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Abstract: Social media data have been widely used to gain insight into human mobility and activity
patterns. Despite their abundance, social media data come with various data biases, such as user
selection bias. In addition, a change in the Twitter app functionality may further affect the type of
information shared through tweets and hence influence conclusions drawn from the analysis of such
data. This study analyzes the effect of three Twitter app policy changes in 2015, 2017, and 2019 on the
tweeting behavior of users, using part of London as the study area. The policy changes reviewed
relate to a function allowing to attach exact coordinates to tweets by default (2015), the maximum
allowable length of tweet posts (2017), and the limitation of sharing exact coordinates to the Twitter
photo app (2019). The change in spatial aspects of users’ tweeting behavior caused by changes in user
policy and Twitter app functionality, respectively, is quantified through measurement and comparison
of six aspects of tweeting behavior between one month before and one month after the respective
policy changes, which are: proportion of tweets with exact coordinates, tweet length, the number
of placename mentions in tweet text and hashtags per tweet, the proportion of tweets with images
among tweets with exact coordinates, and radius of gyration of tweeting locations. The results show,
among others, that policy changes in 2015 and 2019 led users to post a smaller proportion of tweets
with exact coordinates and that doubling the limit of allowable characters as part of the 2017 policy
change increased the number of place names mentioned in tweets. The findings suggest that policy
changes lead to a change in user contribution behavior and, in consequence, in the spatial information
that can be extracted from tweets. The systematic change in user contribution behavior associated
with policy changes should be specifically taken into consideration if jointly analyzing tweets from
periods before and after such a policy change.

Keywords: social media; data bias; user policy; activity pattern; tweets

1. Introduction

Social media platforms are virtual communication channels for sharing local and
international news and opinions [1]. The advent of smartphones facilitated the collection of
accurate location information within various operating systems and applications based on
built-in Global Navigation Satellite System (GNSS) capabilities and WiFi modules [2]. The
most prominent among over 100 social media platforms include Twitter for microblogging,
YouTube for videos, Facebook for social networking, and LinkedIn for jobs [3]. Social media
content shared can be classified by information type, such as geotagged text (Twitter),
geotagged photos (Instagram, Flickr), and check-in information (Swarm) [4]. Geotagged
social media messages are increasingly used for a better understanding of public behav-
ior patterns [5,6], the monitoring and prediction of worldwide events [7,8] and natural
disasters [9], and to support public health essential services [10,11]. Its information can
supplement or replace data collected from traditional surveys, e.g., for modeling urban
mobility patterns [12], visitation rates in protected natural areas [13], or the use of building
blocks [14,15]. Social media platforms also help governmental sectors improve communi-
cation with citizen participation in community-related questions and the transfer of best
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practices [16,17]. Social media usage varies over time, and its use is affected by local,
regional, and global events [18,19].

Twitter is one of the most popular social media apps. It allows registered users to
communicate and share information through posts (tweets). Each tweet can hold up to
280 characters and may contain location data with exact coordinates, a place name from
a variety of administrative levels, and a bounding box with the coordinates of its four
corners [20–22]. Twitter geolocation contributions are used to identify human flow patterns
based on the characteristics of mobility rate, the radius of gyration, diversity of destinations,
and inflow–outflow balance [23,24].

Despite the abundance, extensive spatial and temporal coverage, and an enormous
user base of social media data, they come with various types of biases that can lead to
inaccurate analysis results [25–27]. Data bias exists not only on social media but generally
in user-generated content and may be caused by user selection, socioeconomic factors, or
specially targeted user groups for certain social media platforms [26,28–30]. For example,
users of bicycle tracking apps are not representative of the general cyclist population
because the app user base is skewed towards male and younger cyclists in the case of
Strava [31,32]. An examination of user samples from several bicycle smartphone apps in
North America revealed that the apps tended to under-sample females, older adults, and
lower-income populations [33].

User selection bias varies across different social media platforms, in part because
different social media platforms have different target users. In addition, social media use
varies by socioeconomic factors, including education, type of occupation, income, age, and
race [34]. One study found that black and Hispanic neighborhoods feature fewer PokéStops
than commercial, recreational, touristic, and university locations and thus disadvantage the
local population in black and Hispanic neighborhoods [31,35]. Gender bias was observed
in OpenStreetMap (OSM) editing and tagging activities, which were primarily conducted
by male users [36]. In addition, platform policy and app functionality also affect user con-
tribution behavior. For example, the Twitter policy change, which increased the maximum
allowable tweet length from 140 to 280 characters in 2017, resulted in tweets containing
more hashtags, definite articles, characters per sentence, and punctuation marks, but also in
tweets with fewer abbreviations [37,38]. Twitter has gone through multiple policy updates.
Whereas various studies analyzed the character change policy from 2017, other policy
changes are rarely discussed. This may be because these policy changes do not directly
change constraints on tweets themselves but rather on tweet metadata (i.e., sharing of exact
coordinates). As for the 2017 policy change, previous studies analyzed primarily linguistic
effects, whereas other changes, such as the use of geographic placenames or photos, or
users’ traveled activity space, were not discussed, although these characteristics can be of
interest for spatial analysis tasks.

User behavior and information diffusion in social media can be analyzed from dif-
ferent perspectives, e.g., alongside a spatial and temporal dimension [39]. User policies
can affect how users interact and share data on a social media platform [40] and, in con-
sequence, the information that can be harvested from shared information, such as user
posts. Policy changes have, for example, been implemented to reduce the spread of false
content on Twitter and Facebook [41]. Another study reviewed how changes in the func-
tionality (e.g., privacy settings, accepting friendships) on social networking sites, such
as Facebook, Twitter, and YouTube, may make these technologies less perilous for health
professionals [42].

The main objective of this paper was to identify the underexplored effects of three
policy changes for the Twitter app on user contribution behavior and, thus, the spatial
information that can be retrieved from contributed data, i.e., posts. These effects are
identified by comparing contributed data before and after the following three Twitter policy
changes: (1) The removal of a default option to share exact coordinates with each tweet
(April 2015); (2) The increase in the allowable tweet length from 140 to 280 characters
(November 2017); (3) Limiting the sharing of exact coordinates to the Twitter photo app
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only (June 2019) [43]. In order to quantify the change in user behavior, six behavioral
characteristics (variables) were extracted from one month before and after the policy
update period. These variables are the proportion of tweets with exact coordinates, tweet
length, the average number of placenames in tweet text or hashtag per tweet (rate), the
proportion of tweets with images among tweets with exact coordinates, and the radius of
gyration of tweet locations.

The remainder of the paper is structured as follows: Section 2 describes data collection,
data processing, and data analysis methods and formulates research hypotheses. Section 3
shows the results of pre-post policy comparisons of user contribution behavior along the
six contribution variables, which is followed by a discussion of the results in Section 4 and
conclusions and directions for future work in Section 5.

2. Materials and Methods
2.1. Study Area

Geotagged tweets were collected from the northwestern part of London, which covers
approximately 659 km2 (red rectangle in Figure 1). This London test region was chosen
since it covers both urban and suburban areas, provides sufficient data for the analysis of
the three policy changes, and has most tweets posted in English.
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Figure 1. Study area and tweets with exact coordinates in 2015.

Blue dots in Figure 1 show the location of tweets with exact coordinates in March
2015, which was before the first policy change. As opposed to this, orange dots show
tweet locations after the policy change in May 2015. Figure 1 clearly illustrates the de-
cline in the number of tweets with exact coordinates through the 2015 policy change.
The same study area was used to assess the effects of 2017 and 2019 policy changes on
contribution patterns.

2.2. Data Collection

Geotagged tweets were downloaded in JavaScript Object Notation (JSON) format
through the Twitter Application Programming Interface (API) in combination with the
“request” Python library. To specify the download area, the “bounding_box” operator was
applied, which allows a maximum allowable length of each bounding box side of 25 miles.

For each policy change analyzed, the data of one month before and one month after
the policy updates were collected (Table 1) and stored in a PostgreSQL database. This
procedure resulted in the download of tweets that were mostly geotagged with exact



Geographies 2022, 2 552

coordinates, whereas a small number of tweets were geocoded at the city-, administrative-,
or country level or through a Point of Interest (POI).

Table 1. Monthly number of downloaded and filtered tweets.

Year Month
Tweets

Raw Data Language and Source Filtered

2015
March 614,657 302,269

May 685,406 346,878

2017
October 549,109 265,485

December 455,685 258,916

2019
May 434,944 265,457

July 440,406 273,403

The following attributes were extracted for each tweet from the raw JSON data:
tweet id, text, language, time created, author id, source platform, place id, geotag type,
coordinates, hashtags, bounding box, feature type, place name, place name code, country,
place type.

Tweets can come in over 50 languages from over 180 sources, including Flickr, the
Twitter Web client, or Instagram. For this study, only tweets in English were considered.
Moreover, since the focus of this research is on assessing the effect of changes in the Twitter
app on tweeting behavior, only tweets posted from mobile tweeting platforms were used
for the analysis, which includes the following sources: Twitter for iPhone, Twitter for
Android, Twitter for iPad, and Twitter for Android Tablets. Table 1 shows the number
of tweets in the study area before and after language and source filtering for the months
around the three considered policy changes.

2.3. Research Hypotheses

A research hypothesis can be defined by posing the expected direction of change,
i.e., larger (>) or smaller (<), for each of the six behavioral variables that are assessed with
respect to policy changes. Technically, in connection with the Monte Carlo permutation
tests, these hypotheses denote alternative hypotheses since a null hypothesis in a statistical
test postulates no change in the population parameter under consideration (e.g., mean or
median) [44]. The six hypotheses are stated for each policy change, resulting in a total of
18 hypotheses (H1 through H18) across the three years (Table 2).

Table 2. Alternative hypotheses of Monte Carlo permutation tests.

Variable
Alternative Hypotheses

2015 2017 2019

Proportion of tweets with exact coordinates (H1, H7, H13) < < <
Tweet length (H2, H8, H14) > > >

Rate of placename mentions in text (H3, H9, H15) > > >
Rate of placename mentions in hashtags (H4, H10, H16) > > >

Proportion of tweets with images among tweets with
exact coordinates (H5, H11, H17) > < >

Radius of gyration (H6, H12, H18) < < <

The alternative assumptions were made based on the expected effect of a policy update
on a variable of interest. Explanations for the expected directional change of variable means
after a policy change for the 18 hypotheses are detailed in Table 3.
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Table 3. Reasoning for alternative hypotheses related to permutation tests.

Year Explanation

2015

H1 The proportion of tweets with exact coordinates among geotagged tweets decreases
when it is required to confirm for each individual tweet to share exact coordinates.

H2 The length of tweets increases since fewer exact coordinates make users use more text to
describe location information.

H3, H4
The rate of placename mentions in the text (H3) and in hashtags (H4) for geotagged

tweets increases since users mention placenames more often to state their position when
sharing exact coordinates becomes less convenient.

H5
The proportion of tweets with images among tweets with exact coordinates increases

because images in the photo app come with exact coordinates, which does not require a
user’s individual confirmation of each tweet to share exact coordinates.

H6 The radius of gyration decreases since fewer tweets with exact coordinates provide a
less complete picture of a user’s traveled region.

2017

H7
The proportion of tweets with exact coordinates decreases since longer tweets allow for
a more detailed textual description of one’s location, which can compensate for the lack

of exact location information.

H8 The length of tweets increases since users are allowed to use twice the number of
characters in their tweets.

H9, H10
The rate of placename mentions in the text (H9) and in hashtags (H10) for geotagged
tweets increases since longer tweets allow to fit more placename mentions in the text

and within hashtags, respectively.

H11
The proportion of tweets with images among tweets with exact coordinates among

geotagged tweets decreases because longer tweets allow a user to describe a location
through text in more detail, which reduces the need for images.

H12 The radius of gyration decreases since longer text reduces the need for tweets with exact
coordinates, which, in turn, leads to a less complete picture of a user’s traveled region.

2019

H13
The proportion of tweets with exact coordinates among geotagged tweets decreases

because sharing of exact coordinates is limited to the photo app, which will generally
not be used if the user does not intend to share a photograph.

H14 The length of tweets increases since more text is needed to convey position information
as compensation for fewer tweets with exact coordinates.

H15, H16
The rate of placename mentions in the text (H15) and in hashtags (H16) for geotagged
tweets increases because these mentions provide an alternative way to describe one’s

location as compensation for fewer tweets with exact coordinates.

H17
The proportion of tweets with images among tweets with exact coordinates increases

because the policy change allows users to share exact location information only through
the photo app.

H18 The radius of gyration decreases because fewer tweets with exact coordinates provide a
less complete picture of a user’s traveled region.

In addition, it was hypothesized that when expanding the comparison period beyond
the month before and after a policy, the change results in a more distinct observed effect
on the analyzed variables. This is because there may be a delay in updating apps on
mobile devices to the newest app version for various reasons and hence a delay in policy
changes taking effect for some users. To test this hypothesis, change in variable means
across multiple years, i.e., between March 2015 and December 2017 and between March
2015 and July 2019, was compared to changes associated with individual policy updates in
the corresponding years. The first multi-year time span comprises two policy changes, and
the second one three policy changes.
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2.4. Variable Calculation

The following items describe the steps involved in computing the behavioral variables
for one month before and one month after the month of the policy update. The sample size
for before and after equals the number of users who meet the criteria to be included in the
pre-post comparison.

1. Proportion of tweets with exact coordinates

This is the number of tweets with exact coordinates divided by the total number of
geotagged tweets posted by a user. Only tweets from users who posted at least one tweet
with exact coordinates in the month before and in the month after the policy change period
were considered;

2. Tweet length

The tweet length is the average text length of tweets posted by a user. Only tweets
from users who posted at least one tweet in the month before and in the month after the
policy change period were considered. Although the maximum tweet length was set to
280 characters after the policy change in November 2017, tweets can sometimes exceed
280 characters. This is because, through the Twitter API, some symbols are replaced with a
string of characters. For example, “>” is converted to “&gt;” during the download process;

3. Rate of placename mentions in the text and hashtags

These rates are computed as the number of times a placename is mentioned in the text
or in the hashtags, respectively, divided by the number of tweets posted by that user. Only
tweets from users who posted at least one tweet in the month before and in the month
after the policy change period were considered. In order to identify a placename in a post,
the Python language processing library “spaCy” was applied, which can recognize entity
names, such as companies, agencies, or countries. The “en_core_web_sm” model was
applied to extract geopolitical entities such as countries, cities, and streets. Due to potential
false positives, identified place names had to be checked manually regarding their existence
using Google Maps. Further, to disambiguate ambiguous terms, the entire tweet text was
used in a manual check. For example, the ambiguous name “Primark” can point to a brand
or a store. The correct meaning becomes evident when reviewing the tweet text;

4. Proportion of tweets with images among tweets with exact coordinates

The first step in this computation involves the identification of images or videos
attached to tweets. An image or video in tweets is shown as a link. However, a link does
not always point toward a picture or video. Instead, it could also, for example, point to a
website a user wants to share. Therefore, each link needed to be checked.

For this analysis, only tweets from users who posted at least one tweet in the month
before or after the policy change period were considered. In order to check each link for the
presence of images or videos, several libraries were applied. The Python library “Selenium”
was used to simulate the browser to call the extracted links one after another. Xpath is an
XML (Extensible Markup Language) Path language and can be used to navigate to elements
and attributes of an XML document. Upon server return, the loaded website source code is
parsed for “Alt = Image” using XPath. If this relation is present, at least one image exists in
the tweet content.

In addition, the presence of videos was checked manually for tweets whose links were
not pointing towards an image. Whenever the image or video exists, the corresponding
tweet is counted as one. The sum of all tweets with images or videos by a user was then
divided by the total number of tweets of that user;

5. Radius of gyration

The radius of gyration, rg, measures the geometric spread of locations, in this case,
tweets, and is computed as
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rg =

√
1
n ∑i(ri − rc)

2 (1)

where n is the number of geotagged tweet locations of an individual user, ri is the location
of tweet i, and rc is the geometric center of the geotagged tweets.

For this analysis, only tweets from users who posted at least two tweets with exact
coordinates before or after the policy change period were considered. The radius of gyration
of each user was computed using the R package “Mobility” in the month before and after
the policy change.

2.5. Monte Carlo Permutation Test

The mean values of variables across eligible users before and after the policy change
were compared through a Monte Carlo permutation test [45] to identify whether the means
changed as hypothesized.

The null hypothesis of the Monte Carlo permutation test is that both samples
(i.e., before and after policy change variable values) come from the same distribution.
The distribution of the test statistic, i.e., the mean difference between before and after policy
variable values, was obtained through permutation, that is, by randomly assigning all
observed variable values (e.g., average tweet length of each user from before and after
policy change) to a before and after bin, followed by taking mean differences between
both bins, and repeating this step 10,000 times. Next, the difference of means between
observed variable values from tweets before and after the policy change was computed.
The one-sided p-value of the test was computed as the proportion of sampled permutations
for which the difference in means is greater (or smaller) than the mean difference of the
randomized sample, where the direction of testing depends on the hypothesis (compare
Table 2).

3. Results

This section reports the change in variable means for the three policy changes in the
years 2015, 2017, and 2019 as well as for the across-year comparisons.

3.1. Results of the 2015 Policy Change

Table 4 reports the mean values of variables and their standard deviation before and
after the 2015 policy change together with the p-value, which is shown in boldface if
p < 0.05. Hypothesis numbers shown to the right refer to Table 3.

Table 4. Permutation test results of the 2015 Twitter coordinate policy change.

Variable
User Number Mean (SD)

p
March May March May

Proportion of tweets with exact coordinates 13,915 13,915 0.973 (0.161) 0.175 (0.371) <0.001 (H1)
Tweet length 13,915 13,915 84.8 (28.7) 83.9 (28.5) 1.000 (H2)

Rate of placename mentions in text 13,915 13,915 0.080 (0.234) 0.077 (0.224) 0.889 (H3)
Rate of placename mentions in hashtags 13,915 13,915 0.012 (0.084) 0.011 (0.080) 0.899 (H4)
Proportion of tweets with images among

tweets with exact coordinates 22,685 3789 0.232 (0.292) 0.256 (0.363) 0.227 (H5)

Radius of gyration (m) 22,685 3789 1795.9
(2403.9)

1688.6
(2355.2) 0.005 (H6)

Note: p-value in boldface indicates that mean differences are statistically significant.

The results show that the decrease in the proportion of tweets with exact coordinates
from 97.3% to 17.5% and the decrease in the radius of gyration by about 107 m through this
policy change is statistically significant. The directions of observed differences for these
two variables are in line with the predicted change directions (compare Table 2). Figure 2
shows that tweets with exact coordinates dropped from about 6000 to 1000 per day around
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April 25th, with a slight gradual decrease afterward. Moreover, tweets of geotagging type
“city” gradually increased from zero to about 400 per day, which compensates for some of
the loss in exact coordinate information.
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Figure 2. Number of tweets with three types of geotagging around the 2015 policy change.

Tweets with other geotagging types, including “admin”, “country”, and “POI” were
close to zero.

For more details, Table 5 juxtaposes the number of different types of geotagged tweets
for the month before and after the 2015 policy change, revealing a strong drop in the use of
exact coordinates but an increase in city-level tagging. A Chi-square test of independence
found that there was a statistically significant association between geotag type and month,
X2 (1, N = 4) = 200,893, p < 0.0001. This means that the proportion of geotagging types used
changes between before and after the policy change.

Table 5. Number of tweets with different geotagging in 2015.

Geotag Type March May

Coordinates 168,394 27,963
Admin 40 263

POI 0 11
Country 0 5

City 425 8203

3.2. Results of the 2017 Policy Change

Table 6 shows that the increase in tweet length from 97.4 to 111.0 characters and the
increase in the rate of placename mentions in tweet text from 0.086 to 0.093 is statisti-
cally significant. Where significant, the directions of observed changes were in-line with
predictions (compare Table 2).

Table 6. Permutation test results of the 2017 Twitter length policy change.

Variable
User Number Mean (SD)

p
October December October December

Proportion of tweets with exact coordinates 17,855 17,855 0.003 (0.052) 0.003 (0.048) 0.118 (H7)
Tweet length 17,855 17,855 97.4 (34.1) 110.9 (52.3) 0.000 (H8)

Rate of placename mentions in text 17,855 17,855 0.086 (0.242) 0.093 (0.266) 0.006 (H9)
Rate of placename mentions in hashtags 17,855 17,855 0.011 (0.084) 0.013 (0.092) 0.084 (H10)
Proportion of tweets with images among

tweets with exact coordinates 245 195 0.567 (0.477) 0.562 (0.476) 0.460 (H11)

Radius of gyration (m) 72 51 1512.0
(2619.2)

1238.4
(1787.0) 0.272 (H12)

Note: p-value in boldface indicates that mean differences are statistically significant.
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Figure 3 shows the daily average text length for the three months surrounding the 2017
policy change, with a clear weekly fluctuation pattern (lower tweet numbers on weekends)
and a pronounced general increase around 5 November. Tweets are exceptionally short
on 25 December (Christmas), suggesting that holiday greetings tend to be shorter than
individualized tweet posts.
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Figure 3. Daily average tweet length around the 2017 policy change.

3.3. Results of the 2019 Policy Change

Table 7 shows that significant changes in the proportion of tweets with exact coordi-
nates, the rate of placename mentions in text and hashtags, and the proportion of tweets
with images among tweets with exact coordinates occurred in the hypothesized directions
according to Table 2.

Table 7. Permutation test results of the 2019 Twitter coordinate policy change.

Variable
User Number Mean (SD)

p
May July May July

Proportion of tweets with exact coordinates 13,400 13,400 0.004 (0.053) 0.002 (0.042) 0.004 (H13)
Tweet length 13,400 13,400 119.5 (61.2) 118.3 (62.0) 0.942 (H14)

Rate of placename mentions in text 13,400 13,400 0.087 (0.259) 0.093 (0.271) 0.038 (H15)
Rate of placename mentions in hashtags 13,400 13,400 0.009 (0.072) 0.011 (0.084) 0.028 (H16)
Proportion of tweets with images among

tweets with exact coordinates 455 331 0.874 (0.328) 0.925 (0.264) 0.010 (H17)

Radius of gyration (m) 43 30 438.9 (1031.0) 806.6 (1575.0) 0.121 (H18)
Note: p-value in boldface indicates that mean differences are statistically significant.

3.4. Results of Across-Year Comparisons

In Table 8, underlined p-values in boldface refer to those multi-year time spans where
the significance level of mean change increased compared to individual policy updates
(compare Table 4, Table 6, and Table 7). It shows that in four cases, an extension of the
analyzed time span beyond a plus-minus one-month analysis period strengthens the
significance of observed effects. This suggests that planned policy changes, at least in part,
take more time to take effect beyond the announced change date. Values in the SD column
express the standard deviation of the simulated difference in the mean values between the
two listed months, whereas the ∆obs column denotes the observed change in mean values
between these two months.
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Table 8. Comparison of user contribution behavior across multiple years.

Variables
Mar 2015 vs. Dec 2017 Mar 2015 vs. Jul 2019

SD ∆obs p SD ∆obs p

Proportion of tweets with exact coordinates 0.007 −0.970 <0.001 0.009 −0.971 <0.001
Tweet length 0.522 26.2 <0.001 0.617 33.5 <0.001

Rate of placename mentions in text 0.003 0.012 <0.001 0.003 0.012 <0.001
Rate of placename mentions in hashtags 0.001 0.001 0.265 0.001 −0.001 0.920

Proportion of tweets with images among tweets
with exact coordinates 0.031 0.330 1.000 0.030 0.692 <0.001

Radius of gyration (m) 334.6 −557.5 0.040 443.7 −989.4 0.003
Note: Underlined p-values indicate a more significant change in mean differences across multiple years than for
individual policy updates. A p-value in boldface indicates that mean differences are statistically significant.

4. Discussion

This study analyzed the change in tweeting behavior and information sharing for six
variables in response to policy changes on Twitter apps. The six variables cover different
aspects of user contribution behavior and their spatial information.

After the 2015 policy update, which removed the function to opt-in for default sharing
of exact coordinates with each tweet, the proportion of tweets with exact coordinates
among geotagged tweets decreased from 97.3% to 17.5%, which is consistent with H1. The
policy, therefore, clearly contributed to a drop in precise location information available
in tweets [46]. Whereas the number of tweets with exact coordinates declined through
this policy change, tweets with other types of geotags (e.g., at the city level) increased at
the same time, albeit to a much lesser degree, leading to an overall decline in geotagged
information (compare Figure 2). This can affect travel behavioral analyses at multiple
geographic levels. Tweets have been used in longitudinal studies to analyze traffic flows
between geographic regions, such as between countries, e.g., for tourism management and
policy [47]. A change in the number of geotagged tweets posted per user, e.g., caused by the
2015 policy change, introduces biases when comparing traveler flow data between periods
before and after the policy change and would therefore have to be mathematically corrected.
Tweets have also been used in the context of natural disasters, such as tracking evacuation
travels prior and concurrent to hurricanes. One study, which collected tweets between
September and November 2016 for the U.S., found that around 11.34% of tweets had
coordinates [48]. This percentage was considered too small to capture enough movements
between cities during the evacuation, so more coarse data with a bounding box diagonal of
up to 20 km had to be used instead. Tweets with exact coordinates also play a critical role in
intra-urban mobility analysis in the context of different domains, such as epidemiological
modeling, since human mobility contributes to the spread of viruses at different scales, and
humans tend to contract an infection outside the place of residence [49]. These examples
of mobility analysis demonstrate how a reduction in tweets with exact coordinates due to
policy change limits fine-grained analysis of people’s movement associated with natural
disasters or epidemiological modeling.

The 2015 policy update also led to a significant decrease in the radius of gyration
derived from tweets. This does not mean that the actual user mobility changed but rather
that the extracted information became more biased by omitting part of a user’s local travel
patterns, which adds to the general problem of sampling bias for any technology capturing
mobility dynamics [50]. It also adds to other Twitter contribution biases that exist. For
example, Twitter users’ age and income do not represent the demographic composition
of the general population [51]. The radius of gyration is often used to describe people’s
activity or travel areas, such as visiting patterns and travel distances to football games [52].

Doubling the number of allowable characters through the 2017 policy led to the ex-
pected increase in tweet length (14.0%) but also to a slight increase in the rate of placenames
in tweets. This means that more users use the opportunity to specify a location of inter-
est via textual description. The periodic ups and downs in the average length of tweets
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(Figure 3) suggest that when investigating the twitter length, the analyzed period should
be at least one week, where holidays may have additional short-term effects. The increased
twitter length in 2017 helped to mitigate the difficulty of sentiment analysis using Twitter
data because the 140-character restriction posed a challenge for sentiment information min-
ing [53]. The increase in placenames in tweets after the 2017 policy change also helped to
construct placename corpora from tweets where mentioned location entities are identified
and geolocated to toponyms in existing geographical gazetteers [54].

The 2019 policy, which restricts sharing of exact coordinates, led to an additional drop
in the proportion of tweets with exact coordinates by about 50%, leading to further data
scarcity of this type of positional information. As expected, the proportion of tweets with
images among tweets with exact coordinates increased, although it did not reach 100%. A
possible reason might be the delay of Twitter app updates to the latest version for some
users. Whereas the positional accuracy of Twitter images was in the range of multiple
kilometers before [55], it can be expected to be much improved through the policy change
and the attachment of exact coordinates to images. While the decline in the share of tweets
with exact coordinates reduces the possibilities for analysis at a refined spatial level, e.g.,
that of intra-urban mobility or land use identification [56], it was suspected that a large
share of the provided coordinates does not truly correspond to GPS coordinates [43]. This
can be the case when a user picks a pre-defined location in an app, such as on Instagram,
for a Twitter cross-post, and this information is then represented as exact coordinates in the
tweet. On the positive side, the 2019 policy change, which tightens the use of Twitter images
and videos with exact coordinates, opened the possibility for advanced analyses, such as AI
technologies, to mine the image and location information together, as used in social sensing
for policy implementation [57]. The increased use of geonames in hashtags that comes
with the 2019 policy change offsets partially for a decline in exact tweets. Geo-hashtags are
commonly used to pinpoint the location of events, such as mobile network outages [58], or
to infer sentiments between cities mentioned in tweets [59].

Mean comparisons across multiple years and hence covering more than one policy
change showed increased differences for some variables, which partially supports the
corresponding hypothesis. The increase in the difference over time may be due to the
gradual effect of the policy change on some mobile devices where the update of the app
lags behind.

5. Conclusions

This study showed that policy updates of the Twitter app contribute to a change
in user behavior and in consequence, to data bias. For example, the radius of gyration
of users derived from tweets with exact coordinates dropped significantly after the 2015
policy change, whereas there is no reason to believe that users actually changed their
travel behavior within these few months. The bias effects become especially relevant
when combining Twitter data that were collected before and after a policy change in the
analysis since the dataset may become inconsistent between different time periods. Exact
coordinates are important for intra-urban movement modeling based on tweets. However,
fewer options to share exact coordinates also reduce tweets with exact coordinates and
hence tend to lead to an underestimation of a user’s activity space. Different types of biases
are not unique to Twitter but were detected in numerous other data sharing and social
media platforms. An ongoing challenge, and thus part of future work, is, therefore, to
not only identify biases but also to find methods to address and mitigate biases. Possible
approaches include the application of bias-corrected statistical models [60], the combination
of different types of crowd-sourced data [61], or the use of geographical covariates [62].

A potential direction for future work includes an expansion of this presented research
of analyzing policy change effects on user behavior in other metropolitan cities or even
other platforms, such as OSM or Facebook. Some methods, such as the analysis of place
name mentions, can potentially be automated using natural language processing (NLP)
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techniques in order to speed up corresponding analyses, which are needed for the analysis
of larger datasets in the future.
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