
����������
�������

Citation: Kpienbaareh, D.; Batung,

E.S.; Luginaah, I. Spatial and

Temporal Change of Land Cover in

Protected Areas in Malawi:

Implications for Conservation

Management. Geographies 2022, 2,

68–86. https://doi.org/10.3390/

geographies2010006

Academic Editor: Russell

G. Congalton

Received: 8 January 2022

Accepted: 9 February 2022

Published: 12 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Spatial and Temporal Change of Land Cover in Protected Areas
in Malawi: Implications for Conservation Management
Daniel Kpienbaareh * , Evans Sumabe Batung and Isaac Luginaah

Department of Geography and Environment, Social Science Centre, Western University,
London, ON N6A 5C2, Canada; ebatung@uwo.ca (E.S.B.); iluginaa@uwo.ca (I.L.)
* Correspondence: dkpienba@uwo.ca

Abstract: Protected areas (PAs) transform over time due to natural and anthropogenic processes,
resulting in the loss of biodiversity and ecosystem services. As current and projected climatic trends
are poised to pressurize the sustainability of PAs, analyses of the existing perturbations are crucial
for providing valuable insights that will facilitate conservation management. In this study, land
cover change, landscape characteristics, and spatiotemporal patterns of the vegetation intensity in the
Kasungu National Park (area = 2445.10 km2) in Malawi were assessed using Landsat data (1997, 2008
and 2018) in a Fuzzy K-Means unsupervised classification. The findings reveal that a 21.12% forest
cover loss occurred from 1997 to 2018: an average annual loss of 1.09%. Transition analyses of the land
cover changes revealed that forest to shrubs conversion was the main form of land cover transition,
while conversions from shrubs (3.51%) and bare land (3.48%) to forest over the two decades were
comparatively lower, signifying a very low rate of forest regeneration. The remaining forest cover in
the park was aggregated in a small land area with dissimilar landscape characteristics. Vegetation
intensity and vigor were lower mainly in the eastern part of the park in 2018. The findings have
implications for conservation management in the context of climate change and the growing demand
for ecosystem services in forest-dependent localities.
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1. Introduction

Landscapes in protected areas such as National Parks and watersheds change because
of natural disturbances, ecological processes, and anthropogenic activities [1]. However,
anthropogenic activities by far pose the most significant threat to biodiversity in protected
lands [2–4]. Hence, it is necessary to continually monitor and map the land cover dynamics
within and around protected areas to inform forest resource managers of the most appro-
priate regulatory measures to adopt for the conservation of biodiversity and to increase
precision in the utility of such measures [5]. Making such management decisions is rele-
vant because, in addition to being an essential source of livelihood and income for local
communities [6], protected areas also serve as carbon sinks that help to mitigate climate
change [7]. Additionally, forests are a vital source of revenue for economic development
through ecotourism in many countries [6].

Changes in protected areas can have a dual effect on biodiversity; they may enable
some organisms to thrive (by preying on other organisms easily) while making the land-
scape uninhabitable for others (by exposing them to expected risks/shocks) [8]. The
frequency and extent of disturbances in protected areas are a function of the structural and
functional attributes of the ecosystem [9–11]. Intricate interdependence and interactions
between change patterns and the landscape structure over time create complex dynamic
and unpredictable mosaics [12] that impact the integrity of ecosystems and ecosystem
services—the benefits that humans derive from healthy ecosystems [13]. In particular,
land-use practices in and around conservation areas may influence change patterns by
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reducing the amount of vegetation cover and their contiguity, which creates complex un-
natural shapes or uniform natural patterns that may affect the ability of biodiversity to
thrive [14,15].

In already fragile ecosystems, disturbances escalate the rate of degradation, which may
further aggravate the existing precarious conditions in the habitats. Monitoring landscape
changes in such protected areas over time will, therefore, provide crucial information for
management regimes and restoration of stressed ecosystems, as well as increase spatial
heterogeneity of vegetation [16,17] to provide conducive habitats for wildlife and other
secondary dependents such as humans. There are about 8568 protected areas in Africa,
constituting 14.18% of its total land [18]. Unfortunately, in many of these protected ar-
eas, there have not been sufficient detailed analyses to provide the crucial information
needed to inform management decisions even though rapid changes resulting from, es-
pecially anthropogenic activities, is the leading cause of the loss of biodiversity on the
continent [19–21].

Remote sensing represents a cost-effective geospatial tool for monitoring landscape
changes in protected lands to provide valuable data for ecosystem management [22,23].
Remote sensing techniques, combined with landscape metrics and geostatistical modelling
are effective for documenting the nuances of deforestation rates, characteristics of landscape
structure and patterns of change, and the demand and supply of ecosystem services. Results
from remote sensing analyses can also provide critical data for addressing questions
concerning the ecological conditions of an area, as well as the perturbations that modify
the phenological patterns of vegetation [24,25]. While other scholars have applied these
geospatial techniques to understand various landscape changes [26–28], these studies have
focused mostly on forest cover change on a broader scale. Yet, protected areas, which are
created primarily to protect and sustain biodiversity, have not received similar widespread
attention, especially in sub-Saharan Africa, despite evidence of growing populations density
around such lands.

In this study, satellite data, landscape metrics, and geostatistical modelling were de-
ployed to analyze land cover change with a focus on forest cover, landscape characteristics,
and the intensity and spatiotemporal pattern of vegetation cover dynamics in the Kasungu
National Park (KNP) in western-central Malawi. Our research in a protected area comple-
ments studies at the global [29,30], continental [31], national [32], and regional scales [33]
by demonstrating that remotely sensed data can be used to explore the intricate details
and nuances of changing patterns and transitions in land cover to influence conservation
management decisions. Even though landscape changes are apparent in KNP, research
on the area has mainly focused on travel and tourism [34,35], the economic benefits of the
park to fringe communities [36], and plant and animal censuses [37,38]. As such, little is
known about the structural and potentially functional changes the park has undergone over
the years. As climate change and variability intensifies, several questions regarding the
quantity of forest cover, ecological integrity and sustainability of protected areas continue to
surface. For instance, crucial questions include: has the forest cover increased or decreased
over the years? Are there any unnatural shapes/patterns of vegetation cover developing?
If so, what are the implications of these changes to biodiversity? This study addresses some
of these pertinent questions.

Protected Areas in Malawi

Malawi is endowed with several natural ecosystems. With a total area of 118,860 km2,
about 27,190 km2 of the land constitutes dry land, and the remaining land area is covered by
water [39]. About 11% of the total dry land area is designated as national parks and wildlife
reserves while an additional 10% is forest reserves and protected hillslopes. The national
parks and protected areas, which are spread across the country, include Nyika National
Park and Vwaza Marsh Wildlife Reserve in the north of Malawi; Kasungu National Park
and Nkhotakota Wildlife Reserve in central Malawi; Liwonde and Lengwe National Parks
and Majete and Mwabvi Wildlife Reserves in the southern region of Malawi; and the Lake
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Malawi National Park. The size of protected land implies that Malawians likely compete
for arable land for agricultural and other uses. With a total population of about 17,563,749
which grows at a rate of 2.9% per annum, according to the 2018 Population and Housing
Census [40], the competition for land including protected lands will likely be exacerbated
in the coming years. The agrarian nature of Malawi, coupled with current population
growth trends, suggests dire implications for the future of biodiversity in protected lands.

The Wildlife and Environmental Society of Malawi asserts that protected areas are
critical to the livelihoods of rural farmers [39]. As highlighted by political ecologists
who research environmental issues in developing countries [41,42], human-environment
interdependence often leads to tension between local communities and resource managers
because of issues surrounding the access to and utilization of ecosystem services. In Malawi,
the high proportion of protected areas often results in poaching and farming in and around
such conservation areas, as highlighted by the political ecologists. Rising poverty rates
which disproportionately affect rural areas in Malawi [43] suggest increasing pressure on
the protected areas [44,45]. Additionally, the rapidly changing climate, as evidenced by
recent floods and droughts [46], call for a thorough re-strategizing in management regimes.
There is, thus, a need to provide relevant spatial information through regular monitoring to
enhance decision-making for efficient and sustainable management. The KNP was chosen
as the study area for detailed analysis and to provide a general understanding of protected
areas in Malawi for several reasons. Firstly, the KNP is one of the largest parks in Malawi
and hosts a wide variety of biodiversity. For example, because the park covers a large area
of the Brachystegia and Julbernardia woodlands, it attracts a significant number of elephants
(Loxodonta africana) [47]. In addition, a study by Mkanda and Munthali [35] on public
attitudes towards the park revealed that increasing anthropogenic pressures on the park
are likely due to the need for ecosystem services including bee-keeping, the collection of
firewood, mushrooms, and building materials. The wildlife preservation and biodiversity
potential of the park, along with the increasing threats of intense exploitation strongly
underpins the primary objective of this study as it will provide necessary information
concerning management of these biodiversity.

2. Materials and Methods
2.1. Study Area Description

The Kasungu National Park (KNP) (Figure 1), located in western-central Malawi,
covers an area of 2316 km2 [37]. The vegetation types and composition in the park vary by
location and elevation. The plateau areas have deep sandy soils with poor nutrient content
and high-water infiltration, and, thus, have a closed-canopy Brachystegia and Julbernardia
vegetation (Miombo woodland), which have short to medium height grasses [38]. The
plateau dambos (seasonally flooded open grass areas) are flat and sandy, with grasses
of medium height. The valley areas, mainly in the central part of the park, have open
woodlands, with relatively tall Hyparrhenia grasses [48,49]. The main tree species in this
part of the park are of the genera Terminalia, Combretum and Pericopsis.

The variable landscape of the KNP, with elevation ranging between 1000 and 1500 m,
partly influences the climatology of the park [50]. The rainy season in the area stretches
between October and May, with most rain usually falling in January and February [51].
Mean annual rainfall is about 780 mm [38]. Temperature-wise, June is the coldest month,
after which temperatures gradually increase until they reach their highest in Novem-
ber [38]. Despite the relative consistency of atmospheric temperature when compared to
other variables, some notable variability does occur. In the hottest month, for instance,
maximum temperatures are about 31.3 ◦C, while the minimum temperatures hover around
19.5 ◦C [51].
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Figure 1. The Kasungu National Park and other protected areas in Malawi.

Although estimates of wildlife in the KNP vary, it is generally agreed that animals
are relatively concentrated in the valley areas [52]. Wild animals, including elephants,
buffalos and waterbucks, comprising 75% of all herbivorous animals in the park, mainly
inhabit the valley areas, with more than 50% of these herbivores concentrated in 20% of
the total area of the park [52]. A reduction in the forest cover in these concentrated areas
could potentially lead to the extinction of weaker species of animals. Smaller animals
including roan, zebra, sable and Lichtenstein’s hartebeest also make up about 20% of the
total mammal population in the park, with less than 10% of them in the valley areas [52].
Thus, depletion in the vegetation cover in the habitats of the animals could have dire
implications for their survival.

2.2. Data Acquisition and Processing

Table 1 describes the characteristics of the Landsat data used in this study, as has been
used in other studies that have assessed protected area changes [53]. The image selection
and the timing of the years were based on the availability of cloud-free images, as there
is high cloud cover in the area during the rainy season [54]. Admittedly, these dry season
images may influence the quantity of forest cover and vigor of the vegetation. Given that
all the images chosen were all for July, the similarities and differences will likely be uniform
across the images, thus providing comparable results. All the images were projected to
WGS84_UTM_Zone_36S at 30 m spatial resolution, and geo-rectified to the same coordinate
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system using seventeen ground control points to ensure spatial coincidence [55]. A Root
Mean Square Error (RMSE) of 0.14 was attained for the geo-rectification. Atmospheric
correction and haze removal operations were performed to remove dust, smoke, and haze
particles that were present in the atmosphere during the time of image capture to enhance
local contrast while maintaining the structural information of the original image [56]. The
digital numbers were converted to radiance values using gains and offsets contained in the
metadata files of the images [57]. Finally, the visible and near infra-red (NIR) bands of the
images were selected and composited into a multiband image for use in the classification,
while the red and near-infrared (NIR) bands were used for computing the Normalized
Difference Vegetation Indices (NDVI). We note that although the spatial resolution of the
images was 30 m × 30 m, evidence suggests that the Landsat OLI/TIRS demonstrates
higher accuracy in classifying land cover types compared to Landsat 5 TM [58], although
studies have shown that both Landsat 5 and 8 have generally produced good classification
results that can be compared.

Table 1. Description of data. *.

Sensor Type Acquisition Date Scene ID Sun Elevation

Landsat 8 OLI/TIRS 31 July 2018 LC81690692018212LGN00 46.57
Landsat 5 TM 3 July 2008 LT51690692008185JSA00 40.03
Landsat 5 TM 21 July 1997 LT51690691997202JSA00 41.62

* All images were downloaded from the United States Geological Survey (USGS) website (https://earthexplorer.
usgs.gov/ (accessed on December 23 2021)). The centre wavelengths for the red and NIR bands for Landsat 8
OLI/TIRS are 0.655 λ and 0.865 λ respectively, while those for the Landsat 5 TM are 0.66 λ (red) and 0.83 λ (NIR).

2.3. Land Cover Change Analysis

To derive good results for a land cover classification of remotely sensed images, it is
imperative to reduce the number of classes and choose classes that represent markedly
distinct land cover types on the landscape [59]. Thus, the three Landsat images were
used in a four-class classification schema—forest, shrubs, bare land, and water, to analyze
the landscape of the park. The classes were identified based on field knowledge of the
park, detailed visual inspection of the landscape from very high resolution images in
Google Earth Pro and general guidelines for land use and land cover classification for
use with remote sensor data provided by the United States Geological Survey [60]. This
comprehensive identification approach was used to reduce uncertainty and confusion
among different classes, especially the forest and shrubs classes, as has been done in
other studies [58]. The ‘forest class’ comprised matured trees standing individually or in
clusters with clearly defined crowns. The ‘shrubs class’ comprised small- to medium-sized
perennial woody plant trees with their multiple stems and shorter height, less than 6–10 m
tall trees [61], undergrowth, grasses, and re-emerging plants from burning incidents. We
considered the ‘bare land class’ as comprising areas with more than 85% exposed land
surface either in dried-up waterways, clear-cut areas, roads/tracks, and farmlands mainly
at the fringes of the park. The ‘water class’ is composed mainly of three small lakes in
the reserve that still have water in them. Global Positioning System (GPS) devices were
used to take XY coordinates around these classes as samples in late 2018 as reference data
for accuracy assessment of the 2018 image and as reference data for selecting samples for
accuracy assessment for the 1997 and 2008 time points. The coordinates in .gpx file format
were converted to point feature classes and subsequently to polygons using the ‘point
to line tool’ in ArcGIS Pro. These polygons were then used as a guide for selecting the
reference data for the original 1997 and 2008 images.

A Fuzzy K-Means unsupervised classification algorithm was used to classify the three
images. In a fuzzy clustering [62], each pixel has a degree of belonging to different classes,
as in fuzzy logic, rather than belonging exclusively to just one class. Thus, pixels on the
edge of a class may be in the class to a lesser degree than pixels in the centre of the class.
The Fuzzy K-Means algorithm is based on the fuzzy set theory which makes it possible

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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for uncertainty to be accounted for naturally and realistically during data analysis [63].
The intricate nature of the forest and shrubs in the park detected from field observations
means that there is uncertainty between the two classes and hence, the choice of the Fuzzy
K-Means algorithm for the classification. A total of twenty (20) clusters were generated
in CATALYST Professional software in 5000 iterations and were aggregated into the four
classes used in this analysis.

In this study, classification accuracy was assessed using reference samples selected
from the original Landsat images as has been applied in other studies [64]. A stratified
random sampling strategy was used to select 295 sample polygons from the original
images using the polygons generated from the field data for accuracy assessment [58]. The
polygons from all the three time points were converted to raster data at the same spatial
resolution as the original raster images (30 m × 30 m) and compared with the classified
images to create a confusion matrix. Accuracy assessment of the classifications was based
on Congalton’s [65] method which involves computing the producer’s, user’s and overall
accuracies, as well as their respective Kappa coefficients. The producer’s accuracy is the
map accuracy from the map maker’s point of view, while the user’s accuracy is the accuracy
from the map user’s point of view. The overall accuracy is usually expressed as a percentage,
with 100% accuracy being a perfect classification where all reference sites were correctly
classified. The overall accuracy is computed by dividing the total number of correctly
classified pixels by the total number of reference pixels. The Kappa on the other hand
evaluates how well the classification performed as compared to just randomly assigning
values, i.e., did the classification do better than random. The Kappa coefficient ranges
from −1 to 1; with a value of 0 indicating that the classification is no better than a random
classification. Values close to 1 or −1 indicate that the classification is significantly better or
worse than random, respectively. We expect the overall accuracies to be higher than 85%
which is often considered the ideal classification accuracy for land cover analysis [60].

For the landscape composition and configuration analysis, the classified images were
reclassified into two classes—forest and non-forest (comprising the shrubs, bare land, and
water classes). The two classes were used in FRAGSTATS software to compute landscape
metrics for assessing the composition and configuration of the park’s landscape for the three
time points. The software considers the two reclassified categories as independent classes
and computes the metrics for both classes. We did this binary reclassification because some
of the landscape metrics cannot be computed with only a single class. Despite this binary
re-classification, the outcome of the analysis is not influenced by the values of the other
classes—i.e., each class is treated independently by the software.

2.4. Landscape Pattern Analysis

Following McGarigal et al. [66], landscape metrics were used to analyze the temporal
pattern of landscape composition and configuration in classified images from 1997, 2008 and
2018. A total of six landscape metrics that could be analyzed, evaluated, and interpreted
without any ambiguity [67] were selected for this analysis. We selected these metrics
because they quantify fundamental aspects of landscape composition and configuration
which are useful descriptors of landscape structure in a wide range of real landscapes [68].
The six metrics are as follows:

1. Clumpiness index (CLUMPY = 0 when the patches are distributed randomly and
approach 1 when the patch type is maximally aggregated),

2. Landscape Shape Index (LSI increases without limit as the patch type becomes more
disaggregated),

3. Aggregation Index (AI = 0 when the patches are maximally disaggregated and equals
100 when the patches are maximally aggregated into a single compact patch),

4. Patch Density (PD measures the number of patches/100 ha),
5. Shannon’s Diversity Index (SHDI increases when the proportional distribution of area

among patch types becomes more equitable), and
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6. Largest Patch Index (LPI = percentage of landscape occupied by the largest patch in
the ecosystem).

Several studies have adopted these metrics to study fragile ecosystems in landscapes
and forest fragmentation as well as their spatial and temporal dynamics [53,69–71].

2.5. Spatial Modelling of Vegetation Cover

To assess the spatial patterns of forest cover in the park, NDVI [72], which is related to
the leaf area index and fractional vegetation [73] was used. The NDVI for all the three-time
points were computed from the following:

NDVI =
(NIRλ − Redλ)

(NIRλ + Redλ)
(1)

where λ is the centre wavelength of the Landsat 8 OLI/TIRS and Landsat 5 TM sensors
(see footnote on Table 1).

NDVI provides information on the health and productivity of vegetation, the fraction
of absorbed photosynthetic active radiation intercepted, and biomass and phenological
patterns [74], thus, it represents a great information vector for landscape structure and
temporal change analyses [75]. As such, the index is useful for identifying patterns of
vegetation cover in the park for the three time points. We use ‘vegetation cover’ more
broadly here, as opposed to forest cover used in the land cover change analysis and the
landscape analysis section above, to include all forests and shrubs in the park because they
are all essential for the survival of biodiversity—both animals and plants [76]. Theoretically,
the NDVI algorithm cannot discriminate between forests and other forms of vegetation
cover when computing values from satellite images.

A semi-variogram analysis was performed to measure the spatial dependence of
NDVI values over space and time [77], using 295 randomly selected empirical NDVI
values from the NDVI image computed using Equation 1 above. Spatial dependence
connotes that below a certain distance threshold, two observations at different locations are
statistically dependent on each other (Tobler’s first law of geography; [78]). Through spatial
dependence, it is possible to estimate the autocorrelation of NDVI values over distance
to provide information on how vegetation amount varies over space (i.e., the intensity
of vegetation amount on the landscape). Strong autocorrelation implies high-intensity
vegetation cover and vice versa. Observing the patterns of the intensity over time will,
therefore, provide information on spatial and temporal variation of vegetation cover due to
natural effects and/or anthropogenic activities.

A semi-variogram describes how empirical data are related to each other over space/
distance [79]. After exploring the data, a four-step procedure was adopted for the semi-
variogram analysis. A linear de-trending procedure was first applied by fitting a plane to
the NDVI values to account for medium to long-range spatial anisotropy [53]. Secondly, the
data were transformed using the empirical base distribution method and the multiplicative
skewing approach because the NDVI data contained negative values. Next, the empirical
semi-variogram was calculated for all directions to measure the extent and intensity of
geometric anisotropy. Finally, a spherical semi-variogram model (equation 2) was fitted
to the de-trended and transformed data. An iterative approach was used to fit semi-
variogram models with different parameters to identify the standard model of spatial
dependence [80] (results of which are presented here) based on the RMSE values of the
models [81]. Mathematically, the model with the smallest RMSE value indicates the one
that best fits the data. The spherical semi-variogram is expressed as:

γ2(h) = C0 +
C
2

[
3

h
a0

−
(

h
a0

)3
]

(2)
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where h is the vector of the directional distance separating two locations, C0 is the nugget
or the variability in the empirical data that cannot be explained by the distance between
two observations, C is the explained spatial variance, and a0 is the semi-variogram range.
The quantity C0 + C is the sill (the variance of the data at which the semi-variance is at
maximum). The range represents the distance at which two observations are unrelated (i.e.,
separated by distances greater than the range). Low range values indicate that the total
variance of NDVI is expressed in small areas. The ratio of the nugget to total semi-variance
(C0/(C0 + C) was computed to measure the strength of spatial autocorrelation between
NDVI values. A ratio <0.25 represents a strong autocorrelation, 0.25–0.75 a medium
autocorrelation, and >0.75 a weak degree of spatial autocorrelation in the NDVI values [82].

Using both landscape metrics and spatial dependence models in this study allowed
us to examine the landscape of the park for the existence of a relationship between the
vegetation spatial heterogeneity and the occurrence/spread of disturbance events [53],
which may have created clustering/aggregation or disaggregation of forest cover on the
landscape. Therefore, we account for essential information that can be generated to more
thoroughly understand protected area landscapes.

3. Results
3.1. Image Classification

The results of the producer’s and user’s accuracy assessments are indicated in Table 2.
The assessment results for each classified satellite image for 1997, 2008 and 2018 were
92%, 90%, and 93%, respectively, while the corresponding kappa statistics were 0.87, 0.86,
and 0.84, respectively. The Landsat 8 OLI/TIRS image which was assessed using the field
reference data produced the highest accuracy. All the overall accuracies were higher than
the generally accepted minimum of 85% accuracy for an ideal classification in remote
sensing, with equally acceptable user’s and producer’s accuracies.

Table 2. Accuracy assessment results for 1997, 2008 and 2018.

Classes
1997 2008 2018

Producer’s
Accuracy

User’s
Accuracy

Producer’s
Accuracy

User’s
Accuracy

Producer’s
Accuracy

User’s
Accuracy

Forest 0.88 0.97 0.86 0.95 0.96 0.92
Shrubs 0.88 0.71 0.91 0.81 0.88 0.95

Bare land 0.95 0.91 0.91 0.90 0.92 0.86
Water 0.97 1.00 0.97 1.00 1.00 1.00

Overall accuracy 0.92 0.90 0.93
Kappa coefficient 0.87 0.86 0.89

Figure 2 presents the results of the land cover categories in the KNP in percentages.
The forest cover consistently decreased from 51.96% of the 2445.10 km2 total land area
in 1997 to 43.40% in 2008 and 30.84% in 2018, while the percentage of shrubs increased
from 8.02% in 1997 to 17.29% in 2008 and 37.84% in 2018. The percentage of bare land
also reduced over this period. Water class was the smallest land cover category in the
park but reduced during the period of the study. Overall, there was a 21.12% reduction in
forest cover from 1997 to 2018, representing an average annual reduction of 1.09% over the
twenty years.
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Figure 3 shows the spatial and temporal patterns of land cover categories in the park
for the three-time points. There was a noticeable reduction in the amount of forest cover
for 1997 compared to 2008 and 2018, while at the same time, the distribution of shrubs
increased over the three-time points. Figure 3C also shows the emergence of more bare
lands in the northern tip of the park as well as in the eastern part of the map, indicating
areas of intense deforestation. There are also areas of bare land, mostly farm plots along
the western border of the park which also is the eastern border with Zambia, indicating a
notable degree of encroachment by farmers likely from Zambia. The southern tip of the
park has also experienced an increase in the amount of bare land in 2018. Overall, however,
the distribution of shrubs dominates the park in 2018, possibly an indication that most
of the conversions from the forest were to shrubs and that there is likely a high rate of
harvesting of forest trees for various livelihood purposes.
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3.2. Transitions of Land Use/Cover Change

Table 3 shows the pattern of land cover transitions between the various categories
for the three-time points. The column IDs indicate the transitions from one land cover
class (Column 1) to another land cover class (Column 2). The Row IDs show the various
permutations of change that occurred in the nearly 21-year period. Column 5 shows the
total amount of transition to the ‘To Class’ or persistence of a particular land cover class
from 1997 to 2018. The results show that 531.31 km2 of forest transitioned to shrubs from
1997 to 2018 (Row ID 1) while the corresponding conversion from shrubs to forest over the
same period was only 85.78 km2 (Row ID 8). At the same time, an additional 156.04Km2

of forest transitioned to bare land in 2018 (Row ID 4), but 321.37 km2 converted to shrubs
(Row ID 3). Meanwhile, only 85.04 km2 of bare land transitioned to forests (Row ID 9) over
the period.

Table 3. Area (in km2) of transitions between land cover classes in the Kasungu National Park from
1997 to 2018.

Column ID

1 2 3 4 5

Row ID From
Class

To
Class

1997 to
2008

2008 to
2018

Overall Change
(1997 to 2018)

1 Forest Shrubs 145.21 384.30 531.31
2 * Forest Forest 849.22 608.96 583.19
3 Bare land Shrubs 251.23 325.09 321.37
4 Forest Bare land 276.12 68.02 156.04

5 * Bare land Bare land 617.58 530.31 571.62
6 * Shrubs Shrubs 26.41 216.06 72.75
7 Shrubs Bare land 67.28 167.31 37.98
8 Shrubs Forest 102.84 39.48 85.78
9 Bare land Forest 109.22 105.58 85.04

10 Water Bare land 0.04 0.04 0.05

Total 2445.14 2445.14 2445.14
The rows with (*) indicate persistence (i.e., the area that remained unchanged over the period for the indi-
cated class).

Figure 4 shows the distribution of changes for the various periods analyzed. Figure 4A
shows the overall (1997 to 2018) gains, losses, and persistence of land cover classes in
the KNP. It shows areas of gains in forest cover in the central part of the park and the
increased emergence of shrubs across the park, likely the effect of natural causes such
as droughts or seasonality. Figure 4B,C indicate the forest changes for 1997–2008 and
2008–2018 respectively, during which there were areas of intense deforestation.
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3.3. Landscape Composition and Configuration

Table 4 highlights the complexities in the structure and shape of changing forest cover
over the years. With the CLUMPY, AI and LPI all consistently increasing over the period,
there is a strong indication that over the twenty years, the forest patches became more
clustered/aggregated. The increasing LPI further confirms that the forest experienced
continual clustering. The PD, LSI and SHDI on the other hand consistently decreased, also
indicating more disaggregated and diverse forest cover characteristics. The decreasing
SHDI indicates dissimilarity in the clustered or aggregated forest clusters. Even though the
analysis shows an overall decrease in forest cover, the decreasing SHDI indicates that the
remaining forest cover on the landscape has become more diverse, a sign of disproportion-
ate loss in forest cover over the landscape. These seemingly contrasting findings highlight
some of the key complexities of such a rapidly changing landscape. Overall, the metrics
indicate that by 2018, the landscape of the KNP became more aggregated, but likely partly
because the forest reduced and became more concentrated in a smaller area of the park,
hence the indication of clumpiness and aggregation.
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Table 4. Landscape metrics used to describe the composition and configuration of landscape charac-
teristics. Computed from the reclassification of the land cover categories into the forest and non-forest
classes.

Metrics 1997 2008 2018

Clumpiness (CLUMPY) 0.60 0.70 0.73
Aggregation index (AI) 79.86 84.12 95.80

Patch density (PD) 25.86 21.14 16.61
Largest patch index (LPI) 38.11 52.76 67.70

Landscape shape index (LSI) 167.40 132.27 97.65
Shannon’s Diversity Index (SHDI) 0.69 0.68 0.62

3.4. Intensity and Spatial Pattern of Vegetation Cover

In the semi-variogram analysis, both forest and shrubs were considered as vegetation
cover because NDVI computation considers all healthy vegetation in the landscape, which
includes both forests and shrubs. The semi-variogram analysis revealed that vegetation
exhibited temporal and spatial variability over the study period, as shown by the landscape
pattern analysis. The predicted 2018 NDVI produced a negligible nugget effect (Table 5),
and a larger sill, indicating a strong spatial autocorrelation between the empirical and
predicted values. The autocorrelation indicates high-intensity vegetation cover (high NDVI
values surrounded by high values). Compared to 1997, however, the 2008 model produced
a larger nugget effect and a relatively smaller sill, even though the nugget was still smaller
than the sill, indicating medium autocorrelation. The range, which describes the distance
at which the semi-variance stops increasing, was relatively higher in 2018 than in 1997
but smaller in 2008. This means there were fewer patches in 2018 than the other years
and more patches in 2008 than in 1997. Overall, the lower range value in 2008 implies
small-scale heterogeneity in small areas, with relatively many patches, as revealed by the
landscape metrics.

Table 5. The result of the spherical semi-variogram model for describing the spatial characteristics of
NDVI values from 1997 to 2018.

Year Range (m) Nugget (C0) Sill (C0 + C) C0/(C0 + C) Autocorrelation

1997 1131.47 0.0258 1.080 0.023 Strong
2008 1001.02 0.297 0.584 0.509 Medium
2018 1147.90 9.16 × 10−4 0.507 0.002 Strong

Figure 5 presents the modelled surface of the NDVI values. In 1997, high-intensity
NDVI values were concentrated mainly in the northern and southern half of the park,
with low intensity in the central part. The intensity was more variable in 2008, producing
patches of high intensity interspersed with low intensity, indicating a more fragmented
landscape (see Table 4). The 2018 model shows the high intensity of vegetation cover in
the eastern part of the park, but with a contiguous patch of high values from the central
to the western half of the park. The high clustering of low values in the northern and
southern edges reveals a permanent loss of vegetation cover. Overall, the high intensity of
NDVI values was more prevalent on higher grounds in comparison to the low-lying areas.
Low-intensity values in the northern and southern edges in 2018 coincided with increased
forest cover loss, while 2008 revealed patchy/fragmented intensity patterns which reflect
our results of the landscape composition and configuration analysis.
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4. Discussion

The primary objective of this study was to analyze land cover change, intensity, spatial
and temporal patterns of vegetation cover, and landscape composition and configuration in
Malawi’s Kasungu National Park (KNP). Such analyses highlight the relevance of remote
sensing data and methods for providing detailed information needed for conservation man-
agement decisions in protected areas. The results of the classification produced acceptable
accuracies (see Table 2) that are generally consistent with other studies involving Landsat
image classification [83,84], with the Landsat 8 OLI/TIRS images producing the highest
accuracy. According to Poursanidis [58], the higher overall accuracy of the OLI/TIRS image
is likely because of the better quality of the Landsat 8 sensor. The study reveals three
major characteristics of the KNP: first, consistent with the national deforestation rate of
Malawi, there is a high rate of deforestation in KNP, with more of the forest converting
to shrubs in 2018 (Table 3 and Figure 4); secondly, there were variations in the compo-
sition and configuration of forest cover in the park for 1997, 2008 and 2018 time points
as revealed by the landscape metrics (Table 4); and, thirdly, the semi-variogram analysis
showed varying temporal patterns of overall vegetation cover, with higher aggregation
of vegetation patches observed in 2018 (see Table 5, Figure 5). As demonstrated in this
research, and corroborated by other researchers [85,86], a majority of studies have used
Landsat TM/ETM+ and OLI/TIRS images to assess changes in and around protected areas,
highlighting the utility of these data for making conservation management decisions.

Malawi has a national deforestation rate of about 2.8% or 2500 km2 average annual
loss of forest cover [87]. Although our finding of about 1.09% annual loss of forest from
1997 to 2018 is lower than this high rate of deforestation in the country, the findings are,
however, consistent with the general assertion that the rate of deforestation in protected
areas is often lower than in unprotected areas [88,89], thus justifying the use of protected
areas as an effective conservation strategy for biodiversity. Studies [90–94] have reported
that other national parks in Malawi face similar high rates of deforestation. According
to scholars such as Mauambeta [39] and Lindsey et al. [95], weak enforcement of the law,
inadequate funds to deploy law enforcement agents, and the lack of alternative sources
of income to alleviate poverty and divert locals from exploiting protected areas constitute
some of the main constraining factors to their efficient management. Though we did not
investigate the drivers of forest cover loss in the park, nonetheless, we posit that other
national parks and the general landscape in the country may be experiencing similarly
high rates of deforestation, thus posing a conservation challenge. The African continent
has some of the world’s most unique, diverse and rare wildlife and supports about 33% of
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all global biodiversity [96]. The majority of this diverse biodiversity is located in national
parks and forest reserves. The high rate of habitat loss in these parks is considered the
main driver of the loss of wildlife in SSA [19–21]. These land uses not only fragment the
landscape, as indicated by the landscape analysis, but also destroy sensitive habitats and
inhibit the natural movements of animals [97].

Beyond forest cover loss, the composition and configuration of forest landscapes
have implications for the movement of wildlife across habitats. The compositional and
configurational changes of landscapes in the park suggest that in tropical landscapes where
animals are an integral part of the forest ecology, the type of changes that occur could
negatively inhibit the movement of animals and can result in extinction due to perturbations
in their natural habitats and biorhythms. We found that by 2018, the landscape became
more aggregated, but given that forest loss was high, it means habitable forest areas were
concentrated in a small portion of the park, with the valley areas which contain a high
concentration of mammals being the most degraded, which may have a limiting effect on
animal mobility especially during perennial migration or when fleeing dangers such as
wildfires and preys. Poodat [98] demonstrated that connectivity/contiguity of habitats is
significant to the survival of wildlife, suggesting that the concentration of forest cover in a
very small area in the park potentially endangers some animal species.

The results of the semi-variogram models confirmed a concentration of dense and
vigorous vegetation in smaller areas of the park. NDVI is an indicator of photosynthesis
and is efficient for monitoring the changes in the intensity and health of plants, as well as
changes in these parameters over time [99]. The high NDVI values indicate the concentra-
tion of healthy and lush vegetation in highland areas in the park. The high concentration is
related to and explains the high CLUMPY values. Therefore, we assert that during the two
decades which this study covers, reduction in overall vegetation cover likely led to a con-
centration of vigorous vegetation cover in the plateau areas of the KNP, holding all seasonal
dynamics constant. The over-concentration of vegetation in smaller areas has implications
for maintaining the balanced and symbiotic relations of flora and fauna in conservation
areas. The finding suggests that the valley areas, where 75% of all herbivorous animals in
the park inhabit [52], experienced more degradation of the vegetation cover, thus making
it uninhabitable. Scholars have indicated that landscape structure plays a crucial role in
the species richness distribution of birds, amphibians, reptiles and lepidopterans [100–102].
Indeed, Burkey [103] states that all other things being equal, highly fragmented vegeta-
tion will be of less value for protecting biodiversity. As such, the transformation of park
landscapes into patchy fragments implies that the range of movement of some species will
likely reduce, which will expose them to the risk of extinction. Similarly, Mauambeta [39]
found that bird species are among the most endangered in the KNP, along with elephants
and other large mammals [38], and carnivores such as resident lions [104,105], likely due to
the loss of forest cover. The rapid rate of landscape change, coupled with climate change
and variability, also implies that animals may not be able to adapt quickly enough to such
pronounced short-term changes and may become extinct [106,107].

While the research mainly highlights the role that remote sensing can play in assisting
protected area managers to characterize and map habitats and monitor change in protected
areas, the data generated can also provide information on modifications of ecosystem condi-
tions related to climate change. With increasing climate change which will exacerbate forest
fragmentation in protected landscapes, wildlife will be endangered; evidence suggests
that their concentration in fragmented habitats exposes them to poachers and other preda-
tors [108]. Several studies [109–111] have demonstrated that a reduction in forest cover and
fragmentation of these forests due to changes in climate conditions result in biodiversity
loss, with cascading effects that will potentially trigger even higher rates of deforestation
due to the loss of livelihoods [112] of forest-dependent households, thus compounding on
existing conservation management challenges. Additionally, the rapid rate of deforestation
has a relay effect on other forms of environmental degradation, primarily higher erosion
rates, ref. [84] which could, in turn, reduce the sustenance and ability of biodiversity to
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regenerate and the release of carbon stored in soils into the atmosphere. Cumulatively,
these interactions and feedbacks will jeopardize current poor management regimes.

Even though the study does not set out to draw direct linkages between the spatial pat-
tern of forest cover and natural and human-induced causes, which is an inherent limitation
of the study, it nonetheless provides useful pointers for conservation managers on where
high rates of deforestation might be occurring. More often than not, the need to improve
the condition of protected areas relies first upon an assessment of the existing state of
forest/vegetation which can serve as a baseline for understanding how the protected area
may be best managed to improve its condition in the future, using principles of adaptive
management—a management style that seeks to achieve sustainability by incorporating
good management practices based on social and natural ecosystem integration [113]. That
notwithstanding, future research could use more detailed ground observations and qualita-
tive methods to understand the main factors driving the rapid rate of forest loss in this and
other parks in Malawi and other countries in SSA.

5. Conclusions

In conclusion, remote sensing and geospatial analysis can play a vital role in the
mapping and characterization of forest/vegetation conditions in protected areas and ulti-
mately assist in their management. Whilst the Landsat sensors have been crucial for many
monitoring programs and activities, the development in sensor technology has resulted in
a more complex assessment of protected areas such as in this study, which will allow for
changes to be better monitored. Remote sensing data can be used to map changes in the
landscape and also allow for the long term restoration of habitats. For example, through
afforestation, the establishment of corridors and/or the promotion of regeneration can
offer protection from the adverse effects of factors such as climate change [114]. Finally,
remote sensing data can provide managers of protected areas with spatial and temporal
information on the extent and condition of habitats and their response to change over
varying time scales.
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