.8 MP with a percentile decrease of 0.64%. With an increase in spacing from Model 1
to Model 5, the percentile decrease in stress was quite higher at around 24% from 945.9
to 712.5 MPa. These results probably signify that a slight change in the geometry of the
micro-grooves could change the mechanics of the junction noticeably. Furthermore, it might
be concluded that a decrease in spacing does not always lead to an increase in stress levels,
and this influence depends on different parameters such as the value of spacing around
which the spacing parameter is changed, the levels of spacing, and complex non-linear
contacting interactions occurring at the interface. This can be an interesting subject for
future research. As for the plastic strain, the maximum occurred at the tip of the ridges
with different magnitudes for various models, however, the pattern of the deformation
was similar over the interface between the head and neck components. The plastic strain
between Model 1 and Model 4 changed around 365%. There was a significant increase in
plastic strain from Model 1 to Model 4. The percentile decrease in plastic strain between
Model 1 and Model 5 was approximately around 88%. Hence, there is clear effect of the
variation of micro-groove spacing in the stress and strain generation at the neck surface.

Maximum von Mises stress and plastic strain over the time of dynamic load application
were monitored and evaluated. With an increase in the impaction force, there was a slight
increase in the equivalent stress up to a point where plastic deformation was initiated. The
plastic deformation started to increase and became maximum at the time when maximal
pressure was applied (0.00035 s). With a decrease in the magnitude of the pressure to
zero, it was observed that the equivalent stress did not drop to zero. There was only a
slight drop in the stress magnitude and then it became constant (Figure 10). The remaining
stress was due to the plastic strains at the tip of the ridges. The somewhat fast change in
the maximum von Mises stress occurred for almost all the models, but for each model, it
occurred at a different time. A model with higher micro-groove depth was associated with
an earlier start of a sharp change in the maximum stress. This is because a model with a
smaller micro-groove depth possesses fewer plastic deformations at the tip of its ridges,
and this delays the time for the sharp change in the stresses [11]. Similarly, a model with
higher spacing causes a delay in the occurrence of a sharp change in the stresses. The von
Mises stress generated in the models with different micro-groove depths was consistent
with nominal expectations. With an increase in the micro-groove height, there was an
increase in the normal stress, and with a decrease in the depth, there was a decrease in
the normal stress. With an increase in the spacing, there was a decrease in the von Mises
stress as expected; however, with a decrease in the spacing, there was again a decrease
in the von Mises stress at the ridges which was inconsistent with the expectations. An
increase in spacing, while keeping the height and depth as constant, tends to stretch out
the wave-shape profile of the interface. This results in an increase in the contact area; and,
therefore, the stress is expected to decrease.
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Figure 10. Maximum von Mises stress evolution over the course of force application in
different models.

In all the models, close to the distal end, the stress and strain had high magnitudes,
which was consistent with the results reported in Bechstedt et al. [9]. With an increase
in the micro-groove height, there was an increase in the stress; and a decrease in height
resulted in a decrease in equivalent stress, which was consistent with the literature [9]. The
difference in the magnitude of stress may be due to the different properties selected for the
modelled materials, the approach for the load application and the geometry of the head
and neck components. Hence, FEA suggested that micro-grooved geometry affected the
stress and strain generation at the interface, as stated by other researchers [15,21].

The scope of this article was limited to studying the mechanics of taper junction
in hip implants with a focus on stress, strain, and deformation under dry conditions,
in the absence of lubricant (body fluid). This analysis did not include the change in
various geometrical parameters such as the taper angle mismatch, assembly force, material
combination, different head sizes, and different neck designs. All these parameters affect
the mechanics of the junction, especially where these parameters are coupled with the non-
linear influence from micro-grooves [3,4]. After the assembly procedure, the taper junction
normally undergoes different loading scenarios including walking, stair up and stair down.
These loading scenarios can significantly change the stress, strain, and deformation fields
at the interface. The inclusion of different geometrical parameters and loading scenarios
could be conducted by stochastic FEA to generate a more comprehensive understanding
from the effect of micro-grooves on the mechanics of taper junction. This study focused on
the stress, strain, and deformation resulting from the assembly load only. These results are
not transferrable to the durability of the junction. For instance, higher stresses could reduce
micromotions at the interface by increasing the contact area and plastic deformation [22–24].
These can lead to an increase in the stick contacting area which can then reduce the material
loss. At the same time, this higher stress can lead to higher material losses in the portion of
the contacting area where the slipping occurs [4,25,26]. To explore the clinical relevance
of the FEA results, encoded FEA enriched with the progressive damage algorithms are
required [27,28]. These algorithms should include complex mechanisms such as fretting
corrosion and subsequent material degradation processes at the taper interface. Taking
into account the aforementioned limitations, the findings of this study are beneficial in
providing a foundation for future analyses of the junction from the mechanical perspective.
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5. Conclusions

This study investigated the influence of micro-groove geometry on the mechanics
of head–neck junctions in modular hip implants. The height, depth, and spacing of the
micro-grooves were selected as variables to explore their influence on the stress, strain,
and deformation fields at the head–neck interface. The micro-grooved junctions were
associated with higher levels of stress and plastic deformations. The maximum stress
occurred at the tip of the ridges and increased with the groove height or spacing. Changes
in micro-groove spacing affected plastic deformation, too. There was a clear effect from the
ridges in the stress and strain generation at the neck interface during the hip implantation
procedure. The behaviour and amount of strain and stress generation clearly depended
upon the ridge parameters. The assembly loading time causing maximum stress and
plastic deformations depended on the ridge parameters. Further research with the aim of
analysing the strength of the joint and pull-off analysis with the inclusion of the spacing
influence can be conducted such that an optimal topography for a better strength at the
interface could possibly be achieved.
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