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Abstract: Climate change is expected to alter prevailing temperature, precipitation, cloud cover, and
humidity this century, thereby modifying insect demographic processes and possibly increasing the
frequency and intensity of rangeland and crop impacts by pest insects. We leveraged ten years of
migratory grasshopper (Melanoplus sanguinipes) field surveys to assess the response of nymph recruit-
ment to projected climate conditions through the year 2040. Melanoplus sanguinipes is the foremost
pest of grain, oilseed, pulse, and rangeland forage crops in the western United States. To assess
nymph recruitment, we developed a multi-level, joint modeling framework that individually assessed
nymph and adult life stages while concurrently incorporating density-dependence and accounting for
observation bias connected to preferential sampling. Our results indicated that nymph recruitment
rates will exhibit strong geographic variation under projected climate change, with population sizes
at many locations being comparable to those historically observed, but other locations experiencing
increased insect abundances. Our findings suggest that alterations to prevailing temperature and
precipitation regimes as instigated by climate change will amplify recruitment, thereby enlarging
population sizes and potentially intensifying agricultural pest impacts by 2040.

Keywords: Melanoplus sanguinipes; grasshoppers; demographic; spatiotemporal; climate change;
preferential sampling

1. Introduction

Climate is the dominant force driving biogeographic patterns at large spatial scales [1,2]
and exerts an overriding influence on insect distributions, abundances, and demographic
processes [3–7]. Through a combination of anthropogenic forcing and natural variability,
climate change is expected to alter prevailing temperature and precipitation patterns
this century, propelling departure from historic conditions and potentially increasing the
regularity and severity of extreme weather events in the western United States (US) [8–11].
Graduated climate change occurring over multiple years may alter soil nitrogen deposition
rates, decrease near-surface carbon stores, and limit soil moisture availability as well as
alter plant nutrient content integral to phytophagous insect ecology [12,13]. Over shorter
time frames, weather extremes have the capacity to affect insect demographic structure and
instigate population booms or crashes within or between seasons [14–16]. Climate change
has wide ranging implications for insect populations [17–20], particularly for insect groups
like grasshoppers (Orthoptera: Acrididae) that hold central roles in ecosystem functioning
and agricultural pest management.

Grasshoppers are simultaneously the principal grassland invertebrate herbivores [21]
and the most impactful rangeland insect pests in the US [22]. Although vital to nutrient
processing and ecosystem function [23], grasshopper population densities often show
dramatic increases that beget substantial economic harm to cultivated crops and rangeland
forage [22,24]. Despite their potential as focal species for climate change research, enormous
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uncertainty exists in foreseeing how climate change may affect grasshopper populations.
As examples, climate change may diminish critical grasshopper contributions to ecosystem
function, amplify the extent and intensity of grasshopper outbreaks, or otherwise modify
grasshopper population dynamics to impact food security and agricultural economic
viability [13,20,25,26]. As an initial step in understanding how climate change may affect
grasshopper populations in the US, process models were developed to forecast future
reproductive rates for the migratory grasshopper (Melanoplus sanguinipes).

M. sanguinipes (Msang) is found throughout North America and feeds on a wide
variety of plants and crops. As a pest species, Msang is frequently recognized as the
foremost pest of grain, oilseed, pulse, and rangeland forage crops in the US, but also
impacts wheat, barley, oats, vegetables, and ornamentals when grasshoppers are at high
density [7,27,28]. Under typical conditions, adult Msang grasshoppers (gh) reach densities
ranging from 0 to 3 gh/m2 and nymphs (immature juveniles) may attain densities between
0 and 7 gh/m2; however, during population surges and outbreaks, total densities may be
well over 50 gh/m2 [29,30]. Msang population dynamics are shaped by a three-stage life
cycle [29], in which nymphs hatch in the spring, progress through five instar developmental
phases over the period of about a month, and then emerge as adults during summer. Adult
females are fecund soon after emergence (2–3 weeks) and deposit pods (egg clutches)
in the soil, where soil temperature and moisture largely govern the rate of embryonic
development before winter diapause [31,32]. Msang is typically univoltine in Canada
and the US; however, multivoltine populations have been identified in southern portions
of its range [33]. In addition to mediating embryonic development, temperature and
moisture availability control hatch timing, food plant availability, and behavioral aspects of
Msang feeding, migration, and reproductive ecology [16,34–37]. Modifications to prevailing
temperature and precipitation regimes as prompted by climate change are clearly of major
consequence to Msang population dynamics and ultimately to US and Canada agricultural
interests [38].

The objective of the current study was to leverage ten years of Msang field survey data
to assess the response of nymph recruitment under projected climate conditions through the
year 2040. Nymph recruitment is a more variable, context-dependent, and sensitive measure
of population change than is total abundance [39]. To achieve this objective, a multi-level,
joint modeling framework was developed that individually assessed nymph and adult
life stages while concurrently accounting for observation bias connected to preferential
sampling. To ensure that density-dependence between Msang life stages was realistically
captured, the model incorporated shared spatiotemporal effects that permitted adult–
nymph interactions to inform demographic estimates. After detailing model construction,
implications for future Msang population dynamics are discussed.

2. Materials and Methods
2.1. Study Domain and Observation Data

The State of Wyoming in the western United States (US) served as the study domain for
analysis (Figure 1). Wyoming is geographically located between 41◦ and 45◦ North Latitude
and −104◦ and −111◦ West Longitude. Wyoming has an areal extent of approximately
253,596 km2 and exhibits an elevation range from 945 m at the Belle Fourche River to 4209 m
at Gannett Peak. Major ecoregions in the study area include the Northwestern Great Plains,
Western High Plains, the middle Rocky Mountains, and intermontane basin [40].

The study incorporated a total of 1772 point-level Msang observations collected during
field surveys between 2011 and 2020. Data were collected from approximately 1100 unique
Wyoming locations by staff from the US Department of Agriculture, Animal and Plant
Health Inspection Service, Plant Protection and Quarantine (PPQ) program. Data at-
tributes provided with the data indicated the sample location (longitude and latitude) and
grasshopper abundance counts for nymph (874 locations) and adult (898 locations) life
stages. Grasshopper sample locations are illustrated in Figure 2.
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Figure 1. Research study area. Figure at lower left depicts the US State of Wyoming (WY) positioned
relative to the states of Montana (MT), North Dakota (ND), South Dakota (SD), Nebraska (NE),
Colorado (CO), Utah (UT), and Idaho (ID). Jurisdictional boundaries for Wyoming’s twenty-three
counties are illustrated in zoomed portion of figure (top). Colors shown in zoomed portion of figure
correspond to legend at right and depict approximate elevation.

Figure 2. Wyoming grasshopper sample locations. Mapped sample locations (circular points) indicate
locations with one or more nymph (red) and adult (black) M. sanguinipes samples sized according to
legend at bottom to correspond to the number of stage–specific counts. Separate maps are provided
for each collection year 2011–2020. Jurisdictional boundaries for Wyoming’s twenty–three counties
have been overlain as a geographic reference to facilitate comparison between maps.

2.2. Climate and Environmental Data

Due to high levels of uncertainty in climate forecasts [41], a consensus approach [42,43]
was applied using three different climate models developed in conjunction with the sixth
phase Coupled Model Intercomparison Project (CMIP6) [44]. Employing the model indepen-
dence criteria developed by Sanderson et al. [45,46], three terrestrial Global climate models
(GCM) were adopted for analysis, these included the IPSL-CM6A-LR [47], CanESM5 [48],
and the MIROC6 [49]. The IPSL-CM6A-LR, CanESM5, and MIROC6 GCMs were developed
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by different research groups and were found to exhibit elevated inter-model pairwise dis-
tances in multidimensional space (above the mean as assessed across 38 different models,
see Sanderson et al. [45]), suggesting model independence. Nineteen bioclimatic vari-
ables [50] were derived at 2.5 min spatial resolution from each GCM projection based on
four Shared Socioeconomic Pathways (SSPs) SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5
for the time period horizon 2021–2040. Brief descriptions for all bioclimatic variables are
provided in the Supplementary Information. The SSPs are future climate scenarios under
various land-use, population growth, and energy consumption assumptions. As described
by [51], the SSPs represent outlooks that range from sustainable growth (SSP1-2.6) or a
middle of the road path with reduced climate vulnerability (SSP1-2.6), to future settings in
which climate mitigation is a low international priority (SSP3-7.0) and fossil fuel use is in-
tensive (SSP5-8.5). Climate forecasts were down-scaled and bias corrected using WorldClim
(v2.1) as a baseline, which corresponds to 30-year average climate conditions [50].

Study area edaphic conditions were characterized using 285 soil variables (250 m reso-
lution) obtained from the SoilGrids database hosted by the International Soil Reference and
Information Centre ([52], https://www.isric.org/ (accessed on 15 December 2021)). Soil data
quantified a wide variety of soil attributes across a range of horizon depths, including but
not limited to bulk density, total nitrogen, organic carbon concentration, pH, cation exchange
capacity, texture fractions, and more complex characters like organic carbon stocks in topsoils
and subsoils. Brief descriptions for all soil variables are provided in the Supplementary
Information.

Vegetation variability was assessed using thirteen habitat heterogeneity metrics that
enumerated composition and textual variation within Enhanced Vegetation Index (EVI)
imagery collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) [53].
The data were downloaded at 30 arc-second resolution from the Earth Environment website
(http://www.earthenv.org/ (accessed on 15 December 2021)). The data layers were derived
from 16-day MODIS EVI (MOD13Q1 version 5) composites captured between between
2001 and 2005. The data set quantified land surface greenness during peak growing season
based on first- and second-order texture metrics, which respectively describe the frequency
distribution of EVI pixel values within a defined neighbourhood and the probability of
observing a pair of pixel values with a given inter-pixel distance and orientation. The texture
metrics are not direct plant species composition measures; rather, they index vegetation
spatial variability and arrangement [53]. Brief descriptions for all vegetation variables are
provided in the Supplementary Information.

2.3. Variable Decomposition

Owing to the problematic nature of drawing biologically relevant, mechanistic infer-
ence from species distribution models [54,55], a datamining approach was implemented to
prioritize model performance over variable-specific interpretation of species–environment
relationships. To accomplish this, climate (19 variables), soil (285 variables), and vegetation
(13 variables) data sets were decomposed to create three synthetic covariates respectively
summarizing total climate, soil, and vegetation variation. Although Principal Component
Analysis (PCA) has been successfully used to summarize total variance within a study area
as a whole [56–60], this common practice was modified and expanded to instead identify
the linear combinations (weighted principal components) that best described climate, soil,
and vegetation variance with respect to Msang specifically. Principal component weights
were estimated using discriminant analyses [61], which provided geographic context by
quantifying the proportion of environmental variance [62] that best distinguished loca-
tions with grasshopper occurrence from random background locations (prior groups). To
maximize discriminate power and avoid over-fitting, Msang occurrences used for initial
discriminant analysis were then compared to repeated and randomized samples generated
with the a-score function available in the adegenet package [63].

https://www.isric.org/
http://www.earthenv.org/
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2.4. Statistical Model

Msang nymph and adult life stages were jointly modeled as log-Gaussian Cox pro-
cesses (LGCP) under preferential sampling. In our application, the LGCP were modeled
as non-homogeneous, point processes using individual point locations and associated,
point-specific attributes (“marks”) without any aggregation to grid cells or other areal
units. Preferential sampling refers to data that is potentially biased due to having been
opportunistically collected [64]. Msang observation data were not collected through ran-
domized sampling across the study area as a whole (e.g., cross-sections of good and bad
habitat), rather data were acquired during field surveys at locations suspected in advance
to be suitable for grasshoppers; that is, Msang field sites were preferentially sampled.
Preferential sampling results in point patterns (non-random sampling locations) that may
not be independent of the species biological or ecological processes under investigation,
thus becoming statistically problematic [64–66]. For example, preferential sampling during
field survey may have produced observation data in which areas of high Msang abundance
are overrepresented. To help account for non-independence between grasshopper survey
locations (pattern) and grasshopper abundance (process), the number of sample points
per unit area, or point pattern intensity (Λa,n

st ), was concurrently estimated with adult (Ya
st)

and nymph (Yn
st) abundances in a four-part, joint model with shared spatiotemporal effects.

LGCP are point-based models that enable point intensities to be estimated across contin-
uous surfaces as Gaussian random fields. Adopting the LGCP approach, point patterns
were specified as:

log(Λa,n
st ) = Wa,n

st

Wa,n
st ∼ N(0, Q(κ, τ))

where the logarithm of intensity (Λa,n
st ) for grasshoppers in the adult (superscript a) and

nymph (superscript n) stages at each geographic location s (s = 1, 2, 3, . . . , n) and year t
(t = 2011, 2012, 2013, . . . , 2020) were estimated as Gaussian random fields (Wa,n

st ). Following
Lindgren et al. [67] and Simpson et al. [68], the matrices Q(κ, τ) used to define the spatial
fields (Wa,n

st ) were approximated using stochastic partial differential equations (SPDE) that
facilitated implicit estimation of spatial range (κ) and scale (τ) parameters based on Matérn
covariance. For a detailed statistical description of SPDE methods see Lindgren et al. [67],
Krainski et al. [69], or other applications by the current authors [70–74].

In addition to jointly modeling the point pattern and abundance specific to each the
adult and nymph stage, population density-dependence dynamics necessitated that nymph
estimates be conditional on those made for adults in the prior year. Density-dependent
effects can cause Msang abundances in one year to be affected by population numbers from
the preceding year [75]. Due to density-dependence, the model was designed such that
information from the first two levels, which evaluated adult patterns and processes, was
shared with the fourth level used to estimate nymph abundance. More formally, the first
two model tiers were,

Adults =



Pattern

{
log(Λa

st) = Wa
st

Λa
st = exp{βa

Λ + Wa
st}

Process

{
Ya

st ∼ Poisson(µa
st)

log(µa
st) = βa

0 + βa
1X + α1Wa

st

where adult point pattern intensity (Λa
st) was approximated as the exponential of a Gaussian

random field (Wa
st) and an intercept (βa

Λ) in the first tier, and the second tier estimated adult
counts (Ya

st) following a Poisson distribution. The log of mean adult abundance (µa
st) was

then described by an intercept (βa
0), the climate, soil, and vegetation linear covariates (βa

1X)
presented in Section 2.3, and a time-indexed, non-separable random field (Wa

st) shared with
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the pattern-level. As shown above, the α1 coefficient is an interaction term that modified the
magnitude of the shared field to control for scale differences between the pattern (Gaussian)
and process (Poisson) tiers.

The third- and fourth-tier model levels were structured similarly to the first and second
but used to assess nymphs conditional on time-lagged estimates from the adult levels,
such that,

Nymphs | Adults =



Pattern

{
log(Λn

st) = Wn
st

Λn
st = exp{βn

Λ + Wn
st}

Process

{
Yn

st ∼ Poisson(µn
st)

log(µn
st) = βn

0 + βn
1 X + α2Wn

st + α3Wa
st

where the nymph pattern (Λn
st) was jointly estimated with nymph counts (Yn

st) as done for
adults. However, in addition to the random field shared between the nymph pattern and
process levels (Wn

st), the adult random field (Wa
st) was copied to the nymph process level

to quantify the relationship between nymphs and adults estimated for the prior year. As
described for adults, the α2 term enumerated interaction between the pattern and process
levels for nymphs, while α3 accounted for spatiotemporal relationships between adults
and nymphs. The same climate, soil, and vegetation covariates used in estimating adults
were also evaluated with respect to nymphs, but with a set of dedicated coefficients (βn

1 X)
to facilitate comparison of coefficient effect sizes between life stages.

As a joint, spatiotemporal model with high-dimensionality, computation was per-
formed on the USDA SCINet High-Performance Computing System (https://scinet.usda.
gov/ (accessed on 20 December 2021)) using Integrated Laplace Approximation [76–78]
and the PARDISO solver [79–81]. Spatiotemporal effects were specified with first-order
autoregressive structure and weakly informative Penalizing Complexity priors [82,83].
Climate, soil, and vegetation linear effects were assigned vague zero mean normal priors
with a 0.0001 precision.

2.5. Model Selection and Validation

To evaluate joint model performance, three models were constructed and then com-
pared; individual models for each the adult (Model1) and nymph (Model2) life stage, and
the full joint model detailed in Section 2.4 (Model3). Metrics used for model comparison
included the deviance information criterion (DIC), Watanabe–Akaike information criterion
(WAIC), and the log-conditional predictive ordinate (lCPO) [84,85]. The DIC and WAIC
generally perform the same; however, the DIC sometimes under penalizes complexity, thus
both were used for comparison. The WAIC is a within sample predictive score and is a
fully Bayesian criterion [84,86]. The lCPO is a leave-one-out cross validation metric. Lower
scores for all three measures suggest improved parsimony. Data were partitioned into
training (80%) and testing (20%) sets for validation with equal proportions allocated from
the adult and nymph stages.

2.6. Recruitment Rate Prediction, Consensus, and Forecasts

Outputs from the joint model described in Section 2.4 (Model3) were combined to
calculate the Msang per-capita, nymph recruitment rate. Recruitment was defined compa-
rably to a population per-capita growth rate [87,88], where recruitment was the natural log
of current-year nymph abundance divided by adult abundance from the preceding year:

Recruitment = ln(Nymphst/Adultst−1)

https://scinet.usda.gov/
https://scinet.usda.gov/


Geographies 2022, 2 18

Formal prediction was conducted for all locations in the study domain (surveyed and
un-surveyed localities) based on 30-year average climate conditions [50], soil properties,
and vegetation before forecasting recruitment for the time period horizon 2021–2040 un-
der the four SSP scenarios SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. Because there is
considerable uncertainty regarding GCM accuracy and climate forecasts broadly, a con-
sensus approach was adopted in which prediction was independently performed based
on the IPSL-CM6A-LR, CanESM5, and MIROC6 GCMs followed by (mean census) model
averaging [89,90].

3. Results

Variable decomposition described in Section 2.3 resulted in three synthetic covariates
summarizing climate, soil, and vegetation variation with respect to Msang occurrence
(Figure 3). Component loadings for the top five contributing climate variables indicated
that temperature was most important in describing Msang occurrence, with mean tem-
perature of the warmest quarter contributing 33.7% to the synthetic covariate followed by
temperature diurnal range (16.3%), temperature seasonality (13.3%), day-to-night tempera-
tures oscillations (isothermality, 8.4%), and average temperature during the coldest quarter
of the year (7.9%). Among the 285 evaluated soil attributes, humus rich Kastanozems,
which are associated with grassland vegetation [91], showed the greatest contribution
(5.8%), followed by Calcisols (4.6%), Ustolls (3.6%), Fluvents (3.6%), and Calcids (3.3%).
MODIS derived remote sensing data suggested that pixel diversity calculated using the
Simpson (61.6%) and Shannon (26.0%) indices accounted for the vast majority of variation
in the synthetic vegetation covariate, with image texture metrics contributing slightly more.
Synthetic covariates are mapped in Figure 3.

Figure 3. Climate, soil, and vegetation synthetic variables. The figure summarizes results from
variable decomposition described in Section 2.3. Maps depicting synthetic climate, soil, and vegetation
covariates are respectively arranged top to bottom with Wyoming county boundaries overlain as a
geographic reference to facilitate comparison between maps. Legends with each map indicate the
polarity and intensity associated with each synthetic variable. The top five contributing variables in
each group are reported in bar graphs (right) with accompanying percent contribution.
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Comparison metrics indicated that the joint model (Model3) designed to concurrently
estimate adult and nymph abundance exhibited improved parsimony over models con-
structed to individually assess the adult and nymph life stages (Table 1). In addition to
parsimony measures, models for individual life stages differed in the importance and
strength of estimated climate, soil, and vegetation covariates. For example, the vegetation
covariate was judged to be important based on 95% Credible Intervals excluding zero in
the individual, stage-specific models; however, the same vegetation covariate was found
not to be important when life stages were modeled jointly (Figure 4).

Model estimated hyperparameters (Table 2) revealed that spatial autocorrelation
among adult sample locations fell to approximately zero at a distance of 16.0 km (Wa

st
Spatial Range). By comparison, the spatial range for nymph sample locations (Wn

st) was
similar at about 17.7 km. Spatiotemporal autocorrelation between years was very high
for both adults and nymphs with estimated correlation values exceeding ρ ≥ 0.98 in
both instances. Spatiotemporal effects shared between model pattern and process levels
indicated strong, positive influence for both adults (α1) and nymphs (α2), suggesting
that grasshopper abundances estimated for sample locations were considerably higher
than numbers estimated for un-surveyed locations. The spatiotemporal effect shared
between adult and nymph stages (α3) was judged important based on credible intervals
excluding zero. The negative polarity estimated for α3 signifies that on the average, as
adult abundances increase, nymph abundances decrease between successive years. The α3

coefficient −1.07[0.03 sd, (−1.14, −1.03) 95% CI] is plotted as functions of abundance and
recruitment in Figure 5.

Table 1. Model parsimony metrics. Deviance information criterion (DIC), Watanabe–Akaike informa-
tion criterion (WAIC), and log-conditional predictive ordinate (lCPO) for all models. Codes listed
in the Stage column signify models structured to estimate the adult and nymph life stages using
individual (I) models or a joint (J) model. Note that the joint model (Model3) used to estimate adult
and nymph abundance concurrently exhibited the best parsimony.

Model DIC WAIC lCPO Stage

Model1 10,322 15,271 1.28 Adult (I)
Model2 9905 15,757 1.20 Nymph (I)
Model3 10,134 14,977 1.13 Adult (J)

9487 11,467 1.08 Nymph (J)

Table 2. Model hyperparameter summary. The table lists model estimated hyperparameters described
in Section 2.4. First column provides effect name with columns to right giving the estimated mean,
standard deviation (sd), and 95% credible intervals (2.5 Q and 97.5 Q). Note that α3 is the model
estimated interaction coefficient that reflects spatiotemporal relationships between adults and nymphs.
The coefficient value is negative indicating that as adult abundance increased, nymph abundance in
the following year decreased (i.e., density-dependence). The α3 slope is graphed in Figure 5.

Hyperparameter Mean sd 2.5 Q 97.5 Q

Wa
st Spatial Range 16.02 0.44 15.18 16.90

Wa
st Stdev 0.43 0.01 0.41 0.44

Wa
st Group ρ 0.98 <0.01 0.98 0.98

Wn
st Spatial Range 17.67 0.57 16.58 18.83

Wn
st Stdev 0.53 0.01 0.51 0.55

Wn
st Group ρ 0.99 <0.01 0.99 0.99

α1 (adults) 6.06 0.05 5.98 6.17
α2 (nymphs) 10.39 0.19 10.12 10.83

α3 (adults-nymphs) −1.07 0.03 −1.14 −1.03
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Figure 4. Comparison of model estimated climate, soil, and vegetation coefficients. Posterior densities
for climate (A), soil (B), and vegetation (C) covariates are respectively shown top to bottom. Vertical
axis at left reports density and horizontal axis provides coefficient estimate on the log scale. Inset
legend (bottom right) indicates if estimate was produced for the adult (black color) or nymph (red
color) life stage and if the estimate was produced by an individual, stage-specific model (dashed line)
or the combined adult–nymph joint model (solid line). The solid, vertical line highlights zero on the
horizontal axis. Note that individual models produced stronger coefficient estimates (mean values
further from zero) than did the joint model and that vegetation coefficients (C) were not important in
the joint model based on 95% Credible Intervals including the value zero.

Figure 5. Mean density-dependence and recruitment rates under historic conditions. Line graphs
depict average M. sanguinipes density-dependence (left) and recruitment (right) rates as estimated by
the joint model described in Section 2.4. Horizontal axes list adult abundance (ln). The slope of the
line shown on the left is equal to the model estimated hyperparameter for adult–nymph interaction
(α3∼−1.07, Table 2).

Model validation suggested excellent model performance (mean absolute error ≤ 10%)
for predicted locations having ten or fewer surveyed abundances (adults or nymphs);
however, under-prediction was apparent at locations with abundances greater than ten
grasshoppers (Figure 6). Under-prediction was more pronounced for adult Msang but also
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noted for the nymph stage. Comparing predicted abundances to observed counts for all
survey locations (testing and training data combined) suggested that under-prediction was
especially evident for surveys during years with especially low or high counts (Figure 7).

Figure 6. Model performance summary. The graph depicts the relationship of predicted grasshopper
abundance (vertical axis) to observed grasshopper counts collected through field survey (horizontal
axis). Both axes have been transformed to the log(n + 1) scale to better illustrate value ranges. Points
(open circles) plotted to graph symbolize 20% of data randomly selected for model validation with
adult samples (black color) distinguished from those for nymphs (red color). The diagonal line
bisecting the plot area from the origin signifies perfect prediction (predicted = observed) with the
shaded area below the diagonal representing under-prediction and the area above the diagonal
indicating over-prediction. Smooth, curvilinear lines illustrate general trend by adult (black color)
and nymph (red color) stages. Note that under-prediction is apparent for both adults and nymphs
(curvilinear trend lines below diagonal).

Formal prediction for life stage-specific abundances and recruitment rates under
historic climate conditions (30-year averages), soil characteristics, and vegetation are il-
lustrated in Figure 8. Predictions reflect mean abundance and recruitment rates based on
observations during the ten-year period 2011–2020. Forecasts for the twenty-year time
horizon 2021–2040 are shown in Figure 9 for each of the SSP1-2.6, SSP2-4.5, SSP3-7.0, and
SSP5-8.5 socioeconomic climate scenarios. Forecasts were made using climate, soil, and
vegetation coefficients estimated by the full, joint model (Model3) and assume constant
soil and vegetation conditions through the year 2040. Estimates were derived from GCM
mean consensus.
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Figure 7. Predicted grasshopper abundances. Figure compares total predicted nymph (left) and
adult (right) grasshopper abundances to total observed counts across all field survey sites. Vertical
axes report the number of grasshoppers, horizontal axes list year. Height of shaded bars indicate
total grasshoppers observed during field survey. Points signify the total number of grasshoppers
predicted by the model for each year with intersecting bars delimiting the 95% Credible Interval for
each point. Solid horizontal lines show period of record mean averages for observed nymphs (674)
and adults (701), whereas parallel dashed lines give the predicted averages for nymphs (725) and
adults (744).

0 142 4 6 8 10 12

Nymphs Adults Recruitment

‐3.0 0.0 3.01.5‐1.5

Recruitment RateAbundance

Figure 8. Stage–specific mean abundances and recruitment rates under historic conditions. From left
to right, panels map predicted nymph abundance (maximum value 13.55 gh/m2), adult abundance
(maximum value 3.66 gh/m2), and nymph recruitment rate. Units for all panels are based on a 1 m2

spatial resolution and represent mean values under historic climate, soil, and vegetation conditions.
The legend at the bottom left (range 0–14) corresponds to abundance predictions and the legend at
the bottom right corresponds to recruitment rate (range −3.0–3.0). Wyoming county boundaries have
been overlain as a geographic reference to facilitate comparison between maps. Average rates for
Wyoming are depicted in Figure 5.
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SSP1 ‐ 2.6 SSP2 ‐ 4.5 SSP3 ‐ 7.0 SSP5 ‐ 8.5
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0.15‐0.45 ‐0.15 0.0‐0.30

Recruitment Rate Net Change

Projected Recruitment Rate 

Figure 9. Consensus forecasts for M. sanguinipes recruitment during the period 2021–2040. From (left)
to (right) panel columns correspond to the SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 socioeconomic
climate scenarios. SSP columns are arranged from least to most severe climate impacts moving (left)
to (right). The top row displays projected recruitment rates for each SSP and the bottom row shows
the difference between projected rates and historic mean recruitment as illustrated in Figure 8. Red
colors in the bottom row signify locations forecast to exhibit increased recruitment rates, whereas
locations in blue indicate locations projected to have decreased recruitment relative to historic means.
Projections are based on consensus mean averages from three GCMs. Wyoming county boundaries
have been overlain as a geographic reference to facilitate comparison between maps. Note that
the darkest tones (dark blue colors) in the second row are spatially coincident with regions of high
elevation in Figure 1 (low–quality Msang habitat).

4. Discussion

M. sanguinipes nymph recruitment rates are anticipated to exhibit strong geographic
variation under projected climate change by the year 2040. In Wyoming, model results
generally indicated that recruitment will remain approximately the same or slightly de-
crease across central and southern portions of the state (Figure 9), whereas grasshopper
habitats immediately west and southeast of the Bridger–Tetons were forecast to experience
increased recruitment. Recruitment within pastures, isolated grasslands, and alfalfa fields
west of the Bridger–Tetons (e.g., Afton, Fairview, and Etna, WY) were revealed to show the
greatest overall rate increases, but substantial rises were also projected for the northeast cor-
ner of Wyoming, in a region encompassing and to the north of the Thunder Basin National
Grasslands. This basic pattern was consistent for all four SSP scenarios; however, SSPs
derived for scenarios where climate mitigation is a low international priority (SSP3-7.0) and
fossil fuel use is intensive (SSP5-8.5) showed markedly elevated recruitment increases in
comparison to scenarios based on sustainable growth (SSP1-2.6) and intermediate action to
reduce climate vulnerability (SSP1-2.6). Assuming that future Msang nymph survival rates
remain approximately the same as historic averages, our principal conclusion is that alter-
ations to prevailing temperature and precipitation regimes as instigated by climate change
will amplify recruitment, thereby enlarging population sizes and intensifying agricultural
pest impacts by 2040.

Of the nineteen climate variables that we evaluated, the top five contributing to
Msang occurrence were connected to temperature variation, with mean temperature of
the warmest quarter identified as the most important factor (Figure 3). Feeding by Msang
nymphs is optimized at approximately 40 ◦C, and feeding stops at temperatures above
approximately 45 ◦C or below 13 ◦C [35]. In California, a region with a broad range of
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elevations like Wyoming, Msang populations differ in nymphal development rate such
that they can complete development faster at higher elevations [92]. Age of adults at first
reproduction is also earlier at higher elevations. Thus, a warming climate is likely to be
favorable for development and population growth, particularly at higher elevations. Along
comparable lines, more southerly Msang populations, like those found in some regions of
Arizona, do not require diapause to hatch and the populations are multivoltine, resulting
in two generations per year when and where the growing season is sufficiently long [33].
Should the non-diapause attribute move north with climate change, population growth
and recruitment in WY, where populations are currently univoltine, could increase much
more than what has been predicted here. This scenario would be consistent with other
studies that have reported an increased frequency in upslope insect dispersal and upslope
demographic shifts linked to climate change [93–95]. Additional research is needed to
investigate how abiotic climate change might modify Msang development, population
growth, and dispersal, and how biotic factors (e.g., interspecific competition, predation, in-
fectious disease) might amplify or attenuate these effects. For example, although increased
temperature might facilitate transition of current univoltine populations to a multivol-
tine pattern, any increases in population size may be offset by elevated disease incidence,
because the Msang nymph cuticle is paler to minimize thermal elevation when nymphs
develop at higher temperatures, but the adaptation also makes them more susceptible to
an insect killing fungus [96].

Analysis of thirteen vegetation metrics suggested that plant diversity better described
Msang occurrence than did other satellite-derived measures. Taken together, Simpson and
Shannon diversity contributed more than 87% to the synthetic vegetation covariate used
in modeling (Figure 3). The composition of plants at a location has been variably argued
as both an important or minor indicator of grasshopper occurrence and abundance. In
some instances, plant composition has been shown as an important indicator [97–99], but in
other cases plant effects on generalist grasshopper species have been weak or mixed [100].
Interestingly, we found that the synthetic vegetation covariate was an important predictor
of both nymph and adult abundance when each life stage was assessed independently;
however, when the two life stages were modeled jointly, vegetation became insignificant
(Figure 4). This may indicate that vegetation aids in predicting mere occurrence (habitat
suitability), but is less useful in estimating abundance as the presence of another grasshop-
per (or life stage) better explains abundance in the target group than does plant diversity. A
similar pattern was shown by climate and soil covariates in that the magnitude of climate
and soil effects were greater when adults and nymphs were modeled separately, but sub-
stantially reduced (but still significant) when the two stages were assessed concurrently.
Further research is needed to more fully partition the extrinsic environmental factors con-
sidered in this study from the intrinsic demographic factors that drive Msang population
dynamics.

Msang abundance at a given time and location is a consequence of demographic
processes tied to stage-specific environmental tolerances, interactions, and behaviors. From
the analytical perspective, we argue that process-based methods, which allow for inclusion
of underlying demographic mechanisms [101,102], offer advantages over standard species
modeling techniques when extrapolating pest populations to future climate scenarios. As
examples, our approach expanded on standard correlative distribution models to incorpo-
rate Msang demographic information, life stage density-dependence between successive
years, and to account for preferentially sampled field observations. This modeling frame-
work enabled us to detect that Msang nymphs exhibited stronger responses to climate,
soil, and vegetative conditions than did adults, and that nymph–adult co-occurrence better
explained abundances than did vegetation as represented by remote sensing data (Figure 4).
Importantly, model structure also supported enumeration of density-dependence (Figure 5),
a type of biotic interaction that can produce direct mortality or contribute to resource limi-
tation that lowers female Msang fecundity and reproductive rates [16,24,103,104].
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Finally, we view our model as a disciplined metaphor for reality [105] and our pre-
sented maps as geographic theories [106], both of which are based on assumptions but
nonetheless complementary to empirical and experimental studies investigating pest insect
dynamics. Beyond the uncertainly associated with remote sensing products [107,108], the
presented study can be improved in at least two ways. Firstly, although model performance
was reasonable for predicted abundances near the average rates observed at surveyed sites,
nymph and adult numbers were underestimated at times and locations with especially
high or low Msang population densities (Figures 6 and 7). We interpret this result to imply
that mechanisms driving population booms (high Msang densities) and busts (low Msang
densities) were not fully captured by the explanatory variables included in our model. We
suspect that the synthetic variables used in this analysis may have been too general to com-
pletely represent how climate change may impact key vegetation characteristics, like those
connected to plant quality, composition, and senescence. Similarly, it may also be the case
that the temporal or spatial resolution of the variables selected for model inclusion were
insufficient to account for variation significantly above or below the mean abundance rates.
For example, vegetation data incorporated into the current study did not vary through
time as did climate variables and were too coarse to capture intra-annual or transient sea-
sonal dynamics like those linked to the El Niño/Southern Oscillation (ENSO). Given these
issues, studies that incorporate seasonal variability or explicitly model how vegetation
composition patterns may change under future climate conditions might better portray
between-year variation in grasshopper abundances. Drawing meaningful, mechanistic
inference from models is often challenging [54,55] and additional work is needed to identify
other environmental characteristics or intrinsic population attributes that contribute to
Msang boom and bust cycles. Secondly, though our study was conducted at the landscape
scale, the Msang species range includes the majority of North America. The presented
model would benefit from being scaled up to create a more comprehensive analysis of
Msang population and habitat characteristics across the entirety of its distributional range.

5. Summary and Conclusions

We applied ten years of field surveys to assess the response of Msang nymph recruit-
ment to projected climate conditions at the landscape scale. Central to the study were
methodological advances that enabled grasshoppers to be appraised using a multi-level,
joint modeling framework that separately quantified nymph and adult life stages while
concurrently incorporating density-dependence and accounting for observation bias con-
nected to preferential sampling. As a new method, our hierarchical modeling approach
may be readily adapted to other species, particularly when there is a need to account for
covariation between different life stages, density-dependence across space and through
time, or biotic interactions among different species. Climate change is expected to alter
prevailing temperature and precipitation patterns this century and our findings indicated
that Msang nymph recruitment rates will exhibit strong geographic variation in concert
with this climate change. Results indicated that Msang population sizes at many locations
will remain comparable to those historically observed; however, alterations to prevailing
temperature and precipitation regimes as instigated by climate change are anticipated
to amplify recruitment at several locations, potentially enlarging population sizes and
intensifying agricultural pest impacts by 2040.
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