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Abstract: Resonant column (RC) and the torsional simple shear (TOSS) tests have shown proven
competency in acquiring precise and repeatable measurements regarding the shear modulus and
damping ratio of soil. For most dynamic geotechnical problems, the shear modulus represents the
stiffness of the soil, while the damping ratio describes energy dissipation. Many studies in the last few
decades focused on developing the relevant equipment and investigating the effect of different soil
properties on the dynamic behavior of soil. Researchers have introduced correlations to approximate
this behavior without conducting dynamic torsional testing. Soil models (e.g., Ramberg-Osgood and
Hardin-Drnevich) can simulate shear stress-strain curves after finding the curve-fitting parameters.
Due to the complexity of dynamic behavior and its dependency on various factors in soils, the RO
and HD equations help model the behavior more simply. This paper presents a literature review and
evaluation of the studies, correlations, soil models, and parameters affecting the dynamic behavior of
dry sand under torsion.

Keywords: resonant column test; torsional simple shear test; shear modulus; damping ratio;
soil models; Masing criteria; Ramberg-Osgood; Hardin-Drnevich

1. Introduction

In engineering practice, static loading produces most of the actions considered in
geotechnical design. However, as structures have evolved and material costs have signifi-
cantly increased, a more advanced approach has required engineers to consider structures
subjected to dynamic loading. Designers can no longer assume quasi-static behavior for
dynamic conditions and apply overly generous safety factors. Newer designs demand a
more detailed assessment of material dynamic properties and the interactions between soil,
foundation, and structure. Newer designs require a better understanding of the dynamic
behavior of both soil and structure.

The response of structures to dynamic loading is directly related to the response of
soil beneath and around it. Therefore, many researchers in the past few decades focused
on studying the behavior of soils subjected to dynamic loading. When earthquake waves
propagate through the soil, they often pass upward through layers that usually become
less stiff (lower modulus) as they approach the surface. The reduction is generally due
to decreasing confining stresses in the soil, directly reducing its stiffness and strength. A
consequence of the stiffness reduction is that the propagating waves refract to a more
vertical path. The propagating waves travel vertically at many building locations, with
most of their energy carried by shear waves. The surface ground motion consists of two
horizontal (N-S and E-W) and one vertical component. Structures can usually withstand
the vertical component even with only a static design due to the high factor of safety used to
support the static load. However, structures are more susceptible to horizontal motion since
they are innately less capable of resisting it. The ground motion in most earthquake-related
design problems is derived from the horizontal shaking of vertically propagating shear
waves [1].
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A site response analysis is one of the most common tasks in geotechnical earthquake
engineering, which aims to determine the response of the soil deposit to the motion of the
bedrock immediately beneath it [2–5]. The transfer functions used in equivalent linear site
response analysis require knowledge of two significant dynamic soil properties (the shear
modulus and damping ratio), representing the soil’s shear stiffness and energy dissipation,
respectively. Even though practicing engineers employ the equivalent linear approach,
this assumes that dynamic soil properties are constant regarding computational reach for
the duration of the earthquake. This assumption may oversimplify the nonlinearity of
soil behavior. Laboratory and large-scale models have demonstrated that shear stiffness
decreases and the damping ratio increases with increasing shear strain, even at low strain
levels. Integrating the equation of motion over small time steps overcomes the problems
from this approximation. Advanced constitutive models can predict the soil’s dynamic
nonlinear behavior and provide a basis for an accurate nonlinear time history analysis.
Several models, such as the hyperbolic [6], Ramberg-Osgood [7], Hardin-Drnevich, and
Iwan-type models, can predict the cyclic shear stress-shear strain behavior.

The variation of G and D in a soil profile over time during an earthquake impacts
the structural demands on the surface in several ways. Structures resonate in horizontal
motions at various frequencies, depending on the size, configuration, and materials used.
While those resonant frequencies may be far different from the resonance of the soil profile,
they may change during a seismic event. As the soil changes G while shaking, due to shear
strain effects, the profile may produce loading frequencies near the structural resonance
and produce higher structural demands in terms of both loading and deformation. Since
the soil profile constantly changes its stiffness during an earthquake, predicting the final
loading conditions on the structure is very complex.

Conducting in-situ and laboratory tests to measure the dynamic properties is time-
consuming and requires more advanced equipment. Various studies have focused on
finding correlations to estimate the dynamic properties of soil as a function of soil parame-
ters that can be easily measured in the laboratory (e.g., void ratio, particle size distribution,
particle shape, confining pressure, fines content, and plastic limit). The impact of these
parameters on the shear modulus and damping ratio varies among the previous studies,
which is reflected in the proposed correlations. This review discovers the limitations and
shortcomings of the existing literature. Many aspects of the dynamic behavior remain
undiscovered, especially when comparing different techniques that measure these prop-
erties (resonant column, bender element, and in-situ tests). Further studies are required
to examine the effect of anisotropy, pretraining, sample disturbance, and the number of
loading cycles. A more precise method to measure the void ratio and to form several
samples with the same initial condition can be developed.

2. Dynamic Behavior of Soils

The most critical parameters determining soil behavior under dynamic loads are the
dynamic shear modulus (G) and the damping ratio (D). These two parameters appear in
many dynamic geotechnical problems related to earthquakes and machine foundations.
Researchers have investigated ways to develop and enhance instruments that precisely
measure G and D and explored how various loading factors impact these properties.

2.1. Dynamic Shear Modulus

The shear modulus (G) represents the shear stiffness of the soil. G possesses its
maximum value at very low strain levels (<10−4%). Figure 1 shows the small strain or
maximum shear modulus (Gmax). At this strain level, the soil exhibits an elastic behavior
with no permanent microstructural changes taking place in the soil. Gmax depends on the
shear wave velocity (vs) passing through the soil and the mass density (ρ) according to the
following equation:

Gmax = ρ ∗ v2
s (1)
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This equation determines the maximum shear modulus of soil layers in the field by
applying in-situ methods that measure vs (e.g., the cross-hole or down-hole test, the seismic
cone penetration test (SCPT) [8], and the spectral/multichannel analysis of surface waves
(S/MASW) [9]). Furthermore, many studies have established empirical correlations from
extensive laboratory testing data to estimate Gmax as a function of the void ratio and mean
effective stress. The most commonly utilized equations are the ones introduced by Hardin
and Richart [10] and Hardin and Black [11], and most recently by Wichtmann et al. [12]
and Payan et al. [13]. Nevertheless, despite the potential advantages of these correlations,
they can have a significant degree of variability and may not always offer an adequate
representation of actual stiffness. Therefore, engineers should not solely depend on them
in all situations. Nowadays, more reliable laboratory testing methods simulate (to an
acceptable level) the shear loading conditions in the field, such as the resonant column
and bender element tests [14,15]. The dynamic testing methods corresponding to different
strain levels appear in Figure 2.

Once the shear strains in soils exceed a certain threshold level, the separation or
slippage of intergranular contacts causes the behavior of the soil to become nonlinear, and
the stiffness starts degrading until it reaches 5–10% of its original maximum stiffness at high
strain levels. A modulus reduction curve represents this effect where the shear modulus
decreases with increasing shear strain, as shown in Figure 2. Vucetic [16] defined two types
of shear strain thresholds based on extensive cyclic laboratory data. The values of these
thresholds depend on the soil type. The linear threshold (γtl) is the strain at which the
ratio of the modulus to maximum modulus (G/Gmax) is 0.99, and before this threshold, the
soil behaves elastically. Beyond this limit, the soil first behaves as a slightly elastoplastic
material (nonlinear but still elastic) where permanent changes are negligible. Later, the
strains increase to a second threshold, defined as the volumetric threshold shearing strain
(γtv), after which the soil microstructure undergoes an irreversible alteration, resulting
in a permanent change in the stiffness of the soil. Investigations in [17–19] show that γtv
corresponds to a range of Gsec/Gmax between 0.60 and 0.85.

The secant shear modulus (Gsec) represents the ratio between the shear stress and shear
strain at each loading step on the backbone curve (Figure 1), which refers to the one-way
loading shear stress-shear strain curve. In other words, it is the slope of the line that connects
the origin with the point along the backbone curve corresponding to (γc). For cyclic loading,
the reduction in stiffness disappears after each turning point due to the re-engagement and
interlocking of the previously slipped contacts between particles in the opposite direction.
Naturally, if loading resumes back in this direction, elastic contacts will once again be lost,
and stiffness will start degrading as before. Due to this nonlinearity and recovery of stiffness
around load reversals, the stress-strain path forms a hysteresis loop, as presented in Figure 3a.
The slope of the line that connects the endpoints of the hysteresis loop represents the “linear
equivalent” shear stiffness of the soil, hence the secant shear modulus.
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2.2. Damping Ratio

The damping ratio is an important dynamic property of soil. It represents the energy
dissipation when waves propagate through the soil layers.

There are several types of damping in materials. However, we are only concerned
with hysteretic and viscous damping in soils. These two types of damping occur due to
different mechanisms. Hysteretic damping is independent of the vibration frequency and
proportional to the displacement, while viscous damping changes with frequency and is
directly proportional to the velocity.
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During cyclic loading in soil, the damping behavior can be very complicated, and
damping results from two main mechanisms, fluid flow loss and inelastic friction loss [21].
Soils dissipate energy even at very small strain levels [22]. At such strain levels where
the soil is behaving elastically and no hysteretic loop will form, the fluids in the voids
are responsible for the damping [23], which is an indicator that fluid energy loss is the
dominant mechanism in small strain damping in soil (viscous damping). On the other
hand, when exceeding the linear threshold (γtl), where the behavior becomes nonlinear,
the stress-strain curves exhibit a hysteresis loop as the soil is cyclically loaded. Beyond
this threshold, hysteretic damping increases with the strain level (Figure 3b). Most energy
dissipation is due to inelastic friction independent of the vibration’s frequency. Therefore,
the nature of damping is hysteretic and viscous damping can be neglected [24,25].

Even though damping in the soil is known to be hysteretic, equivalent viscous damping
often replaces it in most analyses due to mathematical simplicity. Viscous damping provides
a very straightforward representation in dynamic analysis because it is linearly propor-
tional to the velocity. Many geotechnical and structural dynamic problems approximate
single- and multi-degree-of-freedom systems with a viscous dashpot, where damping force
results as

F = C
.
u (2)

where C = viscous damping coefficient, and
.
u = particle velocity.

“The equivalent viscous damping is determined in such a manner as to yield the same
dissipation of energy per cycle as that produced by the actual damping mechanism” [26].
The damping ratio, D, represents the energy absorbed in one vibration cycle divided by
the potential energy at maximum displacement in that cycle [27]. The equivalent damping
ratio (D) due to hysteretic damping results from the following equation:

D =
AL

4π ∗ AT
(3)

where AL = the area of the entire hysteresis loop (Figure 3a), and AT = the triangular area
bounded by the secant modulus line at the point of maximum strain [28].

Small strain damping ratio (Dmin) often defies accurate measurement due to many
factors, such as equipment damping and environmental noise. Therefore, Dmin varies over
a broader range when measured by the resonant column method.

Xu et al. [29] presented a new method for measuring Dmin in the torsional shear test.
The method examines the phase shift between the stress and strain signals and requires two
calculation steps. The first step fits the sinusoidal time series of stress and strain signals to
equations and determines the phase angle for both signals. The difference between ϕ1 and
ϕ2 is the phase shift used for calculating the hysteretic material damping ratio. The Fourier
transform method accurately computes the strain amplitudes by allowing the filtration of
the signal’s frequency components. This method only applies to the elastic strain range of
the material damping ratio (10−5–10−4%), where it shows accurate and consistent results.

Drnevich et al. [30] described two methods to measure the damping ratio in the RC
test: (1) the steady-state vibration method (SSV) and (2) the free vibration decay method
(FVD). The SSV method measures the input energy (current through coils) at resonance.
The more input energy required to maintain a strain level translates to a higher damping
value. However, the device cannot maintain precise resonance at high strain levels, and
the decay method produces more reliable results over a short duration (~10 s) [31]. In
the decay method, the power disconnects from the coils, allowing the sample to behave
as a damped, freely vibrating system (Figure 4). The recorded decaying response then
determines damping via the following equation:

δ =
1
N
∗ ln

Z1

Z1+N
=

2πD√
1− D2

(4)
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where δ = logarithmic decrement, N = number of cycles, Z1 = first amplitude, Z1+N =
amplitude after N cycles, and D = damping ratio.
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For small values regarding the damping ratio as found in soil,
√

1− D2 can be approx-
imated to 1, and the damping expression can be determined as follows:

D =
δ

2π
=

1
2Nπ

∗ ln
Z1

Z1+N
(5)

According to Ray [31], N should be small when driving at high amplitude because
a larger N would introduce strain effects due to a drop in amplitude by a factor of three
over the measurement interval. ASTM D4015 [32] suggests the use of fewer than 10 cycles.
The research by Gabryś et al. [33] on the RC apparatus agrees with these regulations.
Furthermore, a recent study by Mog and Anbazhagan [34] examined the effect of the
number of successive cycles (N) used in calculating the damping ratio using the (GCTS)
resonant column apparatus. When measuring up to 10 cycles, they reported an increase
in the damping ratio when increasing the number of cycles. Nevertheless, after 10 cycles,
the damping ratio diminishes for higher numbers of cycles in the measurements (i.e., for
20, 30, and 50 cycles). Due to the considerable scatter in the damping ratio measurements
determined by this method, estimates should use two or three successive cycles to calculate
the damping ratio in the RC test.

The SSV method for calculating the damping ratio is also called the half-power band-
width method. It initially determined a structure’s modal damping ratio ξ from the width
of the peaks in its frequency response function, and it may apply to soil in the RC test. In
this method, the width of the frequency response curve near the resonance determines
the logarithmic decrement (δ). The half-power bandwidth (∆ω) is the width of the peak
where the magnitude of the frequency response function is 1/

√
2 multiplied by the peak

value [35]. The following equation calculates δ:

δ =
π
(

f 2
2 − f 2

1
)

2 f 2
r

∗

√
P2

P2
max − P2

√
1− 2D2

1− D2 (6)

where f1 and f2 = frequencies below and above the resonance corresponding to strain
amplitude = P, Pmax = maximum amplitude (or resonant amplitude), fr = resonant frequency
(Figure 5), and D = damping ratio.
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When the damping is small and the amplitude is P = Pmax√
2

, Equation (6) can be written as

δ ∼=
π( f2 − f1)

fr
(7)

Then, the damping ratio becomes

D ∼=
( f2 − f1)

2 fr
(8)

The scatter (from an average value) of the damping ratio measured using the SSV
method and FVD method with two successive cycles can reach 15% (of the average) at
strain levels less than 0.005% [34] and even higher (up to 50% of the average) when the
number of successive cycles is higher (3, 7, and 10 cycles). The ambient noise during the
RC test may cause this difference [36] and/or the number of applied cycles (higher for
SSV). Several authors suggested relying on SSV (half-power bandwidth) to determine the
damping ratio within a very small shear strain range where the frequency response curve
is still symmetrical. The frequency response curve becomes non-symmetric at higher strain
levels (>0.005%), and measurement accuracy is uncertain. Therefore, the FVD method
better estimates the damping ratio at high strains [37,38].

In order to overcome the inaccuracy of the FVD method due to the ambient noise and
a limited number of data points, Xu et al. [29] adopted Hilbert transform to analyze the
decayed signal. This method finds the instantaneous frequency and amplitude of the signal
(envelope), significantly increasing the number of data points. An exponential function fits
the instantaneous amplitude as follows:

γ = a e−bt (9)

where γ is the shear strain, t is time, a is a fitting constant, and b is a fitting parameter that
represents the decay of the instantaneous amplitude.

Based on Equation (9), the logarithmic decrement becomes

δ = ln
(

Z1

Z1+N

)
= ln

(
a e−bt1

a e−b(t1+T)

)
= −bt1 + b(t1 + T) = bT =

b
f

(10)

At very small strains where frequency degradation does not occur, the instantaneous
frequency (f ) remains constant in Equation (10). Therefore, this method is only suitable for
measuring the low strain damping ratio (Dmin).

3. Device Performance in RC-TOSS Testing
3.1. Fundamental Concepts

The resonant column test uses a high-accuracy accelerometer to acquire readings at
very small strains (10−4%). At these strain levels, the shear modulus behaves as linear
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elastic (Gmax). The relationship between the acceleration, velocity, and displacement experi-
encing harmonic motion produces accuracy at such low strain values. Differentiating the
expression for simple harmonic displacement (u) produces expressions for velocity (

.
u) and

acceleration (
..
u):

u(t) = Asin (ωt) (11)

.
u(t) =

du
dt

= ωAcos (ωt) (12)

..
u(t) =

d2u
dt2 = −ω2 Asin (ωt) = −ω2u (13)

where A = the displacement amplitude, ω = the circular frequency, and t = time.
The two vital elements in resonant column testing are the accelerometer’s sensitivity

and the range of typical resonant frequencies produced by the device. A high-quality
piezoelectric accelerometer produces about 300 millivolts/g. A high-grade digital voltmeter
can easily measure up to 0.1 millivolt AC, translating to acceleration as < 0.01 g. The same
meter could also detect frequencies/periods of dynamic signals with four- or five-digit
accuracy. Typical resonant frequencies would range from 200 < ωn< 500 rad/s. The
frequency range is a significant advantage in producing small strains. Assuming that
the specimen length is L = 0.14 m, and, at resonance, for a natural circular frequency of
ωn = 400 (rad/s), then acceleration

..
u = 0.025 (m/s2). From Equation (13), displacement

u = 1.56 × 10−7 m, and the shear strain follows that

γ =
u
L
=

1.56 ∗ 10−7

0.14
= 1.12 ∗ 10−6 mm/mm (14)

Based on the wave propagation theory in rods, the resonant column test applies a
torsional oscillation on the top of the specimen. The testing procedure follows the standard
designated ASTM D4015-81. However, the standard does not include sample preparation
for a hollow cylinder specimen. Therefore, this review describes the device and testing
procedure. Ishimoto and Iida [39] developed the first resonant column testing system.
Hollow cylindrical samples produced more uniform shear strains within the cross-section
of the specimen [40–42]. More history of the RC test is presented by Woods [43]. The
device today can consistently measure stiffness at small-to-intermediate (up to 10−1%)
strain levels, making it one of the most used laboratory devices for measuring the dynamic
behavior of soil.

The fixed-free configuration oscillates the soil specimen at the top end while it fixes the
base. The driving frequency gradually increases to find resonance, and the accelerometer
measures the specimen’s response. The frequency that maximizes the response amplitude
is the first mode fundamental frequency of the sample (resonant frequency). By using the
wave equation and theory of elasticity and considering the fixed-free configuration of the
device, the governing equation becomes

I
I0

=
ωnL
Vs

tan
(ωnL)

Vs
= βtanβ (15)

where I = the sample polar moment of inertia, I0 = the free end mass polar moment of
inertia, Vs = the shear wave velocity in the sample, řn = resonant frequency in torsion, and
L = the length of the sample.

The specimen’s geometry and mass determine the value for I, and I0 comes from
calibrating the drive head (steel top ring, magnets, and mounting plate) using the three-
wire pendulum method so β can be computed. Subsequently, we can relate the resonant
frequency to the shear wave velocity:

Vs =
ωnL

β
=

2π fnL
β

(16)
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The measured shear wave velocity and specimen mass density produce the shear
modulus via Equation (1).

The torsional simple shear test applies torque to the specimen using a drive system
of two magnets and four coils. The current flowing through the coils relates directly to
the magnitude of torque. Calibration relating current flow to torque using a specimen
rod of known stiffness provides the proper conversion factor. Proximitors, mounted near
the specimen’s top, measure displacements that translate to rotation (θ) at the top of the
specimen. For the fixed-free configuration, the rotation (θ) varies linearly with the height of
the measuring point in the specimen, starting from zero at the bottom and ending with the
maximum value at the top. In our device, the shear strain relates to top rotation via the
following equation:

γ =
r ∗ θmax

h
(17)

where θmax = the rotation (Equation (18)), h = height of the cross-section of interest, and
r = the radial distance between the specimen axis and the calculated point (Figure 6).

θmax =
x
R

=
xA
lA

(18)

where x = arc length where a point at the edge of the specimen rotates, R = radius of the
specimen, xA = displacement of the attached accelerometer, and lA = radial offset of the
accelerometer from the specimen axis.
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As an additional advantage, this device uses the same drive system for the RC and
TOSS tests, so both can be applied interchangeably during a testing sequence. The tremen-
dous advantage here is that a small strain test (RC) may be performed before and after any
TOSS stage (cyclic or irregular history), providing an index value of Gmax throughout the
test sequence.

The RC test requires displacement measurements with very high accuracy at very low
amplitude (γ = 10−4%), provided by an accelerometer mounted on the drive head and
connected to a multimeter and oscilloscope, providing dynamic amplitude and frequency
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data. For the TOSS test, two proximitors mounted on the measurement post measure
rotational displacement. Since the proximitors measure the air gap between themselves
and a metal target, they do not touch or impede the motion of the drive head. The RC test
is highly accurate, measuring small-to-medium strain levels between 10−4% and 10−2%.
The TOSS test is more suitable for studying the dynamic behavior under medium-to-large
strains ranging from 10−2% to 1%.

The main difficulties encountered when conducting dynamic torsional testing are
related to sample preparation. Shear modulus and damping ratio measurements are very
sensitive to the void ratio. In order to study the effect of loading conditions on soil, we
need to form several hollow cylindrical soil samples with the same initial void ratio. This
can be challenging to achieve, and any slight inaccuracy in measuring the initial density
of the sample causes misleading results. Other problems may appear during setting up
the device for testing. An insufficient vacuum between the mold and membrane causes
nonuniformity in the sample. Extra care is required when fixing the drive head on the
top of the sample to ensure good contact between the soil and the porous stone. If any
disturbance in the sample is noticed after removing the molds, the procedure should be
repeated, costing the researcher hours of work.

3.2. Advantages and Disadvantages

The hollow cylinder specimen configuration produces a uniform strain field with
fewer end effects than a triaxial or simple shear device. With an inner diameter of 4 cm and
outer diameter of 6 cm, the variation in shear strain with radial distance remains +/− 20%
of the average strain. As discussed later, small voids and inclusions do not significantly
change the specimen properties since there are no critical points in the connection between
the device and the specimen. Any imperfections are averaged over the entire specimen
cross-section and length. The primary strain mode is horizontal shear, which is ideal for
site response analysis. RC tests range in strain over five orders of magnitude, while TOSS
tests can measure four orders. The RC tests are uniform cyclic; however, the TOSS tests may
be uniform, cyclic with static offset, or entirely irregular and arbitrary. As an additional
advantage, this device uses the same drive system for RC and TOSS tests, so both can be
applied interchangeably during a testing sequence. The tremendous advantage here is
that a small strain test (RC) may be performed before and after any TOSS stage (cyclic or
irregular history), providing an index value of Gmax throughout the test sequence.

The disadvantages include increased specimen preparation complexity, lower confin-
ing pressure ranges (air must be used and confining fluid), and a less robust testing frame.
The device will not load a specimen to complete plastic failure. Saturated specimens may
be tested, but most work is performed in dry or unsaturated conditions. Table 1 lists the
pertinent features, advantages, and disadvantages of the testing method.

Table 1. Features, advantages, and disadvantages of RC-TOSS testing system.

Feature Advantage Disadvantage

RC (accelerometer) Very accurate and repeatable readings
over a broad strain range. Test must be dynamically excited

TOSS (proximitors)

Accurate over a slightly smaller strain
range. Cyclic, cyclic with static offset,
irregular loading programmed in the

control software

Proximitor response is nonlinear and requires
careful calibration, set-up, and computation

during the test.

RC-TOSS (hollow cylinder
specimen

More uniform strains in the specimen.
Highly tolerant of voids/inclusions

(gravel, organics).

Two membranes (inner, outer) and a more complex
system to construct specimens. Dry pluviation,

vibrating, or hand trimming (cohesive) in special
mold requires ~2–3 h prep time.

RC-TOSS (coil-magnet loading) RC and TOSS tests are performed on the
same specimen in multiple stages. Limit to a maximum torque of about 55 N-m
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4. Factors Affecting the Dynamic Behavior of Soil

Many researchers have assessed the effects of different soil properties on the dynamic
behavior of soil. Some factors did not affect behavior, while others influenced behavior
significantly and were included in empirical equations to calculate the shear modulus
and damping ratio. Hardin and Drnevich [40] divided the factors that influence the
dynamic behavior of soil into three categories: very important, less important, and relatively
unimportant. For dry sand (the soil tested in this investigation), the strain amplitude,
effective confining pressure, and void ratio significantly influence dynamic properties.
The degree of saturation, the over-consolidation ratio, and loading frequency contribute
very little to behavior. However, for other soils, saturation, OCR, and other parameters
may significantly influence Gmax, G, and D. They considered that the number of loading
cycles did not influence the shear modulus of sand. [40]. However, the TOSS tests in this
study show a rather substantial effect. The following sections present the impact of these
parameters on sand behavior.

4.1. Strain Amplitude

As shown before, the shear modulus decreases and the damping ratio increases with
increasing strain amplitude due to the nonlinear behavior of soil after exceeding the linear
threshold (γtv) [17–19,31,44–46]. The shear modulus degradation curve (Figure 3b) presents
this effect.

4.2. Magnitude of the Effective Confining Pressure

Hardin and Richart [10] studied the influence of effective confining pressure through a
laboratory testing program. They found that the shear modulus increases and the damping
ratio decreases with increasing effective mean principal stress. In a following study on clean
sand by Hardin and Drnevich [40], they concluded that for very small strain amplitudes,
the modulus (Gmax) varies with the 0.5 power of mean effective principal stress. For larger
strains, the modulus depends on soil strength with a variation approximately equal to the
1.0 power. Later studies also confirmed this observation [47–52], where the power (n) in
Equation (21) ranged between 0.45 and 0.62.

A recent study [34] on the RC device agrees with the previous studies, where the
damping ratio decreased with increasing confining pressure due to the higher contact
between the particles, decreasing the attenuation of the propagating wave.

4.3. Duration of the Effective Confinement Pressure

Stokoe and Richart [53] conducted laboratory and field tests to find the effect of the
duration of confining stress on the shear modulus under low-strain conditions (Figure 7).
Darendeli [54] confirmed their results, where G increased with time at each applied confin-
ing pressure during testing. However, this effect was marginal for sandy soils at confining
pressures lower than 200 KPa. Darendeli [54] also found that Dmin decreases as the speci-
men consolidates at a given confining pressure. Note that both increase linearly with the
log of time.
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4.4. Number of Loading Cycles

The studies in [55–58] observed that the number of cycles does not affect the shear
modulus below the elastic threshold strain, usually in the range of 0.001% to 0.01%. Thus,
the value of Gmax is considered independent of the time of vibration.

After exceeding the cyclic threshold, most studies reported an increase in the shear
modulus with the increasing number of cycles for dry or drained sand under cyclic loading,
called “cyclic hardening in stiffness”. Nevertheless, the studies have not entirely agreed
on the degree of this effect, whether slight or significant. The increase is significant for
the first 10 cycles, followed by a relatively small change [59]. For Sherif and Ishibashi [41],
the increase in the shear modulus reached up to 28% at the 25th cycle and then leveled
off. Several factors influence the cyclic hardening in stiffness: fabric reorientation, particle
relocation, and an increase in contact area [31]. They reported the highest increase in the
shear modulus of about 5% per logarithmic loading cycle. RC-TOSS tests obtained similar
results where the increase was up to 120% of the initial value at a given strain level, and
the increase was proportional to Log N (number of cycles) [60]. The damping ratio could
drop to 50% of its initial value after 200 cycles [60].

Several authors found a decrease in damping with the number of cycles [23,59,61]. The
RC-TOSS tests conducted by Ray and Woods [60] showed a more pronounced reduction in
damping ratio at a higher strain and a continuous decrease in damping on a Glacier Way
Silt specimen after 30,000 cycles without an indication of leveling off.

Cherian and Kuma [62] conducted resonant column tests on sand specimens with
relative densities of 61 and 85% at confining stresses of 300 and 500 KPa to study the effect
of vibration cycles on the dynamic properties. After 1000, 10,000, and 50,000 cycles at
different strain levels, the measurements showed no effect below a certain threshold (shear
strain between 0.0024 and 0.0044%). However, at higher strain levels, additional cycles
caused an increase in the strain magnitude, causing a decrease in shear modulus and an
increase in damping ratio. The strongest influence occurred at a confining stress of 300 KPa,
a relative density of about 61%, and a shear strain amplitude of 0.03%. After 50,000 cycles,
they produced an increase in shear strain of 34%, leading to an 8% decrease in the shear
modulus and a 10% increase in the damping ratio.

Another study on the pre-vibration effect on the dynamic properties of dry Toyoura
sand was carried out by Yang et al. [63]. They improved their energy-injecting virtual mass
(EIVM) resonant column system (Mark II) to reduce the time needed to reach a steady-state
vibration. The system achieved a steady state after 12 equivalent cycles, minimizing the
disturbance to the specimen. The air pluviation method made cylindrical specimens at
38 mm in diameter and 81 mm in height to achieve a relative density of 65%. Different
sets of tests received pre-vibrations of 0.001, 0.005, 0.02, and 0.05% for 100–100,000 cycles
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and confining stresses of 25–500 KPa. The test results showed that the elastic threshold
strain was about 10−2, where the pre-vibration did not affect the soil’s dynamic properties.
Less than a 5% decrease in the maximum shear modulus occurred when the specimen
was pre-vibrated at a strain up to 0.02% for 100,000 cycles. Pre-vibrations of less than
10,000 cycles produced a marginal decrease. This pattern inverted when the pre-vibration
increased to 0.05%, as the maximum shear modulus increased by 10% with the number of
cycles (=100,000). The trend found by Yang et al. [63] appears in Figure 8. Furthermore, the
study shows a negligible effect of the confining pressure on the influence of pre-vibration
(less than 3%).
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4.5. Loading Frequency

Hardin [24] and Hardin and Black [11] conducted precise static torsional and resonant
column tests. They observed that frequency had no influence on the low-strain shear
modulus (Gmax). As a result, the static and dynamic tests produced identical Gmax results
due to the elastic behavior of the soils at very small strain levels.

At higher strain levels, strain-rate effects become more evident. Stiffness increases
with higher strain rates (RC-TOSS) when compared to monotonic static tests with low strain
rates [64,65]. The cyclic torsional test is usually conducted at frequencies between 0.1–1 Hz,
while in the resonant column test, the resonant frequency ranges from 30–200 Hz. Ray
and Woods [60] concluded that the two tests are interchangeable, provided that the cyclic
effects have no significant impact. Nevertheless, Tatsuoka et al. [66] and Lo Presti et al. [67]
found that the trend in a monotonic test is different (shear strain rate of 0.01% per minute).
It produces lower shear stiffness for a specific strain level, so the G/Gmax-γ curve should be
evaluated separately for monotonic and cyclic loading conditions.

The loading frequency above 1 Hz significantly affects sandy clay’s minimum damping
ratio (Dmin), as it can increase by 100% over a log-cycle increase in excitation frequency [54].
However, studies show that the damping of sand is independent of the frequency.

4.6. Void Ratio

Soil void ratio is a fundamental property that significantly affects the maximum shear
modulus (Gmax). The shear wave velocity decreased linearly with the increasing void ratio
in [10]. Since the 1990s, researchers have introduced different empirical correlations for
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Gmax as a function of the void ratio (F(e)) for different types of soils by fitting equations to
laboratory test results, as described in Equation (21). All studies confirmed that the small
strain shear modulus decreased with an increased void ratio.

Most correlations represent the maximum shear modulus as a function of the void
ratio and confining stress as follows:

Gmax = AF(e)p′n (19)

F(e) =
(a− e)
1 + e

2
(20)

This equation is normalized for the atmospheric pressure as follows:

Gmax = AF(e)
(

ṕ
patm

)n
(21)

where A, a, and n are experimentally determined coefficients and are called intrinsic (state-
independent) parameters and are associated with small strain stiffness [68], ṕ equals the
mean effective stress in [KPa], patm is the atmospheric pressure [KPa], and F(e) is the
function of void ratio, which varies from researcher to researcher [69–77]. The parameters
proposed by studies on sand are summarized in Table 2.

Wichtmann et al. [12] have developed the most recent empirical equation based on
their extensive laboratory testing. It depends on the uniformity coefficient (CU) and the
percentage of fine particles (FC). The parameters A, a, and n in Equation (21) for sands with
non-cohesive fines (for FC < 10%) are as follows:

Gmax = A
(a− e)
1 + e

2
p′n p1−n

atm (22)

a = 1.94 exp(−0.066Cu) exp(0.065FC) (23)

n = 0.4C0.18
u [1 + 0.116 ln(1 + FC)] (24)

A =
(

1563 + 3.130.4C2.98
u )0.5[exp

(
−0.03FC1.1

)
+ exp

(
−0.28FC0.85

)]
(25)

The void ratio did not affect the modulus degradation curve G/Gmax based on RC-
TOSS test results on Toyoura sand [78]. Researchers have attempted to find a correlation
between void ratio and strain-dependent shear modulus, such as Oztoprak and Bolton [79],
who evaluated 454 tests on 60 soils from 65 reference studies. As a result, they modified
Equation (21) and suggested a different void ratio function for strain-dependent stiffness:

G(γ) =
A(γ)patm

(1 + e)3

(
ṕ

patm

)n(γ)
(26)

where A(γ) and n(γ) are the strain-dependent parameters given in Figure 9, as determined
by Oztoprak and Bolton [79].
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Figure 9. Coefficients for Equation (26) after Oztoprak and Bolton [79] (permission from [ICE]).

This equation has a relatively large scatter indicating the difficulty of obtaining a
correlation for the strain-dependent shear stiffness that would be reliable for a wide variety
of granular soils. Therefore, a different approach can model the dynamic behavior of soil at
larger strain levels.

Payan et al. [13] conducted RC tests on 11 types of sand to study the effect of particle
shape and gradation on the small strain damping ratio (Dmin). The proposed correlation
(Equation (27)) is a function of the regularity (p) of the particles, which is the average of
roundness (R) and the sphericity (S) obtained from the particle shape characterization chart
by [80].

Dmin =
(

0.55 ∗ C0.1
U ∗ d−0.3

50

)
∗ (−0.206p + 2.43) ∗

(
ṕ

patm

)0.72p−0.86
(27)

Table 2. Correlations for small strain shear modulus Gmax of sand using Equation (21). Gmax is in
[MPa], ṕ in [KPa], and patm = 1 atm.

Soil Tested D50 [mm] CU [−] A [−] F(e) [−] n [−] Reference

Ottawa sand No. 20–30 0.72 1.20 69 (2 .17− e)2

1+e
0.5 (Hardin and

Richart, 1963) [10]

Ticino sand (subangular) 0.54 1.50 71 (2 .27− e)2

1+e
0.43 (Lo Presti, et al.,

1993) [81]

Toyoura sand (subangular) 0.22 1.35 72 e−1.3 0.45 (Lo Presti, et al.,
1993) [81]

Quiou carbonate sand 0.75 4.40 71 e−1.3 0.62 (Lo Presti, et al.,
1993) [81]

Kenya carbonate sand 0.13 1.86 101–129 e−0.8 0.45–0.52 (Fioravante, 2000)
[48]

Ticino sand (subangular) 0.55 1.66 79–90 e−0.8 0.43–0.48 (Fioravante, 2000)
[48]

Hostun sand (angular) 0.31 1.94 80 (2 .17− e)2

1+e
0.47 (Hoque and

Tatsuoka, 2000) [82]

H.River sand (subangular) 0.27 1.67 72–81 (2 .17− e)2

1+e
0.50–0.52 (Kuwano and

Jardine, 2002) [83]

Glass ballotini (spheres) 0.27 1.28 64–69 (2 .17− e)2

1+e
0.55–0.56 (Kuwano and

Jardine, 2002) [83]



Geotechnics 2023, 3 495

Table 2. Cont.

Soil Tested D50 [mm] CU [−] A [−] F(e) [−] n [−] Reference

Silica sand (subangular) 0.20 1.10 80 (2 .17− e)2

1+e
0.5 (Kallioglou, et al.,

2003) [84]

Silica sand (subangular) 0.20 1.70 62 (2 .17− e)2

1+e
0.5 (Kallioglou, et al.,

2003) [84]

Silica sand (subangular) 0.20 1.10 62 (2 .17− e)2

1+e
0.5 (Kallioglou, et al.,

2003) [84]

Silica sand (angular) 0.32 2.80 48 (2 .17− e)2

1+e
0.5 (Kallioglou, et al.,

2003) [84]

Toyoura sand (subangular) 0.16 1.46 71–87 (2 .17− e)2

1+e
0.41–0.51 (Hoque and

Tatsuoka, 2004) [49]

Toyoura sand (subangular) 0.19 1.56 84–104 (2 .17− e)2

1+e
0.50–0.57 (Chaudhary, et al.,

2004) [50]

Ticino sand (subangular) 0.50 1.33 61–64 (2 .17− e)2

1+e
0.44–0.53 (Hoque and

Tatsuoka, 2004) [49]

Silica sand 0.55 1.80 275 (2 .17− e)2

1+e
0.42

(Wichtmann and
Triantafyllidis,

2004) [51]

SLB sand (subround) 0.62 1.11 82–130 (2 .17− e)2

1+e
0.44–0.53 (Hoque and

Tatsuoka, 2004) [49]

Natural quartz sand 0.27–1.33 1.34–2.76 −5.88 Cu+57.1 e−0.28Cu−0.98 0.47 (Senetakis et al.,
2012) [85]

Quarry sand 0.16–2 2–2.5 −9.54 Cu+78.1 e−0.28Cu−0.98 0.63 (Senetakis et al.,
2012) [85]

Volcanic sand 0.23–1.6 1.53–4.18 −3.04 Cu+52 e−0.28Cu−0.98 0.55 (Senetakis et al.,
2012) [85]

Blue sand 1.01–1.94 1.41–8.22 84 C−0.14
u ρ0.68 e−1.29 0.5 C0.12

u
(0.23ρ + 0.59)

(Payan et al., 2016)
[13]

Danube Sand 0.107–0.424 2.06–9.85 62 (2 .17− e)2

1+e
0.45 (Szilvágyi, 2017)

[52]

Szilvágyi (2017) [52] compared his measurement data on Danube sand to the corre-
lations proposed by Carraro et al. (2009) [68], Biarez and Hicher (1994) [86], Wichtmann
and Triantafyllidis (2009) [12,87] Wichtmann, et al. (2015) [12], and Oztoprak and Bolton
(2013) [79]. The fit was excellent for Carraro et al. (2009) [68], as 75% of the measured Gmax
values fell within the range of ±15%. Furthermore, 87% of the data points were within
the range of ±20%. The correlation provided by Biarez and Hicher (1994) [86] produced
satisfactory outcomes for the soils examined. Among the 69 measured Gmax values, approx-
imately 72% were found to fall within the ±15% range using this correlation. Moreover,
around 84% of the data points were within the ±20% range. The correlation for clean sands
(Wichtmann and Triantafyllidis, 2009) [87] tends to over-predict many measured results.
A total of 47% of the data points lie within the ±15% margin, and 60% of data points
lie within the ±20% margin. In contrast, the correlation provided for sands containing
non-plastic fines by Wichtmann et al. (2015) [12] underestimates the Gmax of soils with
low content of plastic fines (up to 7.6%). The accuracy of the correlation is similar to the
previous equations, with approximately 51% of the data points falling within the ±15%
margin and around 63% within the ±20% margin. However, it should be noted that these
equations underestimate Gmax in certain cases by more than 35%. The correlations provided
by Oztoprak and Bolton (2013) [79] tended to overestimate the majority of the measured
results. However, the estimated values still fell within the range of ±100%, which was also
observed by the researchers for a significant portion of the collected data.

4.7. Effect of Sample Disturbance

In a study by Szilvágyi et al. [88], in-situ and laboratory tests were conducted to
measure the shear wave velocity for soils in Budapest, Hungary, to use it for 1D ground
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response analysis. They compared shear wave velocity values obtained using RC and TOSS
measurements to the multichannel analysis of surface waves (MASW) and seismic cone
penetration tests (SCPT). The shear modulus obtained from the laboratory measurements
provided a lower bound for the in-situ tests, as shown in Figure 10. The author justifies
this difference because the field void ratio (state of compaction) and stress state are not
certain. Two later studies agreed with these findings [89,90]. In both studies, in-situ
seismic dilatometer Marchetti test (SDMT) measurements showed a higher Gmax than those
obtained from the RC test by 17% to 46% in [89] and by 8% to 35% in [90]. The decrease in
the shear modulus defined in the laboratory can be a cause of the effect of soil suction or
disturbance during sample preparation.
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Figure 10. Comparison of measured shear wave velocity values [88] (reprinted, open access CC BY).

Lashin et al. [91] compared resonant column small strain shear modulus measure-
ments with the stiffness obtained using the piezoelectric ring-actuator technique (P-RAT).
This device recorded the shear wave velocity of the soil based on the transmission of a
mechanical signal through the soil specimen with source and receiver transducers during
the oedometer test. The testing program included tests on sand specimens prepared using
the wet-tamping method with different void ratios and confining pressures. The results
demonstrated higher values for the shear wave velocities measured by the RC tests com-
pared to the P-RAT, especially for loose samples. The authors attributed this overestimation
to the discrepancy between the assumption of the linear elastic behavior of soil and natural
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soil behavior. The study recommends using the P-RAT technique to study the small strain
stiffness of soil due to its higher accuracy.

4.8. Temperature Effect

Yu et al. [92] used a special resonant column apparatus (RCA) to study the dynamic
behavior of frozen silt soils, where a cooling bath (Thermo Scientific HAAKE Bath, Waltham,
MA, USA) controlled the specimen temperature to ±0.01 ◦C. The sample was compacted,
placed in a chloroprene rubber membrane, saturated, and confined in silicon oil. The study
showed that the stiffness and damping ratio remained constant with temperature until
−1.4 ◦C. The properties started to increase considerably until −3 ◦C (sensitive range), and
at colder temperatures, the change was gradual (insensitive stage). The maximum shear
modulus for the frozen soil was much higher than at ambient temperature. The shear
modulus degradation curves reached lower values at low temperatures when compared
to soils at ambient temperatures. For instance, at a strain level of 10−3%, the value of
G/Gmax was 40% for a sample tested at a temperature of −15 ◦C, whereas it was 90% for a
sample tested at room temperature. However, the damping ratio continued increasing as
the temperature dropped for strains of 10−6 to 5 × 10−4, as shown in Table 3 and Figure 11.
The authors suggested temperature correction coefficients based on the RC tests to modify
the dynamic properties and account for freezing effects.
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Figure 11. Temperature effect with the measured values (symbols) and fitting curves (lines) [92]
(reprinted, open access CC BY). (a) Modulus ratio. (b) Damping ratio.

Table 3. Parameters of the frozen silt modulus ratio and damping ratio curves at different tempera-
tures [92] (reprinted, open access CC BY).

Temperature [◦C] Gmax [MPa] γr [%] Dmax [−] N [−]

−15 1539.2 6.312 × 10−5 0.073 0.42
−10 1467.4 6.670 × 10−5 0.078 0.36
−5 1341.8 7.520 × 10−5 0.106 0.44
−3 1238.4 9.354 × 10−5 0.116 0.36

Room temperature (15 ◦C to 25 ◦C) 64.2 6.602 × 10−4 0.183 0.60

4.9. Soil Improvement Effect

Various techniques can enhance the dynamic characteristics of sand, and several
investigations have examined the impact of various additives on a sand by testing the soils
in torsion.

Das and Bhowmik [93] measured the shear modulus and damping ratio of Barak River
sand mixed with crumb rubber in different rubber/sand ratios (1, 2, 3, 4, and 5%). The
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specimens were compacted in three layers by a tamping rod before testing in the resonant
column apparatus. The study reported an increase in the shear modulus when increasing
the rubber content to 3%, where the shear modulus increased by up to 2.12 times. The
shear modulus decreased beyond the 3% ratio, as shown in Figure 12a. The damping ratio
behaved in the opposite manner, where it decreased as rubber content rose until it reached
3%, then increased again. The most significant decrease in the damping ratio (1/2.63)
occurred at a 3% rubber/sand ratio.
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Figure 12. Effect of crumb rubber on the dynamic properties of sand at a strain amplitude of
0.02% based on Das and Bhowmik [93] (permission from [ASCE]). (a) Effect on the shear modulus
degradation curve. (b) Effect on the damping ratio.

Microbial-induced biopolymers provide a sustainable alternative to cement soil treat-
ment for improving static strength and hydraulic conductivity. However, this is not
necessarily the case for dynamic properties. Im et al. [94] measured the dynamic proper-
ties through resonant column tests of Jumunjin sand mixed with a gellan gum solution
(gum/sand 1–2%). In most testing conditions, the maximum shear modulus decreased
after mixing the sand with the binder (except for the 2% binder dried condition and 1%
binder with confining stress of 25 KPa). The shear modulus reduction curve also decreases
at a higher rate at low strains for the mix. The stiffness decreases at higher confining stress,
indicating that the bonds break between the sand and binder particles. Furthermore, the
rigid sand grains and ductile gellan gum dissipate significantly more energy, as reflected
by the high damping ratios.

The same study tested another binder [94], xanthan gum, with a 1% gum/sand content.
In this case, the additive increased in Gmax for all confining stresses; however, the secant
shear modulus reduced at strain levels lower than the untreated soil. The energy dissipation
was even higher than the gellan gum, possibly due to the excessive structural disturbance
of the mixing interface.

Li et al. [95] substituted steel slag for cement as the stabilizing additive. Steel man-
ufacturing produces large slag volumes as a byproduct, requiring proper disposal if it is
not reused. They conducted resonant column tests on a slag sand mixture (SSM) with
a slag/sand content of 20, 30, 40, and 50% at a water content of 15% mass compared to
cement/sand specimens mixed at 8, 12, and 15% cement. The 5 cm (in diameter) by 10 cm
(in height) cylindrical specimens were mixed, compacted, and tamped into four layers, then
left to cure for 1, 3, and 7 days before running the tests. The study reported an improvement
in the maximum shear modulus with the increasing steel slag content up to 40%, which
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starts decreasing again. At the optimum slag steel content (40%), it was adequate for all the
particles to be involved in the hydration reaction. The optimum steel slag produced a Gmax
nearly identical to the Gmax from the cement/sand samples (15%), as shown in Figure 13a.
With increased curing time, the SSM specimens achieved a higher shear modulus.
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from [Elsevier]). (a) Effect on the shear modulus. (b) Effect on the damping ratio.

Similarly, the energy dissipation represented by the damping ratio initially increased
with the increasing steel slag content peaking at a 40% ratio before declining, as shown
in Figure 13b. The damping behavior may be due to the coating of the steel slag particles
on the contact areas between the sand particles. Confining pressure effects produced
significant changes in shear modulus but influenced damping very little.

Basas et al. [96] studied the improvement of dynamic properties by injecting sand
specimens with Portland cement grout. Clean sand specimens (50 mm in dia. and 112 mm
in ht.) received grout injections with water/cement ratios of 1, 1.25, 2, 2.5, and 3 (stable
to unstable suspension). The specimens required 24 h to cure. Torsional and flexural
resonant column tests were used to determine the shear modulus and damping ratio.
The confining pressure applied to the specimens produced only a marginal effect on the
dynamic properties. The water/cement ratio created the most significant changes to the
shear modulus. Grouting increased the shear modulus by (20–30%) for limestone sand
and 45% for Ottawa sand when the water/cement ratio was reduced from 3 to 2. The
shear modulus increased further (60–70%) for the limestone and 55% for the Ottawa sand
when the water/cement ratio was lowered from 2 to 1. When compared to clean sands,
grouting with stable suspensions improved the shear modulus by 36 times at low confining
pressure (σ3 = 50 kPa) and 11 times at higher pressure (σ3 = 400 kPa) as shown in Figure 14.
Grouting decreased soil damping at low strain levels (below 10−3) by one-seventh. At
higher strain levels, on the other hand (above 10−2%), the clean sand showed damping
ratio values higher than the grouted sand.
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Figure 14. Improvement in the shear of clean sands due to grouting [96] (reprinted with permission
from [Elsevier]).

Mixing sand with rubber particles may improve compressibility, durability, and seis-
mic isolation. In order to estimate the dynamic properties of this composite material, Wu
et al. [97] conducted resonant column tests on Fujian sand mixed with rubber particles
produced from recycled waste tires. In this study, the specimens contained 0–100% rubber
particles. (all sand–all rubber). The study showed a significant decrease in the maximum
and secant shear moduli (Gmax and Gsec) with increased rubber content. Moreover, the
damping ratio increased with increasing rubber content at low shear strain levels (6 × 10−4

to 1× 10−3), and then it exhibited lower values than the clean sands for higher strain levels,
as shown in Figure 15.
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Figure 15. Dynamic properties of rubber-sand mixture with varying rubber content [97] (reprinted
with permission from [Elsevier]). (a) Dynamic shear modulus properties. (b) Damping ratio properties.

5. Soil Models

The complexity of the dynamic behavior and its dependency on various factors and soil
properties motivated the use of soil models to simulate the shear stress-strain curves. Any
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change in the initial soil matrix (e.g., size, shape, and orientation) may have a considerable
effect on the behavior. This makes it very difficult to produce one equation that takes into
account all of these factors. After obtaining the curve-fitting constants of the employed soil
model using regression analysis, the model coupled with the Masing criteria can perform
very well, simulating the shear stress-strain curve when the soil is subjected to cyclic and
irregular loading histories. The main limitations of such models are the need for dynamic
laboratory test data in addition to the incapability to simulate stiffening behavior with an
increasing number of cycles.

5.1. Irregular Loading and Masing Criteria

A simple soil model can easily simulate soils’ nonlinear monotonic shear stress-shear
strain behavior. However, predicting such behavior for reversible strains and irregular
load histories requires introducing more rules that dictate the path followed by the shear
stress-shear strain curve when generating the hysteresis loops.

Masing [98] investigated the behavior of brass under cyclic loading and introduced
two rules that are sufficient to describe regular, symmetric cyclic loading and could be
applied to soils, as discussed by Pyke [99]:

1 The shear modulus in unloading is equal to the initial tangent modulus for the initial
loading curve (Figure 16);

2 The unloading and reloading curve duplicate the initial curve, except that its scale
increases by a factor of two in both directions. The variables τ and γ in the formulation
are replaced by (τ − τi)/2 and (γ − γi)/2 (Figure 16).

Note that these two rules are insufficient to describe the soil behavior if the loading is
more general or irregular (not symmetrical or periodic). Jennings [100] presented a general
nonlinear hysteretic force-deflection relation for a one-degree-of-freedom structure to study
the earthquake response of a yielding structure, and he extended the criteria by adding two
additional rules, as follows:

3. Unloading and reloading curves should follow the initial curve if the condition exceeds
the previous maximum shear strain;

4. If the current loading or unloading curve intersects a previous one, it should follow the
previous curve.
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Most researchers cite these four rules as the extended Masing criteria, which were
first used for soil in [101,102] and today extend to soil models that formerly described only
monotonic behavior. Figure 17a illustrates an example using the Ramberg-Osgood model.
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Figure 17. Hysteresis loops according to the extended Masing rules using the Ramberg-Osgood model
after Pyke [99] (permission from [ASCE]). (a) Symmetric. (b) Irregular loading with Pyke’s discussion.

As Valera et al. [103] mentioned, the two added rules require that the model keeps
track of previous paths in both directions. Programmed turnaround co-ordinates use a last
in-first out (LIFO) sequence to determine when the stress-strain curve applies rule (4).

Figure 17b illustrates the discussion by Pyke [99], where he shows the stress-strain
curve transitioning from point 4 as a turnaround to point 2. The transition occurs at point
3. Upon reloading from point 4, the solution suggested by Rosenblueth and Herrera [104]
and that proposed by Jennings [100] would follow path A. On the other hand, if the dashed
curve 0–1 is the greatest previous reloading curve, it would follow stress path B.

5.2. Modified Ramberg-Osgood Model

Ramberg and Osgood [105] proposed a model with three parameters describing the
stress-strain curves of aluminum alloy stainless-steel and carbon-steel sheets to consider
the gradual transition from the straight elastic line for low loads toward the horizontal line
characterizing plastic behavior. Jennings [100] used this model to describe the hysteretic
curves for the steady-state response of yielding structures as a relationship between dis-
placement and restoring force. Then, this model was first used for soil by Faccioli et al. [106]
to describe the stress-strain nonlinear behavior of the soil under simple shear in their
one-dimensional wave propagation model to study the seismic response in Managua. The
form today differs from the original, and the model used for soil in geotechnical earthquake
engineering was demonstrated by Streeter et al. [107], as shown in Equation (28). This
equation has been widely used in several studies, e.g., [52,60,108]. The formulation used
for the shear stress-shear strain relation follows:

γ =
τ

Gmax

(
1 + α

∣∣∣∣ τ

C τmax

∣∣∣∣R−1
)

(28)

where γ is the shear strain, τ is the shear stress, Gmax is the small strain shear modulus,
τmax is the maximum shear strength (usually from triaxial tests), and α, C, and R are the
curve-fitting constants.
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It is a straightforward calculation to obtain shear strains from shear stresses. However,
it is more difficult to invert the formulation. Different methods can solve this problem,
including the Newton-Raphson method.

The secant shear modulus, as defined by the ratio between the shear stress and shear
strain at any strain level, can be expressed in the RO model as follows:

Gsec =
τ

γ
=

Gmax(
1 + α

∣∣∣ τ
C τmax

∣∣∣R−1
) (29)

The following equation gives the tangent shear modulus:

Gtan =
∂τ

∂γ
=

Gmax(
1 + αR

∣∣∣ τ
C τmax

∣∣∣R−1
) (30)

Subsequently, Equations (29) and (30) produce shear modulus degradation for secant
and tangent shear moduli, respectively. Note that the secant shear modulus is always
higher than the tangent modulus at any given strain, as shown in Figure 18.

Gsec

Gmax
=

1

1 + α
∣∣∣ τ

C τmax

∣∣∣R−1 (31)

Gtan

Gmax
=

1(
1 + αR

∣∣∣ τ
C τmax

∣∣∣R−1
) (32)

It is common to use a log scale to plot strains on the horizontal axis to see the soil
behavior more clearly. Researchers may express strain either in percent (%) or (mm/mm),
and the modulus may reduce significantly below its maximum value at relatively low strain
levels (γ = 0.001).
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Equation (28) has a dimensionless form by introducing a reference shear strain γre f
which is based on τmax and Gmax as follows:

γ

γre f
=

τ

τmax

(
1 + α

∣∣∣∣ τ

C τmax

∣∣∣∣R−1
)

(33)

γre f =
τmax

Gmax
(34)

The maximum shear stress is typically assumed to equal the Mohr-Coulomb failure
envelope strength with effective stress properties, as shown in Figure 19. Based on the
diagram, the maximum shear strength is

τmax =

(
c′

tanϕ′
+σ′0

)
sinϕ′cosϕ′ (35)

τmax =

√((
1 + K0

2

)
σ′vsinϕ′+c′cosϕ′

)2
−
((

1− K0

2

)
σ′v

)2
(36)

Equation (35) applies to the isotropic confining conditions often produced in laboratory
tests. Equation (36) represents anisotropic (K0) conditions in the field. The dimensionless
form (Equation (33)) applies to the soil at any depth. Changes in τmax automatically resolve
the soil’s depth effects (confining stress). Normalizing the curves produces one standard
curve for one soil type in the profile.
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When considering loading reversals, the formulation becomes slightly more complex.
The most straightforward approach uses the Masing formulation and substitutes into the
equations γ−γi

2 for γ, and τ−τi
2 for τ; then, the formulation becomes

γ− γi
2

=
τ−τi

2
Gmax

1 + α

∣∣∣∣∣
τ−τi

2
Cτmax

∣∣∣∣∣
R−1

 (37)

where γi and τi equal the shear strain and shear stress at the last turning point.
The same substitution occurs in formulations for Gsec and Gtan (Equations (29) and (30)).

This approach will produce a hysteresis loop with reversals, as shown in Figure 20. The
figure illustrates some other important properties as well. At every reversal point, the
stress-strain curve starts with a stiffness of Gmax. The line labeled Gsec shows an example of
computing the secant modulus for a hysteresis loop (Figure 3a).
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Damping in the Ramberg-Osgood model is calculated by integrating along the stress
axis. Given the differential element shown in Figure 20, it has a width of dτ and a length of
(γ2 − γ1).

We can integrate this expression from τ1 to τ2. The two functions can be written as

f1(τ) = γ = 2

{
τ − τ1

2Gmax

[
1 + α

∣∣∣∣ τ − τ1

2Cτmax

∣∣∣∣R−1
]}

+ γ1 (38)

If a = 1
Gmax

, b = a
(2Cτmax)

R−1 then f1(τ) = a(τ − τ1) + ab(τ − τ1)
R + γ1

f2(τ) =
(τ − τ1)(γ2 − γ1)

(τ2 − τ1)
+ γ1 (39)

If c = (γ2−γ1)
(τ2−τ1)

then f2(τ) = c(τ − τ1) + γ1.
Then, the integration can be written as∫ τ2

τ1

f2(τ)− f1(τ)dτ =
∫
(c− a)(τ − τ1)dτ −

∫
b(τ − τ1)

Rd (40)

The final formula resulting from the integration is given by

Ahal f loop =
(c− a)(τ2 − τ1)

2

2
+

b(τ2 − τ1)
R−1

R + 1
(41)

Subsequently, from the definition of the damping ratio, it is calculated by using the
following equation:

D =
Aloop

4 ∗ π ∗ Atriangle
=

2 ∗ Ahal f loop

4 ∗ π ∗
( A lower triangle+A upper triangle

2

) (42)

Midas uses a different form of the Ramberg-Osgood equation with two curve-fitting
constants instead of three. The initial loading moves along the following skeleton curve [109].

G0γ = τ
(

1 + α|τ|β
)

(43)
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where G0 is the initial stiffness (shear modulus), and α, and β are the model parameters
given by

α =

(
2

γrG0

)β

, β =
2πhmax

2− πhmax
(44)

γre f is the reference shear strain, and hmax is the maximum damping constant. For
unloading and reloading, the hysteresis curve is as follows:

G0

(
γ∓ γ1

2

)
=

(
τ ∓ τ1

2

)
(1 + α

(
(

τ ∓ τ1

2
)

β
)

(45)

where γ1 and τ1 are the shear strain and stress values at the turnaround point.
Considering the uniaxial condition, the hysteresis curve is expressed as follows:

E0ε = σ + α|σ|βσ (46)

In 3D conditions, the formula divides into hydrostatic and deviatoric (shearing) com-
ponents. The formula becomes a 3D expression:

E0εdev = (1 + ϑ)σdev +
3
2

ασ
β
eqσdev (47)

where E0 is the initial stiffness and σdev is the von Mises stress.

If the equivalent deviatoric strain εeq =
√

2
3 εdev : εdev, it is expressed as follows:

E0εdev =
2
3
(1 + ϑ)σdev + ασ

β
eqσdev (48)

The following equation calculates the tangent stiffness:

∂σeq

∂εeq
=

E0
2
3 (1 + ϑ) + (β + 1)ασ

β
eq

(49)

The Poisson’s ratio ϑ is assumed to be a constant regardless of the stress state, and
Equation (49) provides the equivalent elastic modulus. The 3D stiffness matrix uses the
equivalent elastic modulus as follows:

D =
E

(1 + ϑ)(1− 2ϑ)



1− ϑ ϑ ϑ 0 0 0
ϑ 1− ϑ ϑ 0 0 0
ϑ ϑ 1− ϑ 0 0 0
0 0 0 1−2ϑ

2 0 0
0 0 0 0 1−2ϑ

2 0
0 0 0 0 0 1−2ϑ

2


(50)

5.3. The Hyperbolic Model

A hyperbolic equation was proposed by Hardin and Drnevich [40] as a simple nonlin-
ear relationship between the shear stress and strain (Figure 21a). The first iteration took the
following form:

τ =
γ

1
Gmax

+ γ
τmax

(51)
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Figure 21. The hyperbolic model proposed by Hardin and Drnevich (1972) [40] (permission from
[ASCE]). (a) Hyperbolic soil model equation. (b) The deviation from a hyperbole, depending
on soil type.

However, they noticed that the soil behavior deviated from a simple hyperbolic
curve, depending on the soil type and properties, as shown in Figure 21b. Therefore,
they introduced a modified hyperbolic strain to the equation to fit the curve with the soil
behavior by distorting the strain axis scale. The modified hyperbolic strain is expressed by

γh =
γ

γr

[
1 + a ∗ exp

(
−b
(

γ

γr

))]
(52)

where “a” and “b” are coefficients that adjust the shape of the stress-strain curve.
The equation used today in Midas for the modified Hardin-Drnevich model, coupled

with the Masing criteria for hysteresis loops, follows:

τ =
G0γ

1 +
∣∣∣ γ

γr

∣∣∣ (53)

where G0 is the initial shear modulus and γr is the reference shear strain.
The same method as in the R-O model modifies the hysteretic curve from the skeleton

curve in H-D as follows:

τ − τ1 =
G0(γ− γ1)

1 +
∣∣∣ γ−γ1

2γr

∣∣∣ (54)

In this form, a least squares regression technique adjusts the reference strain to fit the
model to the laboratory test results.

By dividing both sides of Equation (53) by γ, the shear modulus (G) is obtained:

G =
G0

1 +
∣∣∣ γ

γr

∣∣∣ (55)

The modulus reduction curve follows by rearranging Equations (55) and (48) to obtain

G
G0

=
1

1 +
∣∣∣ γ

γr

∣∣∣ (56)
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Hardin and Drnevich also proposed an approximate shape for the material damping curve:

D
Dmax

=

γ
γr

1 + γ
γr

(57)

where Dmax is the maximum damping ratio, depending on soil type, confining pressure,
number of load cycles, and loading frequency.

Matasovic and Vucetic [110] introduced a curvature coefficient, a, into the normalized
modulus reduction curve for a better fit with the measured data as follows:

G
Gmax

=
1

1 +
(

γ
γr

)a (58)

Darendeli [54] also incorporated the coefficient, but he defined the reference shear
strain γr as the strain amplitude when the shear modulus reduces to one-half of Gmax.
He suggested measuring this value from laboratory tests when G/Gmax is around 0.5.
An example is shown in Figure 22 of the normalized modulus reduction curve using
Equation (58) for γr = 0.05% and a = 0.8.
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Figure 22. Normalized modulus reduction curve using a modified hyperbolic model for
γr = 0.05% and a = 0.8.

6. Evaluation of Soil Models

Ahmad and Ray [46] developed a three-dimensional finite element model on Midas
GTS NX to simulate the TOSS test. The model represents a hollow cylinder (soil sample)
pinned on the bottom and free to rotate on the top. The top nodes rigidly connect to a
center point where rotation is applied to load the sample in torsion with irregular time
histories. Experiments on dry sand using the combined resonant column-torsional simple
shear (TOSS) device provided the data for curve fitting. The study compared the Ramberg-
Osgood (RO) and the Hardin-Drnevich (HD) hyperbolic models already integrated into
Midas GTS NX. The RO model in Equation (37) achieved a very good fit with the lab test
results, while the HD model (Equation (54)) struggled to match the nonlinearity of the curve
(Figure 23). The added parameter for the HD model shown in Equation (58) improved its
performance significantly, with a much better fit. This study also proved that the shear
stress-shear strain curve would follow the extended Masing criteria when ignoring the
effect of the stiffening behavior due to cyclic loading.
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Ahmad and Ray [111] used the same model to experiment with Masing’s idea that
the sample is not uniform and that not all material elements yield simultaneously. Varying
elastoplastic Tresca material properties were assigned to the elements with normal, log-
normal, and binomial distributions of the specimen’s elastic modulus and yield stresses.
The study showed that a simple elastoplastic model could simulate the specimen’s nonlin-
earity when the properties vary over a wider range and with a log-normal distribution.

Building on their previous studies, Ahmad and Ray [112] developed an iterative
method using Solver in Excel and Midas to find a more optimum distribution of the yield
stresses of the element with a collective behavior matching the results obtained from the
TOSS test (Figure 24). The process of determining the overall stress of the system is distinct
from the Iwan model because the components do not link in a series or parallel fashion but
rather a mixture of both. Consequently, the method for calculating the total shear stress for
the system is as follows:

τ =

(
j

∑
i=1

Gγi +
N

∑
i=j+1

τi

)
/Z (59)

where the summation from 1 to j includes all those elements that remain elastic after the
loading of the deflection γ, and the summation from j + 1 to N includes all of those elements
that have slipped or yielded.

After fitting the model with the TOSS test, the possible non-uniformity of samples with
inclusions and voids was studied. The stiffness increased with the increasing percentage of
inclusions in the specimen, following Equation (60).

y = 1.205 ∗ x + 4.23 (60)

where y is the increase in stiffness in percentage, and x is the percentage of inclusions in
the sample.

An ongoing study by the same authors examines sand behavior when subjected
to cyclic and irregular loading tests. The study aims to model dynamic behavior while
considering stiffening behavior with an increasing number of cycles by extending the
Masing criteria and solving their limitations in this case.
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with inclusions and voids was studied. The stiffness increased with the increasing per-
centage of inclusions in the specimen, following Equation (60). 𝑦 = 1.205 ∗ 𝑥 + 4.23 (60)

where 𝑦 is the increase in stiffness in percentage, and 𝑥 is the percentage of inclusions 
in the sample. 

An ongoing study by the same authors examines sand behavior when subjected to 
cyclic and irregular loading tests. The study aims to model dynamic behavior while con-
sidering stiffening behavior with an increasing number of cycles by extending the Masing 
criteria and solving their limitations in this case. 

7. Conclusions 
This paper presents an extensive literature review of the studies related to the dy-

namic behavior of dry sand in torsion. The shear modulus and the damping ratio are con-
sidered to be the two most important properties that describe the dynamic behavior of 
soil. Many geotechnical problems adopt these properties to represent dynamic stiffness 
and energy dissipation during cyclic (train loading) or irregular loading (earthquake), es-
pecially for site response analysis. 

The resonant column and the torsional simple shear devices are commonly used for 
dynamic soil testing. The results of these tests are reliable and repeatable. Calculations of 
the shear modulus are based on the RC test’s resonance frequency and shear wave velocity 
and the characteristics of hysteresis loops in the TOSS test. The SSV and FVD methods for 
measuring the damping ratio in the RC test produce highly scattered data. Recommenda-
tions on the scope and limitations of these methods are presented based on previous stud-
ies. Furthermore, new and novel methods are available in the literature to overcome the 
reduced accuracy in measuring the minimum damping ratio (Dmin). 

The effect of some soil properties and testing conditions on dynamic behavior Is still 
poorly understood and requires more research. However, several authors have presented 
correlations to calculate Gmax and the shear modulus degradation curve as a function of 
the void ratio, confining pressure, and uniformity coefficient (CU). 
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7. Conclusions

This paper presents an extensive literature review of the studies related to the dynamic
behavior of dry sand in torsion. The shear modulus and the damping ratio are considered
to be the two most important properties that describe the dynamic behavior of soil. Many
geotechnical problems adopt these properties to represent dynamic stiffness and energy
dissipation during cyclic (train loading) or irregular loading (earthquake), especially for
site response analysis.

The resonant column and the torsional simple shear devices are commonly used for
dynamic soil testing. The results of these tests are reliable and repeatable. Calculations
of the shear modulus are based on the RC test’s resonance frequency and shear wave
velocity and the characteristics of hysteresis loops in the TOSS test. The SSV and FVD
methods for measuring the damping ratio in the RC test produce highly scattered data.
Recommendations on the scope and limitations of these methods are presented based on
previous studies. Furthermore, new and novel methods are available in the literature to
overcome the reduced accuracy in measuring the minimum damping ratio (Dmin).

The effect of some soil properties and testing conditions on dynamic behavior Is still
poorly understood and requires more research. However, several authors have presented
correlations to calculate Gmax and the shear modulus degradation curve as a function of the
void ratio, confining pressure, and uniformity coefficient (CU).

The Ramberg-Osgood and the modified Hardin-Drnevich models, coupled with the
Masing criteria, are often used to simulate the shear stress-strain curves of soil. These
models perform well and match the lab test results well when neglecting the effect of
stiffening behavior with an increasing number of cycles. However, more studies are needed
to improve the models and the Masing criteria to better simulate shear stress-strain curves
when soil undergoes an irregular loading history.
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