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Abstract: In this article, a set of neural networks for the prediction of the stresses and the correspond-
ing strains at failure of cohesive soils when subjected to a load of a shallow foundation are presented.
The data are acquired via Monte Carlo analyses for different types of loadings and stochastic input
material variabilities, and by adopting the clayey soil domain and modified Cam Clay material
yield function. The mathematical functions for the estimation of the failure stresses and strains are
computed with the feed forward neural network method (FNN). It is demonstrated that the accuracy
of the derived relations is in the order of a maximum relative error of 10−5 in all monitored output
variables. In addition, the number of training epochs required for convergence is relatively low
and this means that the computational and data costs for the construction of the FNN are low. The
critical input variable for the estimation of the most unfavorable situations is the Karhunen Loeve
series expansion for porous analyses, while for non-porous analyses the constant distribution over
depth is the one that provides more critical estimations for the monitored output variables of stresses
and strains at failure. This set of functions can estimate the aforementioned variables of the footing
settlement in clays with high accuracy; consequently, it can be an important tool for geotechnical
engineering design, especially in providing the largest stress allowed from the foundation.

Keywords: eccentric loading; stochastic finite element method; shallow foundation; footing settlement;
failure spline; neural networks; feed forward neural networks

1. Introduction

The limit state of the shallow footing settlements and the approximation of the ultimate
load and the consequent displacement field represent a principal issue of geomechanics.
The previous scientific publications comprise of investigations of the problem from deter-
ministic [1–12] and stochastic [9,13–25] perspectives. In the deterministic perspective, the
failure mechanism is obtained. Therefore, the failure load is computed and normalized.
This solution is used in foundation design regulations by implementing the foundation
shape variables S and friction variables N. There are three shape variables, namely Sq, Sc,
and Sγ; they are used to determine the influence of a possible vertical load in the lateral
direction of the foundation, to calculate the cohesion of the soil and the settlement dimen-
sions, and to identify the total weight of the soil, respectively. In a similar manner, the
friction variables Nq, Nc, Nγ are adopted. In the stochastic approach, the combination of
the evolution of materials science, computational mechanics and computer science yields
significant progress in the uncertainty quantification of the output variability in relation of
the input variability of the material variables such as the Young modulus and the hydraulic
conductivity in the case of porous media and cohesive soils. The literature that focuses on
this perspective assumes the input spatial uncertainty through the spectral representation,
Karhunen Loeve series expansion [13–15,19,22–25] or through the use of random variables
with deterministic shape functions [9,16–18,20,21]. The random samples can be obtained
using independent algorithms or Latin hypercube importance sampling (LHS) [26,27]. The

Geotechnics 2022, 2, 1084–1108. https://doi.org/10.3390/geotechnics2040051 https://www.mdpi.com/journal/geotechnics

https://doi.org/10.3390/geotechnics2040051
https://doi.org/10.3390/geotechnics2040051
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/geotechnics
https://www.mdpi.com
https://orcid.org/0000-0002-6553-0091
https://doi.org/10.3390/geotechnics2040051
https://www.mdpi.com/journal/geotechnics
https://www.mdpi.com/article/10.3390/geotechnics2040051?type=check_update&version=3


Geotechnics 2022, 2 1085

uncertainty quantification in geotechnical engineering and the computation of the failure
state of soil provide a reliability analysis useful for foundation design through the deriva-
tion of the probability density functions (PDF) of the output displacements and failure
loads with the determination of the onset of the Meyherhoff spline and its corresponding
statistical moments [28–31].

Over the last few years, Neural Networks (NN) and Machine Learning (ML) have been
widely evolving in science and engineering [32–36]. The seminal work of [32] introduced
the Physics Informed Neural Networks (PINN) theory and demonstrated the ascendancies
of the method in terms of accuracy and computational efficiency. The feature of estimating
the response of a physical system by avoiding direct analysis with the use of an NN is of
significance in engineering design. The enrichment of NNs with data obtained from com-
putational analyses and from real world in situ measurements is an easy task nowadays; as
a consequence, increased accuracy requires less of a computational expense, leading to a
pivotal ascendancy of the algorithm. In addition, advanced deep-learning platforms such as
Tensorflow and Pytorch [37,38] provide vast parallel computing features and the adoption
of PINNs in these open-source codes leads to large performance accelerations; thus, PINNs
is more efficient than conventional finite element (FEM) solvers in some circumstances. Al-
ternative versions of this framework comprise Variational PINNs [39], Parareal PINNs [40]
and eXtended PINNs (XPINNs) [41]. In geotechnical engineering, this framework has been
used for various applications. Examples of such applications are, although not limited to,
soil parameters evaluations [42–44], constitutive modelling functions derivation [45,46],
estimation of soil liquefaction [47], and in infrastructure behaviour such as tunnels [48–53]
or the response of a structure under landslide situation [54,55]. In the field of founda-
tions, a surrogate model for caisson foundations has been developed, which is located on
non-cohesive sandy soil [56]. Aside from FNNs, other Machine Learning applications for
geotechnical engineering have been implemented [57–61]. The aforementioned research
aggregates a large amount of data related to the response of the soil domain in areas such as
the displacement field, stresses, strains, ultimate load and failure envelope of a soil domain
or a soil point. Subsequently, the design and the decisions of the engineering procedure
may be accelerated with a negligible increase in inaccuracy; by augmenting the quantity of
data obtained using complicated analyses, the stability and accuracy of the computational
tools also increase.

In this article, a set of Neural Networks driven by the feed forward neural network
method for the evaluation of the failure stresses and strains of a soil point subjected to a
load of footing settlement on cohesive clayey soils are depicted. The data implemented are
collected from preceding scientific publications of the authors [28–31]. In this groundwork,
the data obtained from Monte Carlo analyses relate to the implementation of the Stochastic
Finite Element Method to investigate the failure of a shallow foundation exposed to all
possible loads regarding the eccentricity of the load and possible obliquity. The input
spatial uncertainty of the material variables of the compressibility factor κ, the critical
state line inclination, c, and the permeability of the Darcian flow of the water through the
soil, k, were assumed with different functions. Subsequently, the input variables of the
NNs are the eccentricity of the load in directions X and Y of the section of the shallow
foundation and the obliquity of the footing settlement load in relation to the horizontal
direction. The output variables, considered at failure, are the stresses, both volumetric
and deviatoric, and the strains, both volumetric and deviatoric, occurring at the failure
of the shallow foundation. The aforementioned applications occurred during the static
loading of non porous soil, while considering the water soil interaction as insignificant, and
accounting for the u-p formulation of porous media static loading. As a consequence, for
all possible forces and conditions, an NN estimation for the output variables is obtained. In
addition, the implementation of a complex and reliable material constitutive yield function
introduced by [62] leads to high fidelity of the deterministic finite element simulations and
consequently to the stochastic simulations and the NN construction. The main limitation
of the aforementioned methodology is the fact that the space points along the footing
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settlement are relatively coarse. However, they can be made denser with more extensive
Monte Carlo Simulation and more a higher computational cost. In addition, the NNs have
been constructed considering the mean value of the Monte Carlo analysis. However, one
can choose to construct NNs using another value with a specific probability. In addition to
the presentation of the NNs, the convergence rate of the epochs required for the training
of the NNs is provided. It is shown that the convergence is rapid which demonstrates
that the model validity is high and can be easily adjusted by entering more data from
computer simulations of in situ appraisals. It is shown that when Karhunen Loeve random
field representation is considered as the input variable for all input material variables, the
most critical values for the volumetric and deviatoric stress–strain at failure are obtained.
Moreover, the critical correlation length is the one that coincides with the depth of the soil
domain for the majority of the output variables. When the soil pore pressure is neglected,
unfavourable variables are obtained as a constant distribution over depth of the soil domain
is assumed.

2. Feed forward Neural Networks

A feed-forward neural network (FNN) is an assembly of interconnected processing
units referred to as neurons, allocated as input, output and a set of intermediate hidden
layers. In this framework, let Nk : Rd0 −→ Rdk+1 be an FNN with k hidden layers, with
each hidden layer consisting of nj neurons, for j = 1, 2, ..., k. The input and output layers
consist of n0 = d0 and nk+1 = dk+1 neurons, respectively. Each layer except from the input
is related to a weight matrix and a bias vector, symbolized as Wj and bj, respectively; the
sets of these quantities, when considered for all the network layers, define the adjustable
parameters of the model. The input vector is written as z0 ∈ Rd0 and the output vector
of the jth layer is written as zj ∈ Rdj , for j = 1, 2, ..., k + 1. A schematic representation of a
FNN architecture with one hidden layer is portrayed in Figure 1.

z0,1

z0,2

z0,n0

z1,1

z1,2

z1,3

z1,n1

z2,1

z2,n2

Input
layer

Hidden
layer

Ouput
layer

Figure 1. A feed-forward Neural Network with one hidden layer.

The implementation of a network’s layer, j, can be depicted using the following equation:

zj = δj(Wjzj−1 + bj), ∀j ∈ {1, 2, ..., k + 1} (1)

where δj(·) is a non-linear activation function which is applied layer-wise. Consequently,
the implementation of an FNN can be seen as a function mapping inputs z0 ∈ Rd0 to
outputs zk+1 ∈ Rdk+1 , using Equation (1).

The activation functions are nonlinear; thus, the minimization of the loss function
is a non-convex problem, and consequently can only be solved with non-linear iterative
algorithms such as stochastic gradient descent [63] and quasi Newton methods [64]. In
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the present paper, the FNN method is applied in order to construct the NN that estimate
the failure stresses, and the corresponding strains of a shallow foundation in the cohesive
soil domain.

3. Numerical Formulation and Material Constitutive Model

Cohesive geomaterials under loading can respond to soil-pore–fluid interaction in fully
or partially saturated soil domains. These are referred to as porous media and the physical
and mathematical problems that predict their response are called porous media problems.
The simulation of a porous medium can be computed using the Biot system of equations.
If the load time function is of a low frequency, the Biot problem is redefined at a higher
computational cost numerical scheme. The u-p system of equations, which consists of the
total set of equations of the soil–fluid momentum balance with the adoption of Darcian
flow, coupled with the boundary conditions and the stress–strain material constitutive
model, is a numerical simulation which has an augmented numerical stability compared to
the corresponding Biot scheme. In this paper, the u-p formulation is adopted because static
loads are implied for the soil mass. It should be noted that for a variety of cohesive soils,
the u-p scheme is suitable in most of the natural applied forces as depicted in ([65]).

The finite element discretization of the u-p formulation is constructed through classic
Galerkin ideas and the following set of equations are obtained [66,67]:

Mẍ + Cẋ + Kx = f (2)

The extended mass matrix M, stiffness matrix K and damping matrix C are defined as follows:

M =

[
MS 0

0 0

]
(3)

where MS is the conventional mass matrix of the solid skeleton, ρd is the density of the
soil mass, and Nu is the shape functions of the displacement field. The mass matrix is
computed as follows:

MS =
∫

V
NuTNuρddv (4)

C =

[
CS 0
QT

c S

]
(5)

where CS stands for the typical damping matrix of the solid skeleton which here is consid-
ered as a Rayleigh damping matrix and

K =

[
KS −Qc
0 H

]
(6)

In addition, KS represents the standard stiffness matrix of the solid skeleton. B, E are
the deformation and elasticity matrices, respectively. The standard stiffness matrix is
calculated as follows:

KS =
∫

V
BTEBdv (7)

The extended matrices consist of the following three parts. The matrix that is used for
coupling the system of equations is Qc =

∫
V BTmNpdv where m stands for the unity matrix.

In the permeability matrix, if k is the matrix of permeability, then H =
∫

V(
`

Np)Tk
`

Npdv.
For the saturation matrix, if NP are the shape functions for pore pressure and Q is a function
of the bulk moduli of fluid and soil skeleton, then S =

∫
V Np 1

Q Npdv. In conclusion, the
loading vector divided by the total mixture density b provides an equivalent force vector
fS =

∫
V(N

p)T `T(kb)dv. This numerical algorithm can be calculated using standard
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implicit or explicit integration schemes such as the Newmark method. Moreover, the load
vector and the unknown variables vector are obtained as follows:

f =
[

fS
0

]
x =

[
u
p

]
(8)

4. Numerical Model Implementation

The material constitutive yield function used in this paper is a modified Cam Clay
type yield material constitutive model based on the theory of structured soils and critical
state theory. Hereinafter, the stresses defined are the effective stresses in the solid skeleton
and not in the pores. The yield function consists of mathematical equations for two surfaces,
namely the plastic yield envelope (PYE) for interpreting the elastic region and the bond
strength envelope (BSE), which defines the allowable places in which PYE may be present
([62,68–71]). BSE’s magnitude is influenced by the structure of the cohesive soil microtiles.
When a stress tensor is situated in the BSE boundary, the degradation rate of the clayey soil
structure is maximized. The envelopes are in an ellipsoidal shape and subsequently may
have one and only one common point.

The general mathematical representation of an envelope is denoted as follows:

fg(ph, s, pL, sL, a) =
1
c2 (s− sL) : (s− sL) + (ph − pL)

2 − (ξa)2 = 0 (9)

In Equation (9) for σ, there is a hydrostatic counterpart ph and a deviatoric counterpart s,
while the center of the ellipse L consists of a hydrostatic counterpart pL and a deviatoric
counterpart sL. In addition, a is the half-size of the greater diameter of BSE and a ratio of
reduction in the PYE in relation to BSE ξ is incorporated. If sL = 0 , pL = a it is concluded
that ξ = 1 and consequently BSE is:

fg(ph, s, pL, sL, a) = F(ph, s, a) =
1
c2 s : s + (ph − a)2 − a2 = 0 (10)

However, when the hydrostatic term differs from a and the deviatoric term of the center
of the ellipse differs from zero, then the plastic yield envelope has a more general from,
as follows:

fg(ph, s, pL, sL, a) = fp(ph, s, pL, sL, a) (11)

The elastic behaviour of the soil is assumed to be isotropically poroelastic. Since the
Poisson ratio is constant, the modulus of volumetric deformation, analogous to the shear
deformation modulus, can be obtained as follows:

Kbulk =
νph

κ
(12)

ν denotes the specific volume of the soil.
This groundwork is implemented in the present article in order to obtain the maximum

reliability of the derived NN. Material constitutive modelling coupled with the stochastic
finite element method augment the accuracy of the uncertainty quantification and the
statistical moments derivation; subsequently, the NN accuracy improves with an alleviated
computational cost in terms of the training epochs.

5. Numerical Modeling Results and NN Model Development
5.1. Description of the Numerical Simulations

The numerical simulation formulation is used in porous problems, as depicted in
Figures 2 and 3 and follow Equation (2). The output variables under discussion are the
stresses and strains at failure of a shallow foundation, which is represented by the equiv-
alent loads of the points A, B, C, and D of Figures 2 and 3. The aforementioned stresses
and strains are both related to the volumetric part and the deviatoric part. The mod-
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elling of the foundation is performed solely by entering the equivalent nodal loads of
each linear distribution of the stresses that apply to a given triad of axial force, and its
moments. The loading conditions consist of the nodal values q1 − q4 at points B, C, A,
and D, respectively. The distribution of the equivalent loads is along the area ABCD,
which has dimensions of (1X1 m2). The triad of eccentricities coupled with the obliquity
of the footing load (ex = Mx

N , ey =
My
N , θq) may be considered with the following tri-

ads: (0, 0, 90◦), ( h
12 , 0, 90◦), ( h

6 , 0, 90◦), ( h
3 , 0, 90◦), ( h

6 , h
6 , 90◦), ( h

3 , h
6 , 90◦), ( h

3 , h
3 , 90◦), (0, 0, 0◦),

(0, 0, 30◦), (0, 0, 45◦), (0, 0, 60◦), where h is the corresponding length of the footing settle-
ment for each non-central load. The finite element mesh is defined by eight node hexahedral
finite elements with linear shape functions for displacements and pore pressures, which
provide quantitatively accurate results ([72,73]). The finite element hexahedral mesh total
lengths in the X, Y, Z global dimensions in meters are: lx = 5, ly = 5, lz = 4, which consists
of a total of 100 elements. The mesh adopted was compared to finer meshes and it was
found that the divergence in the calculated displacements is in the acceptable error range
of 5%. The geostatic stress situation is incorporated in the numerical system as the initial
conditions with the equations σv = γz, σx = σy = 100 kPa. This hypothesis was made while
taking into account that an overstressed clay is simulated, and a corresponding modulus of
volumetric deformation in the vicinity of 20 MPa should be assumed. The overall time of
the analysis is one day, which was selected in order to respond in a quasi static manner and
the time step for each simulation is dt = 0.001 d. The time history of the displacement was
plotted; here, the quasi static conditions of the soil domain were verified. The equations
applied to boundary surfaces are as follows: ux(z = h) = uy(z = h) = uz(z = h) = 0 and
the lateral boundary surfaces do not have constraints. The input material uncertainty con-
sists of the material variables, the compressibility factor κ, the critical state line inclination
c, and the permeability factor.

Figure 2. The soil domain and the loads applied for non oblique loading, where lx = 5m, ly = 5m,
lz = 4m and q1 = max(q1, q2, q3, q4), q2 = min(q1, q2, q3, q4). The lines colored in maroon indicate the
boundary conditions and the points considered as fixed ux(z = h) = uy(z = h) = uz(z = h) = 0.

The validity and the reliability of the proposed methodology are analyzed hereinafter.
The validity of the numerical simulation programming package which is the Open Source
numerical finite element simulation code of National Technical University of Athens, named
MSolve, is presented in Figure 4, where an arbitrarily chosen deterministic analysis has
been compared to the solution of the commercial code Ansys. The response over time of
the numerical structure and the values diverge with a percentage rate of smaller than 5%;
consequently, the reliability of the finite element simulations is confirmed. Moreover, in
the previous scientific publications of the authors [28–31], the accuracy of the Monte Carlo
simulations in predicting the first two statistical moments has been presented. For clarity, a
convergence analysis for the prediction of mean value and standard deviation of the Monte
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Carlo simulations for an arbitrarily chosen analysis is portrayed in Figure 5, where it is
confirmed that the 100 samples taken are sufficient for estimating the monitored output
variables’ statistical properties.

Figure 3. The soil domain and the loads applied for oblique loading, where lx = 5m, ly = 5m,
lz = 4m and q1 = max(q1, q2, q3, q4), q2 = min(q1, q2, q3, q4). The lines colored in maroon indicate the
boundary conditions and the points considered as fixed ux(z = h) = uy(z = h) = uz(z = h) = 0.

1 
 

 

Figure 4. Validation of the method implemented and the Open Source numerical finite element simula-
tion code MSolve. A randomly chosen deterministic analysis has been compared to the corresponding
analysis with Ansys. The results diverge with a rate smaller than 5%; thus, the validity holds.

The compressibility factor κ, is considered to have spatial distribution with respect to
depth as linear (κL), or constant (κC). In the κL spatial distribution, κz=0 = 0.008686 and
the ratio R follow the truncated normal distribution with R = κz=max

κz=0
. The linear relation

of the compressibility factor to depth is adopted as a common conjecture of this material
parameter equation. This depicts the fact that for in situ conditions when the depth is
augmented, κ is reduced; thus, the bulk modulus is augmented. In addition, the value for
κ at the top is adopted as deterministic in this paper since in the upper place of the soil
domain it is convenient to evaluate the material parameter; subsequently, it can be assumed
as non stochastic. The ratio has mean value µR = 0.469 and the coefficient of variation
(CoV) is 0.25; therefore, κz=max,mean = 0.004074. These values are considered in order for
the mean stiffness of the soil to possess a shear velocity of 200 m

s . It is found that the bulk
and the shear moduli are proportional, since the Poisson ratio is constant. So, κ is directly
influenced by the shear velocity. If κ is constant in the whole soil mass, the mean value of κ
is κµ = 0.004074 and the CoV is 0.25.
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Figure 5. Convergence of the mean value and the standard deviation of a randomly selected Monte
Carlo simulation for the output failure load. The reference value of the percentage difference is the
statistical moment in 100 samples.

The critical state inclination c is considered constant across the whole soil mass. The
value is assumed either as following a random variable or as deterministic. If a random
variable case is assumed cR, the friction angle φ0 follows the truncated normal distribution
PDF with the mean value of µφ = 23◦ and the standard deviation of σφ = 2◦. which
provides values for φ0 using the Latin Hypercube Sampling method. The random vector of
φ0 consists of values related to the majority of natural clays as pointed out in ([62]). The φ0
random discrete array elements are collected by following the standard normal distribution
sample selection with the use of Latin Hypercube Sampling; as a result, they are altered to
the truncated normal probability density function. Consequently, c is computed using the

relation c =
√

2
3

6sin(φ0)
3−sin(φ0)

. If c is assumed to be deterministic, it is depicted as cD, c = 0.7336
for friction angle µφ = 23◦.

The permeability k , is assumed constant throughout the soil domain. The exact value
may be assumed as following a random variable or as deterministic. If a random variable
is the hypothesis for kR, the mean value is µk = 10−8 and the CoV is CoVk = 0.25. If the
deterministic distribution kD is used, k = 10−8.

Two types of analyses are conducted. The solid analysis, where the fluid–pore pressure
is negligible and the porous analyses, where the soil-pore–fluid interaction is taken into
account. The solid analyses conducted, denoted with (S), are depicted in Table 1, repre-
senting a constant (C) or Linear (L) relation for κ and random variable (R) or deterministic
(D) assumptions for c. The porous analyses conducted are portrayed in Table 2, including
random field (RF), linear (L), and constant (C) relations for κ. Random variable case (R),
random field spatial distribution (RF) and the deterministic (D) case for c are represented.
Random field relation (RF), random variable case (R) and deterministic cases (D) for k are
shown. Alongside the simplification of the Monte Carlo simulation, an abbreviation for the
neural network is also introduced.

In stochastic processes, the mean values are as follows: κmean = 0.008686, cmean = 0.7336
and kmean = 10−8 m3s

Mgr following the propositions of ([65,67,74]). The standard deviations
adopted are: σκ = 0.25κmean, σφ = 2◦ and σk = 0.25kmean. The exponential autocorrelation

function Ch = e
−|∆x|

b is used in all stochastic relations. Correlation length is selected with
three possible values, namely b = 2 m (kRF−2), b = 4 m (kRF−4), and b = 8 m (kRF−8). The spa-
tial distributions for κ, κL, and κC, are coupled with the random variable distributions for
all material variables commensurate to a random variable case simulation. For c, a constant
deterministic analysis is implemented. The random field (RF) processes commensurate
to the Karhunen Loeve series expansion method and realizations of the spatial stochastic
process are formulated through the aforementioned series discrete equation with the imple-
mentation of the exponential autocovariance function. A group of random variables ξ that
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follow the standard normal distribution were obtained with the LHS importance sampling
method. The eigenvalues and the eigenfunctions of the autocovariance function Ch are
provided in closed form equations since the integrodifferential Fredholm eigenproblem has
an analytical solution for the exponential formulation of Ch. A schematic representation of
the random field functions adopted in this work is portrayed in Figure 6. The number of
hidden layers used in the analyses is 8. The selection of the hidden layers was performed
by choosing 1 layer and performing the FNN construction. Then, by increasing the hidden
layers by 1 the average quality of the results was checked. After 8 hidden layers, no better
results were obtained; subsequently, the number of hidden layers chosen was 8.

Table 1. Non porous (solid) analyses conducted.

κ c Abbreviation-NN Number

Linear Random S-κL-cR-d1

Linear Deterministic S-κL-cD-d2

Constant Random S-κC-cR-d3

Constant Deterministic S-κC-cD-d4

Table 2. Porous analyses conducted.

κ c k Abbreviation-NN Number

Constant Random Deterministic P-κC-cR-kD − 1

Constant Random Random P-κC-cR-kR − 2

Constant Deterministic Random P-κC-cD-kR − 3

Constant Deterministic Deterministic P-κC-cD-kD − 4

Linear Random Deterministic P-κL-cR-kD − 5

Linear Random Random P-κL-cR-kR − 6

Linear Deterministic Random P-κL-cD-kR − 7

Linear Deterministic Deterministic P-κL-cD-kD − 8

Random Field, b = 2 Random Field, b = 2 Random Field, b = 2 P-κRF-cRF-kRF−2 − 9

Random Field, b = 4 Random Field, b = 4 Random Field, b = 4 P-κRF-cRF-kRF−4 − 10

Random Field, b = 8 Random Field, b = 8 Random Field, b = 8 P-κRF-cRF-kRF−8 − 11

The loads are static and the time of the analyses and the time step were chosen in
order to acquire a static response of the soil mass, while eight Fredholm eigenfunctions
are implemented. Failure is defined when the first Gaussian Point responds in a softening
way, which means that H < 0 where H is the plastic hardening modulus. Each Monte Carlo
simulation was adopted for 100 samples collected with the Latin Hypercube Sampling
method. The number of the samples was proven adequate in acquiring convergence for the
mean value and standard deviation of the output displacements as is shown in the previous
scientific publications of the authors. For an arbitrarily chosen simulation, 1000 samples
have been collected and calculated for the convergence in comparison to the statistical
identities for 100 deterministic subsimulations. The relative error is at most 5%; as a result,
100 samples are sufficient for estimating the mean value and standard deviation of the
monitored variables in discussion. It should be noted that the cross correlation in all
material variables is ignored; thus, the correlation matrix is a diagonal matrix.

In the Monte Carlo simulations analyzed in this section, the FNN procedure described
in Section 2 is implemented in order to acquire NNs that predict the failure volumetric stress
pvol , the failure deviatoric equivalent Von Mises stress qdev, the failure volumetric strain εvol ,
and the failure deviatoric equivalent Von Mises strain εdev. The training was performed
in order to minimize the error . Each Monte Carlo simulation provides a distinct set of
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NNs, and four distinct NNs for each of the monitored output variables is defined. This
was performed for both non-porous and porous analyses. The accumulation of the NNs
portrays not only the estimation of the aforementioned output variables but also depicts
the influence of the assumed spatial variability of the material variables and indicates the
qualitative effect of each material variable’s uncertainty to each output variable variability.

1 
 

 
 
 
 

 
 
 

1 
 

 
 
 
 

 
 
 

 

2 

 

Figure 6. Schematic representation of the realizations of the random field simulations for the correla-
tion lengths b = 2 m , b = 4 m, b = 8 m.
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5.2. Presentation of the Results-Discussion

The results are depicted in this section. In Tables 3–6, the convergence study of the
neural networks (NN) assimilated from the Monte Carlo simulations in this section is
presented, where the L2 error of each NN is provided. It should be noted that this error
is at most in the order of magnitude of 10−2, indicating the high reliability of the neural
network models. Then, the two critical neural networks for porous analyses that predict the
most unfavourable values for the volumetric part of the failure stress pvol , the deviatoric
component of the stress qdev, as well as the corresponding parts of the strain at failure of
the footing settlement and the two neural networks for non porous analyses, are portrayed
in Figures 7–14 with a set of five subfigures each. Each set of subfigures consists of the
3D representation of the NN, the convergence diagram of Loss in relation to the epochs
required to train the NN, and the projection of the NN to the input axis x, the eccentricity
ex, the input axis y, the eccentricity ey, the input axis z, and the obliquity angle in relation
to the horizontal direction θq. Each neural network illustrated is formed with points that
are the mean values of each Monte Carlo Simulation. In the supplementary material, the
corresponding estimations of NNs for the rest of the output variables for each unfavourable
value are presented. For example, for an NN that is critical for pvol , the estimations for
qdev,evol ,edev are portrayed in the supplementary material.

An analysis of the convergence study indicates that the largest number of epochs is
493,000, which provide an L2 error of 6.06× 10−6. In addition, the largest error is 6.90× 10−3

with 138,200 epochs. Taking this into consideration alongside the literature related to
other physical problems for sciences and engineering [56], it can be deducted that the
aforementioned algorithm is suitable for the nature of the problem analyzed. Subsequently,
this algorithm is not only easy to implement for training and construction; it is also useful
for enriching the model with more data obtained either in situ or computationally. In future,
we aim to enrich this high fidelity model with in situ measurement data and investigate
the influence of adding such data in the estimation of the footing settlement failure under
cohesive geomaterial.

Table 3. Number of epochs for convergence and the corresponding L2 loss for Neural Networks for
Monte Carlo simulations of porous analyses with deterministic shape functions for the stochastic
material variables (κ considered constant over depth).

NeurNet and Number # of Epochs L2 Loss

κC − cD − kD − 4, pvol 194, 000 6.9× 10−4

κC − cD − kD − 4, qdev 187, 200 8.89× 10−8

κC − cD − kD − 4, evol 90, 500 4.34× 10−13

κC − cD − kD − 4, edev 134, 700 4.96× 10−13

κC − cR − kD − 1, pvol 164, 400 4.36× 10−7

κC − cR − kD − 1, qdev 198, 000 1.56× 10−7

κC − cR − kD − 1, evol 139, 700 5.78× 10−13

κC − cR − kD − 1, edev 159, 800 8.02× 10−12

κL − cD − kD − 8, pvol 125, 900 4.05× 10−8

κL − cD − kD − 8, qdev 156, 100 8.83× 10−9

κL − cD − kD − 8, evol 134, 200 1.19× 10−6

κL − cD − kD − 8, edev 20, 000 1.10× 10−3

κL − cR − kD − 5, pvol 130,900 1.95× 10−5

κL − cR − kD − 5, qdev 138,000 7.49× 10−9

κL − cR − kD − 5, evol 118, 200 8.26× 10−13

κL − cR − kD − 5, edev 187, 200 8.11× 10−4
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Table 4. Number of epochs for convergence and the corresponding L2 loss for Neural Networks for
Monte Carlo simulations of porous analyses with deterministic shape functions for the stochastic
material variables (κ considered linear over depth).

NeurNet and Number # of Epochs L2 Loss

κC − cD − kR − 3, pvol 172, 500 4.07× 10−9

κC − cD − kR − 3, qdev 195, 500 2.51× 10−4

κC − cD − kR − 3, evol 84, 900 7.85× 10−13

κC − cD − kR − 3, edev 138, 700 4.13× 10−13

κC − cR − kR − 2, pvol 183, 200 6.90× 10−3

κC − cR − kR − 2, qdev 165, 700 4.02× 10−5

κC − cR − kR − 2, evol 160, 500 1.19× 10−12

κC − cR − kR − 2, edev 200, 000 3.43× 10−10

κL − cD − kR − 7, pvol 171, 400 2.66× 10−8

κL − cD − kR − 7, qdev 110, 300 2.66× 10−7

κL − cD − kR − 7, evol 161,400 4.96× 10−13

κL − cD − kR − 7, edev 493,000 6.06× 10−6

κL − cR − kR − 6, pvol 189, 000 4.70× 10−8

κL − cR − kR − 6, qdev 187, 200 8.89× 10−8

κL − cR − kR − 6, evol 188, 100 4.76× 10−9

κL − cR − kR − 6, edev 199, 900 2.17× 10−4

Table 5. Number of epochs for convergence and the corresponding L2 loss for Neural Networks
for Monte Carlo simulations of porous analyses with stochastic spatial representation for all the
stochastic material variables.

NeurNet and Number # of Epochs L2 Loss

κRF − cRF − kRF−2 − 9, pvol 186, 600 8.27× 10−8

κRF − cRF − kRF−2 − 9, qdev 112, 600 3.26× 10−8

κRF − cRF − kRF−2 − 9, evol 141, 300 1.40× 10−12

κRF − cRF − kRF−2 − 9, edev 200, 000 1.19× 10−3

κRF − cRF − kRF−4 − 10, pvol 87, 700 3.67× 10−8

κRF − cRF − kRF−4 − 10, qdev 171, 400 6.14× 10−9

κRF − cRF − kRF−4 − 10, evol 164, 300 4.13× 10−13

κRF − cRF − kRF−4 − 10, edev 57, 600 4.29× 10−12

κRF − cRF − kRF−8 − 11, pvol 116,100 5.09× 10−9

κRF − cRF − kRF−8 − 11, qdev 50,000 7.22× 10−9

κRF − cRF − kRF−8 − 11, evol 143,300 6.75× 10−3

κRF − cRF − kRF−8 − 11, edev 65,200 6.61× 10−13

Table 6. Number of epochs for convergence and the corresponding L2 loss for Neural Networks for
Monte Carlo simulations of non porous medium.

NeurNet # of Epochs L2 Loss

κC − cD − d4, pvol 177, 800 2.00× 10−4

κC − cD − d4, qdev 137, 200 9.67× 10−7

κC − cD − d4, evol 168, 500 3.48× 10−7

κC − cD − d4, edev 20, 000 2.05× 10−5

κC − cR − d3, pvol 110, 500 5.53× 10−5

κC − cR − d3, qdev 199, 100 5.61× 10−3

κC − cR − d3, evol 179, 900 7.33× 10−12

κC − cR − d3, edev 200, 000 4.77× 10−4

κL − cD − d2, pvol 200, 000 0.60× 10−3

κL − cD − d2, qdev 126, 400 1.87× 10−6

κL − cD − d2, evol 200, 000 1.73× 10−4

κL − cD − d2, edev 200, 000 1.07× 10−5

κL − cR − d1, pvol 159,400 1.60× 10−8

κL − cR − d1, qdev 200,000 5.84× 10−8

κL − cR − d1, evol 200,000 4.62× 10−5

κL − cR − d1, edev 199,600 3.00× 10−5
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Figure 7. Graphical presentation of the Neural Network that corresponds to Monte Carlo analysis P-
κRF-cRF-kRF−2− 9 (NN9) for the estimation of the volumetric component of the stress pvol in kPa. (a) 3D
representation of the Neural Network. (b) Epochs-Loss diagram. (c) Neural Network representation in
the projection to the input axis of ex. (d) Neural Network representation in the projection to the input
axis of ey. (e) Neural Network representation in the projection of the input axis of θ.
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Figure 8. Graphical presentation of the Neural Network that corresponds to Monte Carlo analysis P-
κRF-cRF-kRF−2 − 9 (NN9) for the estimation of the deviatoric component of the stress qdev in kPa. (a) 3D
representation of the Neural Network. (b) Epochs-Loss diagram. (c) Neural Network representation in
the projection to the input axis of ex. (d) Neural Network representation in the projection to the input
axis of ey. (e) Neural Network representation in the projection to the input axis of θ.
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Figure 9. Graphical presentation of the Neural Network that corresponds to Monte Carlo analysis
P-κRF-cRF-kRF−4− 10 (NN10) for the estimation of the volumetric component of the strain evol . (a) 3D
representation of the Neural Network. (b) Epochs-Loss diagram. (c) Neural Network representation
in the projection of the input axis of ex. (d) Neural Network representation in the projection to the
input axis of ey. (e) Neural Network representation in the projection of the input axis of θ.
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Figure 10. Graphical presentation of the Neural Network that corresponds to Monte Carlo analysis
P-κRF-cRF-kRF−4 − 10 (NN10) for the estimation of the deviatoric component of the strain edev. (a) 3D
representation of the Neural Network. (b) Epochs-Loss diagram. (c) Neural Network representation
in the projection of the input axis of ex. (d) Neural Network representation in the projection of the
input axis of ey. (e) Neural Network representation in the projection of the input axis of θ.
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Figure 11. Graphical presentation of the Neural Network that corresponds to Monte Carlo analysis
S-κL-cR-d3 (NND3) for the estimation of the volumetric component of the stress pvol in kPa. (a) 3D
representation of the Neural Network. (b) Epochs-Loss diagram. (c) Neural Network representation
in the projection of the input axis of ex. (d) Neural Network representation in the projection of the
input axis of ey. (e) Neural Network representation in the projection of the input axis of θ.
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Figure 12. Graphical presentation of the Neural Network that corresponds to Monte Carlo analysis
S-κL-cR-d3 (NND3) for the estimation of the deviatoric component of the stress qdev in kPa. (a) 3D
representation of the Neural Network. (b) Epochs-Loss diagram. (c) Neural Network representation
in the projection of the input axis of ex. (d) Neural Network representation in the projection of the
input axis of ey. (e) Neural Network representation in the projection of the input axis of θ.



Geotechnics 2022, 2 1100

ex (m)

0.00
0.05

0.10
0.15

0.20
0.25

0.30

e y
 (m

)

0.00

0.05

0.10
0.15

0.20
0.25

0.30

θ 
(ra

d)

0

20

40

60

80

11

12

13

14

15

16

e
vol  ‰
(a)

0 25000 50000 75000 100000 125000 150000 175000 200000

Epochs

0

500

1000

1500

2000

2500

Lo
ss

(b)

0.00 0.05 0.10 0.15 0.20 0.25 0.30

ex (m)

11

12

13

14

15

16

e v
ol

 ‰

(c)

0.00 0.05 0.10 0.15 0.20 0.25 0.30

ey (m)

11

12

13

14

15

16

e v
ol

 ‰

(d)

0 20 40 60 80

θ (rad)

11

12

13

14

15

16

e v
ol

 ‰

(e)

Figure 13. Graphical presentation of the Neural Network that corresponds to Monte Carlo analysis
S-κL-cR-d3 (NND3) for the estimation of the volumetric component of the strain evol . (a) 3D represen-
tation of the Neural Network. (b) Epochs-Loss diagram. (c) Neural Network representation in the
projection of the input axis of ex. (d) Neural Network representation in the projection of the input
axis of ey. (e) Neural Network representation in the projection of the input axis of θ.
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Figure 14. Graphical presentation of the Neural Network that corresponds to Monte Carlo analysis
S-κL-cD-d4 (NND4) for the estimation of the deviatoric component of the strain edev. (a) 3D represen-
tation of the Neural Network; (b) Epochs-Loss diagram; (c) Neural Network representation in the
projection to the input axis of ex; (d) Neural Network representation in the projection to the input
axis of ey; (e) Neural Network representation in the projection to the input axis of θ.

From the data-obtaining procedure and the neural network formulation, useful conclu-
sions can be made. Hereinafter, the critical values of each NN will be given with the input
values that lead to the mentioned unfavourable situations. In addition, the other output
values estimated once a critical value occurs will be depicted and discussed. Through this
study, a comparison scheme will be provided in order to define the most unfavourable
situations for the shallow foundation static loading to a stochastic variable soil domain
which consists of cohesive geomaterial. This analysis is also quantitatively reliable due
to the high fidelity of the material constitutive model and the high accuracy of the neural
network method formulation.

NN number 9, which is the Monte Carlo simulation of P-κRF-cRF-kRF−2 − 9, is found
to have the most unfavourable values, i.e., the smallest values, for pvol and qdev. For pvol ,
the critical value is 57.67 kPa, for input triad (ex, ey, θ) = (0, 0, 0) with the triad of the rest
of the output values estimated to be (qdev, evol , edev) = (104,879,13,166%,16,631%) . For qdev,
the unfavourable value is 103.44 kPa, for input vector (ex, ey, θ) = (0, 0, 30◦) with the vector
of the remaining output variables predicted as (pvol , evol , edev) = (59,668,12,583%,14,406%).
Consequently, the situation of pure shear load is the worst for the volumetric stresses and
the rest of the estimated variables can be described as moderate for stresses and large for
strains. Moreover, a central and small oblique load in relation to the horizontal direction is
the critical situation for the deviatoric stress and the remaining variables can be described
as moderate for stresses and large for strains.

NN number 10, which is the Monte Carlo simulation of P-κRF-cRF-kRF−4 − 10, is
found to have the most critical values, i.e., the largest ones, for evol and edev. For evol , the
unfavourable value is 14,546%, for the input vector it is (ex, ey, θ) = (0, 0, 0), with the vector
of the remaining output variables predicted as (pvol , qdev, edev) = (57,923,103,22,18,249%). For
edev, the critical value is 20,788%, for the input triad it is (ex, ey, θ) = (0,0,90◦) with the triad
of the rest monitored variables estimated to be (pvol , qdev, evol) = (654,27,1143,30,12,717%).
Subsequently, the situation of pure shear load is the worst for the volumetric strains and
the rest of the predicted variables can be portrayed as moderate for stresses and large for
strains. In addition, the central and vertical load is the critical situation for the deviatoric
stress and the remaining monitored variables can be portrayed as large for stresses and
large for strains.

NN d3, which is Monte Carlo simulation S-κC-cR, is proven to have the most criti-
cal values, i.e., the smallest values, for pvol and qdev and the largest values for evol . For
pvol , the critical value is 59.71 kPa, for the input triad it is (ex, ey, θ) = (0, 0, 0) with the
triad of the rest output values estimated to be (qdev, evol , edev) = (99,186,14,418%,16,094%).
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For qdev, the unfavourable value is 82,391 kPa, for the input vector it is (ex, ey, θ)=(0, 0,
30◦), with the vector of the remaining output variables predicted to be (pvol , evol , edev) =
(62,795,16,602%,15,915%). For evol , the unfavourable value is 16,603%, for input vector it is
(ex, ey, θ) = (0, 0, 30◦) with the vector of the remaining output variables predicted to be (pvol ,
qdev, edev) = (62,795,82,391,15,915%). Consequently, the situation of pure shear load is the
worst for the volumetric stresses and the rest of the estimates variables can be described as
moderate for stresses and large for strains. Moreover, the central and small oblique load in
relation to the horizontal direction is the critical situation for the deviatoric counterpart of
stresses and the strain field in both components, and the estimated monitored variables can
be portrayed as moderate for stresses and large for strains.

NN d4, which ties in with Monte Carlo simulation S-κC-cD, is proven to have the most
unfavourable values, i.e., the largest values, for edev. For edev, the critical value is 19,954%,
for the input triad it is (ex, ey, θ) = ( h

3 , h
3 , 90◦) with the triad of the rest monitored variables

estimated to be (pvol , qdev, evol) = (593,789,945,429,10,756%). Consequently, the situation of
high eccentric vertical load is critical for deviatoric counterpart of strains, and the remaining
variables estimated can be depicted as moderate for stresses and large for strains.

Taking all the above into account, two general deductions can be made. In porous
analyses, the most unfavourable situation for output values pvol , qdev, evol , edev is when
the input variability follows the Karhunen Loeve random field representation. When
correlation length coincides with the depth of the soil mass (b = 4 m), the strain field at
failure is at the largest values and consequently the most unfavourable situation takes place.
A reduction in the correlation length appears to be slightly influenced by the prediction
of the stress field at failure, while the influence on the strains at failure is more profound.
Subsequently, the higher the uncertainty is, with the decrease in the correlation length,
the greater the variability of the displacement field and strain field at failure is, while
for the strain field the variability is smaller. For non porous analyses, we have the worst
case scenario for output values pvol , qdev, evol , edev when constant distribution over depth
for κ is adopted. To be more specific, for the stresses field and the volumetric part of
strains, more critical values are obtained form the NN that considers the critical state line
inclination as a random variable case, while for the deviatoric counterpart of strains a more
unfavourable situation is attained from the NN that adopts the critical state line inclination
as deterministic. Thus, the influence of c is more evident for the stresses, as expected, and
for the volumetric part of the strain field; furthermore, the influence of κ is more profound
in the estimation of the deviatoric strain field at failure. The results highlight quantitatively
and qualitatively the integration of each material variable variability to the response of
the soil mass and are similar to the results of previous studies in terms of predicting the
response without new analyses needed. In conclusion, the results can be readily enriched by
the assimilation of more computational or experimental data. Consequently, the presented
article is of significant importance for the scientific areas of computational geomechanics
and uncertainty quantification in engineering.

6. Conclusions

In this work, a set of neural networks for the estimation of the failure of footing
settlements and the volumetric and deviatoric stresses and strains of the soil at failure
under cohesive soils is presented. The data have been assimilated from precedent numerical
analyses of Monte Carlo simulations that predict the failure stresses and strain fields of
the shallow foundation under static loading conditions. The material yield function of the
stress–strain relation provides a high-reliability model for quantitatively accurate stress–
strain and force–displacement behaviour measurements of clayey soils under any force field.
Subsequently, the output values of the neural network will be verified . The limitations of
the aforementioned methodology include the coarse selection of points in the foundation
and the selection of mean values for constructing the NN.

In the convergence analysis, the aforementioned neural networks are formed with a
relatively low amount of epochs and the L2 error is alleviated for the reliability required for
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geotechnical engineering applications. Less than 500,000 epochs are required for a loss in
the vicinity of 10−3. It is also portrayed that the estimation of the stresses at failure requires
a significantly smaller amount of epochs in comparison to the corresponding strain field.
Moreover, a smaller error is found for the neural networks of the strain field and largest
error is found for the corresponding stress field at failure. This indicates the advantages of
the method and shows it can be easily enhanced with computational or experimental data,
which is an important area of exploration for future work.

In porous analyses, the most critical situation for the output values is when the input
uncertainty follows the Karhunen Loeve random field representation. When the correlation
length falls, the prediction of the NN for the strain field at failure increases. For non-porous
analyses, the respective values of the monitored variables are in general most unfavourable
when constant distribution over depth for κ is assumed. This can be explained with the
mean value of the Monte Carlo simulation, which was considered at each data point
of the constructed Neural Networks. This follows the previous literature published by
the authors. When a deterministic value for critical state line inclination is adopted, the
deviatoric counterpart of the strains is estimated with the largest values. When a random
variable case for c is implemented, the remaining monitored output variables are estimated
with the most critical values.
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Nomenclature
The following symbols are used in this manuscript:

N f Friction variables

Nq
Friction variable indicating the influence of possible vertical load in the lateral
direction of the foundation

Nc Friction variable indicating the influence of the cohesion of the soil
Nγ Friction variable indicating the influence of the settlement dimensions

alongside the total weight of the soil
S f Shape variables

Sq
Shape variable indicating the influence of possible vertical load in the lateral
direction of the foundation

Sc Shape variable indicating the influence of the cohesion of the soil
Sγ Shape variable indicating the influence of the settlement dimensions

alongside the total weight of the soil
κ Compressibility factor
c Critical state line inclination
k Permeability in units m3s

Mgr
φ0 Friction angle
M Total mass matrix
C Total damping matrix
K Total stiffness matrix
Ms Solid skeleton mass matrix
ρd Density of the soil
B Deformation matrix
E Elasticity matrix
Cs Solid skeleton damping matrix
Ks Solid skeleton stiffness matrix
m Unity matrix
b Loading vector
k Matrix of permeability in units m3s

Mgr
NP Shape functions for pore pressure
Nu Shape functions for displacements
S Saturation matrix
Qc Coupling matrix
H Permeability matrix
fS Equivalent forces due to external loading
Q Variable for combining the influence of bulk moduli of fluid and solid skeleton in

porous problems
σ Total stress tensor
s Deviatoric component of the stress tensor
ph Hydrostatic component of the stress tensor
a Halfsize of the Bond Strength Envelope
sL Deviatoric component of the stress point of the center of the Plastic Yield Envelope
pL Hydrostatic component of the stress point of the center of the Plastic Yield Envelope
ξ Similarity factor between the Plastic Yield Envelope and Bond Strength Envelope
fg Generalized elliptic envelope
fp Plastic Yield Envelope (PYE)
F Bond Strength Envelope (BSE)
ν Specific volume of the soil
q Von Mises stress
e Deviatoric strain measure
εdev Deviatoric component of the strain tensor
f Random function
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fi Value of the random function at nodal points
Ni Shape functions
N0 Total number of shape functions
h1 Truncated normal PDF
φ(x) Standard normal PDF
Φ(x) Standard normal CDF
σd Standard deviation of the random variable before truncation
A, B, X0 Normalized coordinates of the subspace of the truncated PDF

limits and x
H1(x, ω) Karhunen Loeve random field
Ns Number of subintervals in the Latin Hypercube Sampling
µ(x) Mean value of the random field
X(x1, x2, ...xn) Random vector created with Latin Hypercube Sampling
Me, λi, φi Total number of eigenvalues λi and eigenfunctions

φi, respectively
b Correlation length
COV(ξi, ξ j) Covariance function
λ∗ Load factor causing failure of the body at exactly the time that ends

the rampload function
T Time at which the rampload function ends
Tp Symmetrization factor of the stochastic process
λn Trial load factor of step n causing failure
tn Time of failure at the generalized load factor λn
λmax−no− f ailure Maximum trial load factor which causes safety
λ1, f ail Initial trial load factor causing failure
λ1,no− f ailure Initial trial load factor which causes safety
q1 − q4 Equivalent forces of the shallow foundation
e = M

N Eccentricity
lx − ly − lz Dimensions of the total finite element mesh
σv, σx, σy Geostatic stresses in vertical direction and directions x and y, respectively
λ Inclination of isotropic compression line for the respective normally

consolidated clay
ainitial Initial halfsize of the ellipse
aresidual Residual halfsize of the ellipse
OCR Overconsolidation ratio
G Shear modulus
Kbulk Bulk modulus
γ Specific weight
ν0 Initial specific volume of the soil
ux Displacement vector in direction x
κz=0 Compressibility factor at depth=0
κz=max Compressibility factor at maximum depth
R = κz=max

κz=0
Ratio of the compressibility factors measured at depth=0 and at maximum depth

µR Mean value of ratio R
κz=max,mean Compressibility factor at maximum depth when the ratio R has its mean value
κL Linear distribution over depth for the compressibility factor
κC Constant distribution over depth for the compressibility factor
κµ Mean value of κ

cR Random variable case for the critical state line inclination
cD Deterministic case for the critical state line inclination
µφ Mean value of the friction angle
σφ Standard deviation of the friction angle
µk Mean value of the permeability
CoVk Coefficient of variation of the friction angle
κmean Mean value of the compressibility factor in the random field representation
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cmean Mean value of the critical state line inclination in the random field representation
kmean Mean value of the permeability in the random field representation
σκ Standard deviation of the compressibility factor in the random field

representation
σφ Standard deviation of the critical state line inclination in the random field

representation
σk Standard deviation of the permeability in the random field representation
µν Mean values of the results
σδ Coefficient of variation of the results
M Maximum values of the results
µ Minimum values of the results
N Total settlement force
ux Horizontal displacement at failure
uy Vertical displacement at failure
pvol Volumetric stress at failure
qdev Von Mises stress at failure
evol Volumetric strain at failure
edev Deviatoric strain at failure
Rvol Percentage plastic volumetric strains at failure
Rdev Percentage plastic deviatoric strains at failure
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