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Abstract: The inefficiency of transporting goods contributes to reduced economic growth and
environmental sustainability in a country. Autonomous trucks (ATs) are emerging as a solution, but
the imbalance in the weight moved and ton-miles produced by long-haul and short-haul trucking
creates a challenge in targeting initial deployments. This study offers a unique solution by presenting
a robust method that combines data mining and geographic information systems (GISs) to identify the
optimal routes for ATs based on a top-down approach to maximize business benefits. Demonstrated
in a U.S. case study, this method revealed that despite accounting for only 16% of the weight moved,
long-haul trucking produced 56% of the ton-miles, implying a high potential for ATs in this segment.
The method identified eight key freight zones in five U.S. states that accounted for 27% of the
long-haul weight and suggested optimal routes for initial AT deployment. Interstate 45 emerged
as a pivotal route in the shortest paths among these freight zones. This suggests that stakeholders
should seek to prioritize funding for infrastructure upgrades and maintenance along that route
and the other routes identified. The findings will potentially benefit a broad range of stakeholders.
Companies can strategically focus resources to achieve maximum market share, regulators can
streamline policymaking to facilitate AT adoption while ensuring public safety, and transportation
agencies can better plan infrastructure upgrades and maintenance. Users globally can apply the
methodological framework as a reliable tool for decision-making about where to initially deploy ATs.

Keywords: data mining; commercial motor vehicle policymaking; freight zones; GIS; infrastructure
planning; long-haul trucking; short-haul trucking; trucking regulations

1. Introduction

Trucks transport more than 72% of the tonnage carried by all domestic modes in
the United States [1]. Researchers observed a similar dominance of trucks in freight
movements in other parts of the world such as Australia, Europe, and Japan [2]. Analysts
expect increasing demand for trucking due to growth in population, urbanization, and e-
commerce [3]. The expected benefits of self-driving or autonomous truck (AT) deployments
have spurred large investments to advance their progress [4], including billions of dollars
invested in the development of self-driving technologies [5]. Currently, more than a dozen
companies globally have shifted towards developing ATs [6]. As a result, advancements in
sensing, communications, and computing have significantly improved AT technology [7].

The intermediary transfer hub model, aimed at reducing risks by circumventing
complex urban areas, has gained popularity [8]. The transfer hub model moves freight
along highways that connect AT depots located outside of urban areas. These hubs either
assume control of the ATs or transfer the trailers to human-driven trucks for the urban
facility connection. The compelling aspect of the transfer hub model lies in its ability to
reduce risks in long-haul (LH) operations while transferring drivers to fill the capacity
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needs of short-haul (SH) markets. Another benefit is that SH drivers will be able to return
home each day, improving work–life balance, enhancing driver retention, and potentially
reducing medical and health costs [9]. A truck driver plays a significant role in customer
service and is often the face of a company. Therefore, using SH drivers for last-mile
connections will help maintain their role in enhancing business relationships.

Primary benefits expected from AT adoption include cost reduction through driver
replacement [2] and freight capacity enhancement, achieved by ATs operating around the
clock and covering longer distances without breaks [10]. ATs can also increase operational
efficiencies and reduce fuel consumption resulting from more consistent movements and
less idle time [11]. Furthermore, adding truck-platooning technology could further signifi-
cantly enhance fuel efficiency [12]. Operators can schedule LH operations outside of peak
traffic hours to help reduce congestion and related costs while focusing on other operations
like freight transfer during peak traffic hours. The American Transportation Research
Institute (ATRI) estimated that 87% of truck accidents were due to human error [13]. Bracy
et al. (2019) found that AV technologies can prevent between 117 and 193 crashes involving
large trucks in Missouri alone [14]. Therefore, ATs can reduce insurance premiums and
liability expenses if the vehicles can eliminate accidents due to human error. ATs will reduce
the risks of unsafe parking [15], such as on highway shoulders when truck-stop parking is
unavailable [16]. ATs will also address the chronic driver shortage issue, particularly for
LH segments that require drivers to stay away from home for multiple days [17].

Despite these anticipated benefits, uncertainties about optimal AT deployment loca-
tions have impeded the progress of supporting regulations and infrastructure planning [18].
The lack of clarity among roadway agencies about which roads through their jurisdiction
ATs will affect, in terms of traffic and load stress [19], has added to this uncertainty. Manu-
facturers have been conducting early tests and pilots mostly in southern U.S. regions with
favorable regulation, weather, and road conditions [20]. However, a top-down approach
that starts with strong economic incentives to deploy along specific routes will guide
decision-making to target those locations for investments in infrastructure, policy making,
and technology robustness for all-weather driving.

Therefore, the goal of this research is to address two primary questions: (1) which
geographical freight zones should planners target AT deployments to access the greatest
initial opportunities for freight tonnage and ton-miles, and (2) which Interstate highways
will be the most impacted in terms of traffic and pavement loading. The contribution of this
paper is a method of integrating comprehensive freight movement data with spatial analysis
using geographic information system (GIS) algorithms to offer a holistic view of optimal
deployment areas. This study additionally contributes an understanding of how ATs
will impact long-haul operations and implications for prioritizing highway maintenance.
This research demonstrates the workflow by using the United States Freight Analysis
Framework (FAF) dataset as a case study.

The organization of the rest of this paper is as follows: Section 2 presents a literature
review that focuses on motivations to deploy ATs, anticipated deployment periods, po-
tential barriers to adoption, research related to route identification, and gaps relating to
the research questions posed earlier. Section 3 describes the datasets used and details of
the combined data mining and GIS workflow. Section 4 presents the results of the U.S.
case study using the workflow. Section 5 interprets the results, discusses implications, and
highlights limitations of the work. Section 6 concludes this study and hints at future work.

2. Literature Review

Dong et al. (2021) conducted a systematic literature review and found that autonomous
vehicles were prominent among nine technologies (3D printing, artificial intelligence,
automated robots, autonomous vehicles, big data analytics, blockchain, drones, electric
vehicles, Internet of Things) that will disrupt future freight transportation [21]. ATs can
potentially increase productivity, GDP, capital, and employment, as identified by [22].
When ATs can operate in all weather conditions, they can replace up to 94% of LH operator-
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hours [8]. Huang and Kockelman (2020), assuming a 25% reduction in ton-mile cost,
predicted that ATs will increase ton-mile production by 11%, while rail flows will decrease
4.8% [23]. The reduced travel time of ATs can significantly cut costs in the perishable and
semi-perishable food supply chain, particularly in LH operations [24].

The potential business benefits of ATs have attracted significant investments, with
investors pouring more than one billion USD into several startup companies (Aurora,
Ike, Kodiak Robotics, Otto, Outrider, Oxbotica, Plus.ai, TuSimple, Waabi) to develop the
technology [20]. Both traditional truck manufacturers such as Daimler and Volvo and non-
traditional manufacturers like Google/Waymo and Tesla have begun developing ATs [25].
A survey found that the industry expects ATs to be in commercial service by 2027 [7]. ATs
will also change traditional business models. Fritschy and Spinler (2019) determined that,
by 2040, business models that offer holistic systems for automated driving will become
commonplace [26]. Similarly, Monios and Bergqvist (2020) suggested that ATs will prompt
a shift toward a network operator model [25].

Despite hefty investments and optimistic deployment timelines, the adoption of ATs
faces numerous barriers. A survey of 76 practitioners in the logistics industry revealed
that the lack of standardization will present a near-term barrier to AT adoption [27]. Reg-
ulations vary widely as U.S. states pivot between encouraging innovation and ensuring
public safety [28]. The number of states enacting bills and considering autonomous vehicle
regulation is increasing. In 2012, six states introduced legislation for autonomous vehicles,
nine states in 2013, twelve states in 2014, and sixteen states in 2015 [29]. Alawadhi et al.
(2020) posit that autonomous vehicles will shift liability away from humans, but there
is no general rule for where the responsibility will land [30]. Adoption also hinges on
acceptance [31]. For instance, a study by Mishler and Chen (2023) gauged the reaction of
122 participants to a takeover request during a critical hazard event in a driving simula-
tion [32]. The study found that trust in the system declined with each takeover request.
Simpson et al. (2019) developed Bass models to estimate the adoption rate of ATs and found
that market penetration could range between 20% and 95% within 25 years, depending on
the rate of technology improvement, acceptance, price, and marketing [33].

Questions of how the convergence of electric and autonomous trucks will impact
the transport geography of intermodal freight movements have emerged [34]. To aid AT
companies in selecting locations for initial testing and deployment, two consulting compa-
nies developed bottom-up scenario planning tools. Boston Consulting Group developed
a model to determine the “most promising” routes for AT deployments by using criteria
such as distance, the maturity of autonomous vehicle legislation, truck stops, congestion
index, and freight volume [10]. Deloitte developed a similar model that considered existing
AT investments with constraints such as snow, traffic congestion, roadway quality, current
regulation, and state-level business friendliness [20].

Table 1 summarizes the various research methods in the AT deployment studies
cited above. Overall, the literature has discussed AT development relative to its potential
benefits, technical progress, impacts on society, and challenges to adoption. Significant
uncertainties about AT deployments remain [35]. However, as ATs mature, no top-down
planning has occurred for deployments based on potential economic opportunities. This
research aims to fill that gap by developing a top-down approach to inform where to target
initial opportunities and to quantify the impacts on the primary roadways that connect
those regions. The impact of autonomous vehicles on transportation infrastructure has been
one of the least studied areas [36]. Knowing the specific highways that ATs will impact can
guide decisions about allocating dedicated lanes and revising highway geometry guidance
based on automation levels [37]. The adoption level of ATs and the demand for freight
movements on specific lanes will determine the level of lane exclusivity and the number of
lanes [38].
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Table 1. Summary of Research Methods Used to Study AT Deployments.

Author(s) Method Description Application

[21]
Systematic
Literature
Review

Reviewed a wide range of existing
literature to identify technologies that
will disrupt future freight transportation.

Used to understand the role of ATs
among disruptive technologies in freight
transport.

[23] Econometric Modeling
Developed economic models to predict
the impact of ATs on ton-mile production
and rail flows.

Applied to forecast changes in ton-mile
production and the influence of ATs on
rail transportation.

[26]
Business
Model
Analysis

Analyzed how ATs will change
traditional business models in the
transportation sector.

Focused on projecting shifts towards
automated driving systems and holistic
business models.

[25] Case Study
Examined specific examples or scenarios
to extrapolate broader trends in AT
development.

Explored how ATs may lead to a shift
toward a network operator model in
transportation.

[32] Experimental Simulation Conducted driving simulations to gauge
participant reactions to AT systems.

Applied to assess trust in AT systems and
the impact of takeover requests during
critical events.

[33] Bass Modeling
Utilized Bass diffusion models to
estimate the adoption rate of ATs based
on various factors.

Used to predict market penetration of
ATs considering technology
improvement, acceptance, price, and
marketing.

[10]
Scenario
Planning
Tools

Developed models to determine the most
promising routes for AT deployment
based on multiple criteria.

Applied to assist AT companies in
selecting locations for initial testing and
deployment.

[30] Legal
Analysis

Examined the legal implications and
changes due to autonomous vehicle
deployment.

Focused on the shift of liability from
human drivers to autonomous systems in
ATs.

3. Methods

The next two subsections describe the five datasets used and details of the data mining
and GIS framework.

3.1. Datasets

This study utilized data from several sources, as summarized in Table 2.

Table 2. Datasets used in the analysis.

Dataset Description Source

FAF5.5 Regional Freight Database (Update 2023) [39]
FAF5 Regions Metadata for FAF 5.5 (Update 2023) [39]

Primary Roads U.S. Primary Roads National Shapefile (Update 2021) [40]
Major Cities U.S. Major Cities (Update 2022) [41]

Truck Bottlenecks Ranks the top 100 U.S. truck bottlenecks (2022) [42]

The U.S. Bureau of Transportation Statistics (BTS) and U.S. Federal Highway Adminis-
tration (FHWA) produced the FAF dataset by integrating data from a variety of sources
to create a comprehensive representation of U.S. freight movements by all transportation
modes. Version 5.5 of the FAF dataset includes 2.4 million records of origin–destination
(OD) freight movement estimates. Each record provides an origin zone, a destination zone,
the commodity category, the weight in kilotons, the production in millions of ton-miles,
the value in millions of USD in 2017 valuation, and the mode of transportation used. The
origins and destinations are 132 regions, some of which are metropolitan statistical areas
(MSAs) as defined by the Office of Management and Budget. Non-MSA regions are either
the remainder of a state or entire states. The transport modes are truck, rail, water, air,
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multiple modes and mail, pipeline, other, unknown, and no domestic mode. The truck
mode includes private and for-hire trucks. There were 42 commodity categories. Additional
columns contained forecasted weight, ton-miles, and value for years up to 2050. To provide
context, this analysis converts the units of tons and ton-miles to semi-truck load (STL)
and semi-truck mile (STM) equivalents. As a reference point, a standard North American
semi-truck (class 8 big rig) cannot exceed a loaded weight of 40 tons, which means that it
can carry an average of 22.5 tons of freight [43].

The U.S. Primary Roads National Shapefile provides GIS network geometry data for
interstates, state highways, and other major highways in the United States. The U.S. Major
Cities dataset includes the geospatial centroids of cities and towns in the United States
with populations of at least 10,000. The American Transportation Research Institute (ATRI)
provides truck bottleneck data, ranking the top 100 chokepoints or bottleneck locations on
U.S. highways based on GPS data collected from trucks annually [42].

3.2. Data Mining

Figure 1 provides an overview of the research methodology with an illustration of
the combined data mining and GIS workflow. The procedures shown are either Python
code or GIS algorithms that filter the flow of data in three stages. The first filter stage
involves extracting truck movements from the multimodal FAF dataset and dividing the
OD flows into LH and SH movements. The FAF categorizes each OD flow within one of
eight distance bands: {<100, 100–249, 250–499, 500–749, 750–999, 1000–1499, 1500–2000,
>2000} miles. Distances below 250 miles signify that a round trip would be, at most,
500 miles. Therefore, the total round trip drive time at an average speed of 60 mph will be
8.3 h. Considering that U.S. hours-of-service (HOS) regulations limit driving to a maximum
of 11 h after 10 consecutive hours off duty [44], a round trip of 500 miles leaves 2.7 h of
margin for potential delays due to congestion and other activities such as load management,
refueling, and documentation. A threshold of 250 miles is also consistent with the recharge
capability of a typical fast charger for electrified trucks [45]. The U.S. DOT specifies long-
haul, short-haul, and regional trucking as the three market segments in trucking in their
report to Congress on automation in long-haul trucking [46]. The report defined long-haul
trucking as distances where the driver is usually away from home, usually considered
greater than 250 miles [47]. Hence, selecting 250 miles as the threshold to separate SH and
LH truck movements was a justifiable scenario while maintaining consistency with the FAF
distance bands.

The second filter stage identified the priority zones for focusing initial deployments
based on both the share of freight weight they processed and the share of ton-miles they
moved. This stage pre-selected FAF zones which processed an above-average weight of
LH movements among all FAF zones. The freight processed includes both inbound and
outbound flow to reduce the likelihood of empty loads in any direction. The strategy to
select the top FAF zones was that they should form a cluster of high weight and ton-mile
values while also minimizing the number of states that carry those zones. The rational to
minimize the number of states that contained these top FAF zones was that stakeholders
would initially have to grapple with fewer differences in regulations and laws among
jurisdictions.

The third filter stage pinpointed the shortest paths among the chosen zones and then
summarized the share of the load carried by the Interstate highways along those paths. A
GIS procedure distinguished the shortest paths among the selected cities. Each FAF zone
is an aggregation of either a metropolitan statistical area (MSA), the remainder of a state
(outside the MSA), or an entire state. The shortest path algorithm required nodes within
FAF zones to identify the Interstate routes between those nodes that carry truck traffic.
Therefore, the procedure used the location of the largest city in the selected FAF zones as
nodes for the shortest path computation.

The GIS spatial intersection technique identified the top bottleneck locations along
those shortest paths that connect the selected FAF zones [48]. According to ATRI, the aver-
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age peak hour truck speed was 36.3 mph in 2023, which offers further insight into the im-
pacts and importance as a factor in the decision-making process to target AT deployments.
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Figure 1. Data mining and GIS workflow.

4. Results

The next three subsections describe the results of the three filter stages of the data
mining and GIS workflow.

4.1. Filter 1: SH and LH Split

The first filter, the truck mode filter, identified 840,088 of 2.4 million records as truck
movements. Tables 3 and 4 summarize the results of the first filter stage split for freight
movement by miles band and year, respectively. Table 3 shows the weight moved in
millions (M) of STL, billions (B) of STM, and the value moved in million USD per kiloton
($M/K-Ton). The columns labeled STL % and STM % show the share of weight moved and
ton-miles produced, respectively. Table 3 shows the FAF forecast for STL, STM, and value
moved LH and SH through 2050.
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Table 3. Summary statistic by miles band.

Miles Band STL (M) STL % STM (B) STM % $M/K-Ton

<100 245 43% 226 9% 0.85
100–249 235 41% 820 34% 0.76
250–499 51 9% 388 16% 1.64
500–749 13 2% 175 7% 3.00
750–999 9 2% 167 7% 3.18

1000–1499 9 2% 250 10% 3.59
1500–2000 4 1% 152 6% 4.14

>2000 4 1% 220 9% 5.83

Table 4. Summary statistic by year.

STL (M) STM (T) Trillion USD

Year LH SH LH SH LH SH

2017 480 89 46 60 8.7 5.0
2018 488 90 47 61 9.0 5.0
2019 485 89 47 60 8.9 4.9
2020 470 86 46 59 8.5 4.7
2021 479 85 47 58 8.6 4.8
2023 491 93 47 63 9.3 5.4
2025 507 98 49 66 9.8 5.8
2030 537 106 52 72 10.8 6.4
2035 568 115 55 79 11.8 7.1
2040 606 126 59 87 13.0 8.0
2045 653 139 64 96 14.5 8.9
2050 705 153 69 106 16.0 10.0

Figure 2 graphically represents the trends depicted in Tables 3 and 4. Figure 2a plots
the STL and STM share by miles band.

The results indicate that LH trucking contributed to 16% of the weight moved and 56%
of the ton-miles produced in 2017. Figure 2b shows that the value per ton moved across the
LH distance bands demonstrated a monotonic increase. Figure 2c shows that the forecasted
total STM will be 64% greater in 2050 relative to 2017. As shown in Figure 3a, the weight (or
STL) moved by SH and LH trucking will increase by 47% and 72%, respectively, from 2017
to 2050. Figure 3b shows that the ton-miles (or STM) produced by SH and LH trucking will
increase by 48% and 77%, respectively from 2017 to 2050. Figure 3c shows that the valued
moved by SH and LH trucking will increase by 84% and 100%, respectively, from 2017 to
2050. Therefore, LH truck weight, ton-miles, and value will increase by 25%, 29%, and 16%
more than those of SH, respectively, between 2017 and 2050.

4.2. Filter 2: Top Zone Cluster

Figure 4 graphically presents the outcomes of the second filter stage.
The scatter plot emphasizes FAF zones which processed a weight of LH movements

that was above the average value transported among all FAF zones. The average value
excluded movements within a FAF zone. The top cluster selected, represented by circle-
shaped markers to clearly visualize the separation, comprised eight FAF zones within five
states. These zones contributed 27% of the LH weight processed by all FAF zones. The top
eight FAF zones were within the states of California (Los Angeles, San Francisco), Texas
(Dallas Fort Worth or DFW, Houston, the rest of Texas), Illinois (Chicago), Georgia (Atlanta),
and Iowa. Carriers can later expand this first stage of AT deployments by targeting routes
that connect the remaining regions (diamond shaped markers) in the lower left quadrant.
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Figure 5 summarizes the LH statistics for the commodity categories moved only among
the top eight FAF zones. Those movements accounted for 9.6% of the LH weight processed
and 7.2% of the LH STM produced by those top eight FAF zones. The chart presents a
ranking trend based on the value per unit weight. The top seven commodity categories by
value per unit weight account for approximately 8% of the ton-mile production. Therefore,
most of the lowest value-per-unit-weight commodity categories contributed significantly
to the ton-mile production. Only the categories of “electronics” and “motorized vehicles”
were above average in both ton-miles and value per unit weight. Figure 6 plots the ton-mile
and weight share of commodity categories. The categories of “fuel oils,” “natural gas and
fossil products,” and “gasoline” were among the peak ton-mile production and weight
moved by trucks. Those three categories accounted for more than 22% of the ton-miles and
more than 35% of the weight but were among the lowest value per unit weight.
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4.3. Filter 3: Shortest Paths

Figure 7 highlights the output of the third filter stage, which is the GIS optimization
algorithm to identify the shortest paths that connect the eight cities. In cases where the
FAF zone did not specify a representative city, the largest city in that zone functioned as
the node for the shortest path calculations. For example, the largest cities in the FAF Zones
“Rest of TX” and “Iowa” were Lubbock and Des Moines, respectively. Table 5 lists the
resulting 28 unique routes by their city terminal nodes, the STL in thousands, the distance
in miles, and the highways utilized. It is evident that several of the highways are common
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among the paths to take between the eight cities. The average LH distance among the cities
was 1253 miles. Table 6 summarizes the estimated weight and value share moved across
each of the Interstates in 2017. Table 6 also includes a description and rank of the truck
bottlenecks along those Interstate routes. For brevity and as a scenario, the table lists the
top 20 bottlenecks in terms of severity. The table reveals that those bottlenecks affected 9
out of the 20 routes.
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Table 5. Statistics for routes among the top 8 FAF zones.

Route Terminals STL (K) Miles Highways

Atlanta GA–San Francisco CA 13 2601.5 I20, I10, I5
Chicago IL–Atlanta GA 86 712.8 I65, I24, I75

Chicago IL–Des Moines IA 243 334.2 I80, I88
Chicago IL–San Francisco CA 36 2135.9 I88, I80

Dallas TX–Atlanta GA 136 789.9 I20
Dallas TX–Chicago IL 91 992.4 I35, I44, I55

Dallas TX–Des Moines IA 34 745.5 I35, I335, I70, I35
Dallas TX–Houston TX 2659 239.8 I45

Dallas TX–Los Angeles CA 173 1437.7 I20, I10
Dallas TX–San Francisco CA 20 1817.5 I20, I10, I5
Des Moines IA–Atlanta GA 30 1006.8 I80, I74, I65, I24, I75

Des Moines IA–San Francisco CA 15 1801.7 I80
Houston TX–Atlanta GA 50 811.6 I10, I59, I20
Houston TX–Chicago IL 87 1189.4 I10, I55, I57

Houston TX–Des Moines IA 16 985.3 I45, I35, I335, I70, I35
Houston TX–Los Angeles CA 115 1551.5 I10

Houston TX–San Francisco CA 35 1931.2 I10, I5
Los Angeles CA–Atlanta GA 77 2221.8 I10, I20
Los Angeles CA–Chicago IL 159 2083.0 I15, I80, I88

Los Angeles CA–Des Moines IA 50 1748.8 I15, I80
Los Angeles CA–San Francisco CA 1790 382.5 I5

Lubbock TX–Atlanta GA 79 1303.5 I27, I40, I24, I75
Lubbock TX–Chicago IL 85 1175.7 I27, I40, I44, I55
Lubbock TX–Dallas TX 523 582.3 I27, I40, I35

Lubbock TX–Des Moines IA 21 922.1 I27, I40, I35, I335, I70, I35
Lubbock TX–Houston TX 1864 820.3 I27, I40, I35, I45

Lubbock TX–Los Angeles CA 91 1195.9 I27, I40, I15
Lubbock TX–San Francisco CA 25 1571.6 I27, I40, I15, I10, I5
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Table 6. Interstate weight, value share, and bottlenecks.

Route STL (K) Weight Value Top Bottlenecks and Rank

I45 4539 25.3% 5.2% Houston, TX: #3 at I69/US59, #19 at I610. Dallas, TX: #16 at I30

I27 2689 15.0% 7.5%

I40 2689 15.0% 14.3% Nashville, TN: #9 atI440

I35 2549 14.2% 1.3%

I5 1883 10.5% 2.0%

I10 597 3.3% 2.0% Houston, TX: #11 at I45. Baton Rouge, LA: #20 at I110

I80 533 3.0% 5.7% Chicago, IL: #12 at I94

I20 470 2.6% 4.5% Atlanta, GA: #5 at I285W, #17 at I285E

I88 438 2.4% 9.2% Chicago, IL: #2 at I290, I294

I15 325 1.8% 1.6% San Bernardino, CA: #10 at I10

I55 263 1.5% 2.2%

I24 194 1.1% 0.9% Nashville, TN: #9 at I40/I440

I75 194 1.1% 0.9% McDonough, GA: #13, Atlanta #18.

I44 176 1.0% 16.1%

I65 116 0.6% 0.4%

I57 87 0.5% 0.4%

I70 71 0.4% 0.7%

I335 71 0.4% 4.2%

I59 50 0.3% 10.4%

I74 30 0.2% 10.4%

The line thickness in the map (Figure 7) is proportional to the weight share that an
Interstate route supported. Figure 8 visualizes the weight and value share that the Interstate
highways supported. The figure presents a visualization showing that the highways I40,
I45, and I27 are clear outliers in both weight and value share. From Figure 7, it becomes
evident that these highways connect large port cities or freight hubs like Houston in the
south, Los Angeles in the west, and Atlanta in the east. Interstate I35 provides a connection
between the major highways that intersect in Dallas and those that intersect in Oklahoma,
providing alternate routes that connect the eastern and western regions of the United States.

A key finding is that five highways (I45, I27, I40, I35, I5) supported approximately 80%
of the weight moved across the 20 highways. In 2017, the equivalent of 17 million loaded
semi-trucks traversed those 20 highways, with I45 carrying approximately one quarter of
the weight. The bottleneck location ranked third impacted I45 located in Houston, Texas.
The projected increase in weight on those highways in 2050 was 72% (Figure 3a) or the
equivalent of 17 × 1.72 = 29 million loaded semi-trucks.
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5. Discussion

This research addressed the problem of optimizing the deployment of autonomous
trucks (ATs) by focusing on long-haul (LH) trucking data to identify the most efficient
routes and regions for initial AT deployment. The problem is multidimensional, involving
aspects of GIS, data mining, transportation logistics, and economic impact assessment.
The gap filled with respect to prior research was the integration of comprehensive spatial
data with detailed freight movement analytics, including assessing the impact of ATs on
different types of trucking operations. Additionally, prior research lacked focus on how
ATs will affect different commodity categories and how this will influence transportation
infrastructure. The focus of this research on specific freight zones and their contribution to
long-haul trucking ton-mile production is unique. Moreover, this study provided insights
into the economic and infrastructural impacts of ATs on specific Interstate highways, an
aspect not extensively explored in the current literature.

This study asserts that initial AT deployments should focus on LH opportunities, as
LH accounted for 56% of the total ton-mile production in 2017, and the forecasted growth
is 77% by 2050. This growth outstrips the forecasted growth for SH by 29%. This study
identified eight regional freight zones, clustered by the highest ton-mile and weight shares,
which accounted for 27% of the LH weight processed in the contiguous United States. This
study also found a 25% greater increase in LH weight than in SH weight from 2017 to
2050. This suggests that LH truck movements will significantly influence future highway
maintenance needs. The five states hosting these top freight zones are California, Texas,
Illinois, Georgia, and Iowa. This study also revealed that movements solely between
cities of these states, to ensure loaded backhaul, proved significant. They accounted for
9.6% of the LH weight processed and 7.2% of the LH STM produced in those states. AT
manufacturers, who have been evaluating their vehicles primarily in less snowy states like
Texas and California, will eventually operate in northern locations like Chicago and Iowa
as the technology matures. This addresses the first research question, identifying where
investors and AT companies may find the greatest initial opportunities to move LH freight.

This research determined that the shortest paths among the freight zones of the five
states included 20 Interstate highways. The forecasted increase in weight on these highways
from 2017 to 2050 will reach 72%, equivalent to 29 million loaded semi-trucks annually.
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Interestingly, the nation’s top 20 bottleneck locations affected nine of these routes. On
average, the bottleneck locations had an average truck speed of 36.3 mph in 2022, which
was 6.1% lower than the year prior [48]. The bottleneck ranking third was located on
Interstate 45 in Houston, Texas, bearing more than 25% of all the weight transported across
the 20 routes. At this bottleneck, traffic during peak hours reduced the average speed
from 31.1 mph to a mere 21.7 mph. This finding responds to the second research question,
highlighting which Interstate highways will experience the most significant impacts in
terms of traffic and pavement loading.

Beyond addressing the two initial research questions, this study uncovered other
intriguing findings. The 7 leading commodity categories out of 42, ranked by value per
unit weight, accounted for a mere 8% of the ton-mile production. Only the categories of
“electronics” and “motorized vehicles” involved above-average ton-mile production and
value per unit weight. Consequently, 92% of the ton-mile production primarily involved
commodity categories with a low value per unit weight. Thus, most LH opportunities will
involve hauling low-value-per-unit weight commodity categories.

Interestingly, the fossil fuel-related categories, including “fuel oils”, “natural gas
and fossil products”, and “gasoline”, were among the most prolific in terms of ton-mile
production and weight moved by trucks. Those three categories accounted for more
than 22% of the ton-mile production and more than 35% of the weight moved but were
among the lowest value per unit weight. This suggests that fossil fuel production leads to
significant truck traffic and road stress, two external costs not frequently addressed in the
literature. However, if there is a strong shift towards renewable energy production and
a lowering of demand for fossil fuels, that might reduce the number of trucks carrying
fossil-fuel-related products.

Optimizing AT deployments can lead to more efficient transportation systems, re-
duced environmental impacts, and potential economic benefits through improved logistics
and supply chain management. The methodology and findings provide a new framework
for scientists to further research and contribute to the body of knowledge in transporta-
tion planning and logistics optimization. This research expands knowledge about how to
integrate GIS and data mining to enhance transportation planning. This study also con-
tributes to the theoretical framework of transportation economics by exploring the impact
of ATs on long-haul and short-haul trucking, offering new insights into the spatial and
economic dimensions of freight logistics. Additionally, this research provides a basis for
understanding the role of commodity types in logistics optimization, which can influence
future theoretical models in transportation economics and policy planning.

The existing patchwork and inconsistency of AT regulations across states present an
opportunity for companies to shape these regulations. Examples of business case planning
include justifying capital investments to purchase ATs, where to build truck transfer depots,
and the potential to extend railroad intermodal business models by adding an AT modality.
Transportation planning decisions can include considering dedicated lanes for autonomous
vehicles, enhancing the reliability of communication and GPS signaling along specific
routes, and implementing roadway facilities for refueling, charging, and maintenance. The
involvement of major Interstate routes will require strong regulatory support from both
federal and state governments that fund maintenance and enforce safety regulations on
those highways.

This work is not without limitations. This top-down study focused on identifying
opportunities to target AT deployments based on identifying top freight movement zones
and the shortest route among them, rather than a bottom-up approach that avoided routes
that traversed jurisdictions with restrictive regulations and regular adverse weather condi-
tions. The shortest path algorithm used the largest city within each FAF zone as a node for
that zone. Therefore, selecting the largest cities in some of the largest FAF zones, such as
in Texas, may not necessarily capture the route with maximum traffic for AT deployment,
albeit an opportunity, nevertheless.
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Only a handful of large carriers dominating the industry may possess the financial
resources necessary to invest in an AT fleet. Uncertainties persist about the capability of
ATs to perform in all-weather conditions and the security challenges that owners may
encounter. The expansion of sensor and communications technology to enable automation
also amplifies vulnerabilities to cyberattacks. Cybersecurity countermeasures such as new
hardware and system monitoring will add cost. The push towards electrifying trucks may
initially limit LH capabilities, and manufacturers have yet to demonstrate the ability of ATs
to recharge or refuel themselves without human intervention. Finally, the industry is still
lacking in terms of regulations and standards to guide and scale AT operations, an issue
that future studies can investigate.

Future work will assess the potential for mode shift from rail to ATs based on the
shortest routes that run parallel to rail movements, as well as a mode shift from air based
on price and delivery schedules. Further considerations will encompass road facility
characteristics, the availability of terminal facilities near major metropolitan areas, and
typical climate conditions. Future work will also explore opportunities in cold rural
regions, particularly in the upper great plains of the United States, to enhance efficiencies
in agricultural and energy transport.

6. Conclusions

This study introduced a combined data mining and GIS workflow that identified
routes ideally suited for initial autonomous truck (AT) deployments based on the top-down
approach of maximizing business benefits. Even though LH trucking only accounted for
16% of the weight moved in the contiguous United States in 2017, it produced 56% of
the ton-miles. The forecasts indicated a 72% increase in LH ton-miles from 2017 to 2050,
surpassing SH growth by 29%. The research identified eight freight zones in only five
states, accounting for 27% of the LH weight processed in the contiguous United States
in 2017. This suggests that companies should initially concentrate finite resources on
employing smaller fleets of ATs to capture the largest share of the LH market, where driver
shortages are more pronounced than in SH markets. Interstate I45 featured prominently
in most of the shortest paths among the eight freight zones, carrying more than 25% of
the weight. This outcome supports the industry’s inclination to establish initial proving
grounds in Texas. The routes ranking second and third were I27 and I40, each handling
15% of the weight moved among the eight freight zones. This result suggests planners
and investors should target their initial efforts on locating suitable transfer hub facilities at
terminal points along the top routes, ensuring proximity to the urban delivery points for
SH transfers. Likewise, transportation agencies across multiple jurisdictions could pool
resources to fund infrastructure upgrades and maintenance along these top routes. Both
state and federal regulators can streamline policymaking to alleviate adoption challenges
while ensuring public safety along these routes. Using the hybrid data mining and GIS
optimization framework, planners globally can employ local freight and traffic datasets to
make informed decisions about where to deploy autonomous trucks initially. However, as
mentioned in the limitations, the proposed method did not consider other factors such as
weather and regulatory friendliness.
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