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Abstract: It is now well-known that ground motion characteristics can be influenced significantly
by local site characteristics. In general, soil characteristics were classified by considering the time-
average velocity down to 30 m (Vs30). However, recent studies have showed that the fundamental
site period is a better proxy than Vs30, or the most complementary parameter to Vs30, for this purpose.
Recent earthquakes have also revealed that the largest amplifications occur at the fundamental site
period and cause heavy damage or the collapse of structures when they have similar vibrational
characteristics with the site’s fundamental period, i.e., resonance. Therefore, many studies in the
literature have been performed to determine the fundamental periods of layered soil profiles using
different analytical, approximate, and data-driven methods. However, there is a requirement to
evaluate these methods by following a systematic procedure. Hence, the reader will receive a
comprehensive review of the available procedures for determining the site’s fundamental period of
layered soil profiles and their applications at different scales, along with an exploration of current
research gaps.
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1. Introduction

It is now widely recognized that soil characteristics, particularly those of near-surface
soil deposits, have a substantial effect on structural performance during intense strong
ground motion [1]. Shallow soil deposits can amplify the effects of ground motion, such as
acceleration on the surface, due to the wave impedance of relatively soft soils [2–5]. During
earthquakes, structures experience the largest amplification when their structural periods
match with the site’s fundamental period, resulting in resonance [6–8]. Therefore, mid- [3,9]
and/or high-rise [10–12] structures resting on soft soils and low-rise structures resting on
stiff soils [13] have higher vulnerability. Even low-rise buildings were observed to collapse
during the 1943 and 1967 earthquakes in Adapazarı, Türkiye, where the fundamental
periods were approximately 0.3 s [13]. This underscores the critical role of resonance in
seismic vulnerability, emphasizing the need for a thorough understanding of soil-structure
interaction to mitigate risks associated with different soil conditions.

In addition, the assessment of soil classification and local site effects has traditionally
relied predominantly on only Vs30 [14]. However, it has been shown that the fundamental
site period (T0) serves as a superior standalone proxy compared to Vs30 or, at the very
least, the most effective complementary proxy toVs30 [15–18]. Notably, classifications based
on the fundamental period have been shown to yield lower errors than conventional
classifications solely based onVs30 [19–22].

The principal reason for the higher error associated with Vs30-based classification lies
in the fact that Vs30 represents only near-surface stiffness. In contrast, the fundamental site
period provides a more comprehensive representation, encapsulating both the stiffness
and depth characteristics of the entire soil column [23]. This nuanced consideration allows
for a more accurate and nuanced assessment of soil properties and seismic site condi-
tions, emphasizing the importance of incorporating fundamental period-based analyses in
geotechnical studies.
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Due to the above-mentioned advantages, researchers have endeavored to enhance the
precision of determining the fundamental site period through the development of analytical,
numerical, data-driven methods, and artificial intelligence techniques. Several studies have
delved into the effectiveness of these analyses [24–30]. While some studies indicate that
one-dimensional (1D) ground response analysis (GRAs) falls short in capturing intricate
soil characteristics [28], others report that 1D GRAs have reasonably good correlations with
downhole array data [24,26,27,29,30]. These contrasting results underscore the complexity
of soil-structure interactions and the diverse methods employed in their analysis.

Recognizing the pivotal role of fundamental site periods and the nuanced capabilities
and limitations of 1D GRAs, this study offers a comprehensive state-of-the-art review
of existing methodologies for calculating T0. This review includes analytical, numerical,
data-driven, and artificial intelligence techniques, providing a systematic evaluation of the
various approaches.

By shedding light on critical aspects of the topic, this study serves as a valuable re-
source for academia and industry professionals. The insights garnered from this review are
poised to benefit researchers, engineers, and practitioners seeking a deeper understanding
of the methodologies employed in determining fundamental site periods. This synthesis
of methodologies and findings contributes to the ongoing discourse in seismic studies,
facilitating informed decision-making and advancements in seismic risk assessment, and
mitigation strategies.

The data for this study were obtained through an extensive literature search conducted
on reputable databases, including Google Scholar, Scopus, and ScienceDirect. The search
was executed using keywords such as site fundamental period, fundamental site period,
site fundamental frequency, and fundamental site frequency. To ensure relevance and
specificity of the gathered information, an initial exclusion criterion was applied to filter out
studies pertaining solely to the fundamental period of specific structures, such as reinforced
concrete or steel. Subsequently, the focus was refined to include studies presenting novel
methodologies for determining the fundamental site period. The selected studies form
the basis for citation and analysis in this research, providing a robust foundation for the
investigation of innovative approaches in the determination of fundamental site periods.

2. Use of the Site’s Fundamental Period

Even though soils are characterized by the Vs30 value in many codes, it is now well-
known that T0 is a better proxy than Vs30 or one of the best self-standing parameters for
this purpose [15–18]. Furthermore, Vs30 is insufficient to reflect the site effects in many
regions [31,32]. Therefore, in addition to determining resonance cases [33], the fundamental
site period has also been used for ground motion prediction equations (GMPEs) [19,34].

Alessandro et al. [35] employed T0 for response spectra prediction equations in Italy.
The study concluded that flat-frequency-response, deep, and shallow profiles were captured
easily by considering T0. In addition, T0-based classification was found to be quick and
cost-effective compared to shear-wave velocity-based methods.

Hassani and Atkinson [16] evaluated a Vs30-based site-effect model [36] for possible
application to sites in central and eastern North America. The study revealed that while
there was an acceptable level of correlation between site effects and Vs30 for regions with
low frequency, i.e., high period, this correlation decreased significantly for regions with
high fundamental site frequencies. Hassani and Atkinson [17] evaluated the efficiency of
T0 as a proxy to Vs30 in central and eastern North America, aiming to reduce Vs30-related
errors and the associated random variability of GMPEs. The study obtained a 3% reduction
in variability on average when T0 was employed as a proxy for Vs30. It was stated that a
greater reduction could be achieved by replacing Vs30 with improved site characterization
parameters such as T0. Later, Hassani and Atkinson [18] developed a regional site-effects
model for central and eastern North America, where the residuals were determined based
on T0 for a selected database from NGA-East. The study showed that the random variability
of GMPEs can be reduced by an average of 10% when Vs30 is replaced with T0. Finally,
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Hassani and Atkinson [37] developed an empirical site-response model for central and
eastern North America by evaluating residuals of observed ground motion amplitudes
concerning those obtained by a selected GMPE. In the study, two alternatives for site effects
were considered. In the first alternative, T0 was the main parameter, while Vs30 was the
proxy. In the second alternative, the conventional order was preferred. The study showed
that the use of T0 as the primary site parameter could remove most Vs30-dependent trends
in the site terms, and derive a satisfactory single-parameter model. Furthermore, Vs30
was found to be an inefficient parameter for the studied region. Recently, Yazdi et al. [38]
showed that incorporating T0 into NGA-West2 ground motion models could significantly
lower uncertainties, by an average of 13%.

Kotha et al. [39] stated that the classification of soils considering T0 for GMPEs works
well at first; however, it may be insufficient to distinguish sites with identical T0 ranges but
different amplification levels.

Kwak and Seyhan [40] described a two-stage nonlinear site amplification model for
Japan, considering Vs30 and T0. In this model, the total empirical site effects were regressed
based on Vs30, and then a function was fitted to the residuals considering T0. The study
found that the first term reduces errors at mid-to-long period ranges, while the second term
further reduces errors.

3. Determination of the Site’s Fundamental Period
3.1. Analytical Methods

Early studies in the literature proposed analytical equations to calculate the site’s
fundamental period, such as the linear shear modulus distribution method proposed by
Ambraseys [41], Equation (1a), where the depth of the soil column is shown by H. The
terms, K and V0, in the equation are given by Equations (1b) and (1c). In these equations,
G0, GH, and ρ stand for the shear modulus at the top layer, shear modulus at the base of
the layer, and density. The term α1 is the first root of Equation (2), where Ji (i = 0, 1) and
Yi (i = 0, 1) are the Bessel functions and Weber’s Bessel functions of order zero and one.

T =
4πHK

α1|1− K2|V0
(1a)

K =
√

G0/GH (1b)

V0 =
√

G0/ρ (1c)

J0(α1)Y1(Kα1)− J1(Kα1)Y0(α1) = 0 (2)

Idriss and Seed [42] calculated the fundamental site period by considering the power-
law distribution of the shear wave velocity, as given in Equation (3). In the equation, q1 is
the first root of Jn(q1) = 0, where Jn( ) is the Bessel function of order n = (p − 1)/(2 − p).

T =
4πH(2−p/2)

(2− ρ)V0q1
(3)

To simplify the problem, Madera [43] proposed a two-layer model. The method
requires the calculation of the fundamental period of each layer (Ta and Tb) by Equation (4)
and combining them considering Equation (5) to reach the final value (Ta−b). In the
equations, ha and hb represent the heights of each layer. Later, an approximate solution to
Madera’s method [42] was suggested by Hadjian [44].

Ti =
4hi
Vi

, (i = a, b) (4)
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tan
(

π

2
Ta

Ta−b

)
tan
(

π

2
Tb

Ta−b

)
=

ρbhb
ρaha

Ta

Tb
(5)

The suggestion by Dobry et al. [45] to determine the fundamental site period is based
on four times the travel time of the shear wave from bedrock to the ground surface, as
shown in Equation (6). In the equation, i is the number of layers in the soil column. However,
it was stated that this method overestimates the fundamental period by 20% [23]. There-
fore, a correction factor was proposed by Motazedian et al. [46], as given in Equation (7).
Later, Urzua et al. [47] showed that this method results in overestimation when the shear
wave velocity increases with the depth of the soil column. Wang et al. [23] employed the
simplified single-degree-of-freedom system method to improve Equation (6), resulting in
Equation (8).

Ti = 4
n

∑
i=1

hi
Vi

(6)

Ti = 0.796×
(

4
n

∑
i=1

hi
Vi

)0.920

(7)

Ti = π
n

∑
i=1

hi
Vi

(8)

Gazetas [48] also considered a linear shear wave velocity distribution through the
depth of the soil column to obtain the fundamental site period, as seen in Equation (9). In
this equation, η1 and µ1 are the first non-zero root of Equation (10) and the base-to-surface
velocity ratio, respectively. The term a1 is a function of depth, travel time from surface to
bedrock, and soil column height [23].

T =
4H
a1

π ln µ1

2(µ1 − 1)
√

η2
1 +

(
ln
√

u
)2

(9)

2η1 cos η1 + ln(µ1) sin η1 = 0 (10)

The Rayleigh method, which is considered one of the most convenient solutions for
the studied problem, is based on equalizing the maximum kinetic and potential energies of
the soil column system during its first mode of free vibration [49]. The solution is given by:

T = 2π

√√√√√√√√√
H∫
0

ρX2dz

H∫
0

ρV
(

dX
dz

)2
dz

(11)

where X(z) is the mode shape of the fundamental period at depth, z, ρ(z) = γ(z)/g, γ(z) is
the unit weight of the soil at the same depth, and g is gravitational acceleration. Accordingly,
the solution of Equation (11) requires computation of the fundamental modal shape of the
soil column, which can be obtained through the equilibrium between inertial and elastic
forces at depth z, as seen in Equation (12). The equation requires an iterative solution until
the successive solutions, X(j) and X(j+1), are close enough.

X j+1(z) =
z∫

0

 H∫
ζ

ρ(z)X j(z)dz

 dza
ρ(za)V2(za)

(12)

Due to the iterative nature of the Rayleigh method, Dobry et al. [45] proposed a
simplified Rayleigh method that considers constant density of soil throughout the depth.



Geotechnics 2023, 3 1313

These assumptions significantly simplified the solution, yielding fast convergence and high
effectiveness, i.e., <3% relative error [48].

The Japanese seismic design code [50] considers the weighted value of a soil layer and
employs the square root of the sum of the squares method to reach the fundamental site
period, as shown in Equation (13), where the weight value of the soil layer is represented by
the term 2 Hmi/hi, where Hmi = (Hi−1 + Hi)/2. In the equation, h and H are the thickness
and depth of the layer.

T =

√√√√ n

∑
i=1

(
4hi
Vi

)2 2Hmi
hi

(13)

3.2. Horizontal-to-Vertical Spectral Ratio

One of the efficient ways to estimate the fundamental site period is the ratio of
the horizontal-to-vertical components (HVSR) of microtremor measurements, namely
Nakamura’s method [51]. The method is based on the assumption that the amplification in
the horizontal component will be significantly higher than the amplification in the vertical
component during seismic wave propagation. Therefore, the peaks of HVSR are associated
with site periods. Nakamura updated the theory by including the contributions of surface
waves [52] and P waves [53].

Impedance contrasts through the depth of the soil column cause multiple peaks in
the HVSR curves. Peaks in the HVSR curve for impedance contrasts greater than four are
linked to the horizontal polarization of the fundamental mode Rayleigh wave, coupled with
the contribution of the Airy phase of the fundamental mode Love wave [54,55] Thus, sites
are grouped in the literature based on the number of peaks in the HVSR curves, (i) without
any significant peak, (ii) with one dominant peak, and (iii) with multiple peaks [56]. HVSRs
of the considered sites can be calculated by either microtremor measurements (MHVRSs)
or recorded earthquake ground motion records (EHVSRs). Kawase et al. [57] compared
MHVRS and EHVRS and found similarities up to the first peak frequency. However,
there were substantial differences at higher frequencies. The differences were caused by
microtremors mainly consisting of surface waves, so the peaks associated with higher
modes would not be major.

Empirical studies from different sites have shown that the lowest peak frequency in
an MHVSR curve occurs at the fundamental site period [58–60]. This requires the use of
a spectrum, such as the frequency amplitude spectrum (FAS) [61–63], or the 5% damped
acceleration response spectrum (PSA) [23,64,65]. Zhu et al. [56] compared the efficiency
of both spectra and suggested using the highest peak, not the first one, as the Fourier
Amplitude Spectrum (FAS).

The easy-to-use characteristics of the MHVRS method have led to its widespread use
in Europe [66,67], New Zealand [68], Turkiye [69,70], North and South America [71–74],
etc. The process for MHVRS analysis is depicted in Figure 1 [75]. The different colors
in Figure 1a shows different time windows. In Figure 1c, the mean MHVSR of these
time windows were depicted by solid black lines. The dashed black lines represent the
mean ± standard deviation.

In addition, several studies have attempted to improve MHVSR to take maximum
advantage of the method. Herak [76] suggested using the ratio of S wave to P wave
transfer function rather than using S and Rayleigh waves. In their innovative study,
Kawase et al. [77] used the diffused field theory to optimize the method. The study
demonstrated that the HVSR curve could theoretically be obtained from the imaginary
parts of horizontal and vertical Green’s function. It resulted in a similar formula with a
scaling factor between horizontal and vertical components at the seismological bedrock.
Nagashima et al. [78] effectively used the method to reach an optimal HVSR procedure
for subsurface structure investigation. Later, Kawase et al. [79] investigated the validity
of theoretical HVSRs for microtremor measurements. It was found that predictions of the
diffuse-field theory were generally in line with other methods. Similarly, it was proposed
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that microtremors form a diffuse field containing all types of body and surface waves [80].
The relative powers of seismic states arise from the equipartition of energy principle. Hence,
within a diffuse field, the autocorrelation in the frequency domain is proportional to the
imaginary part of Green’s function for source and receiver at the same point. Since average
autocorrelations are proportional to average directional energy densities, another method
to assess the MHVSR curve was given by Ref. [81], Equation (14), where E1 and E2 are
horizontal directional energy densities, and E3 is the vertical one.

MHVSR =

√
E1 + E2

E3
(14)
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Figure 1. Application of the MHVSR method: (a) windowing, (b) FAS of all components,
(c) MHVRS [77].

Since the autocorrelation in the frequency domain is proportional to the imaginary
part of Green’s function, MHVSR can be obtained in terms of Green’s function as given by
Equation (15), in which ImG parameters represent the imaginary part of Green’s function.

MHVSR =

√
ImG11 + ImG22

ImG33
(15)

It was also shown that Green’s function can be used satisfactorily to address lateral
discontinuity in return for high computational cost [82–84].

Tuan et al. [85] considered several major effects, such as the arrangement of layers
and impedance contrast between layers and the half-space, to improve HVSR. Since the
suggested formula, Equation (16), was in explicit form, it was stated that it can be considered
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for direct or inverse problems efficiently. In the equation, I is the impedance value of
the layer.

ω2
p =

1
n−1
∑

i=1

n
∑

j=i+1

ρi
ρjV2

j
hihj +

1
2

n
∑

i=1

h2
i

V2
i

− 1
2


(

n
∑

i=1
ρihi

)
/In+1

n−1
∑

i=1

n
∑

j=i+1

ρi
ρjV2

j
hihj +

1
2

n
∑

i=1

h2
i

V2
i

 (16)

Equation (16) was simplified as given by Equation (17), where I(n) = ρV∗s is the
average impedance of the layers.

ft =
ωp

2π
=

V∗s
4h

√√√√1− I(n)
2

I2
n+1

(17)

Darzi et al. [86] developed an automated method to determine the site’s fundamental
resonance to improve HVSR and applied it to the updated Iranian database, as seen in
Equation (18).

log10
(

HVSR
)

j =

n
∑

i=1
log10(HVSR)ij

Nj
(18)

The irregularly spaced microtremor data, which may lead to significant bias in the
results due to access and budget restrictions, is another issue for HVSR curves. To address
this issue, Cheng et al. [87] proposed employing Voronoi tessellations to obtain an unbiased,
statistical representation of T0 from spatially distributed HVSR measurements.

Multiple automated methodologies for the computation of the fundamental site period
and its uncertainty using HVSR curves were proposed by Yazdi et al. [14]. The study
evaluated current practices, i.e., the use of geometric mean or RotD50, and the use of
FAS or PSA. The results showed that being orientation-free is a major advantage for the
RotD50 method, and PSA-based HVSR was found to be scenario-dependent. The study
proposed four different methods to determine the fundamental site period. The first three
methods were individually based on individual HVSR curves, while the last one requires
both individual and HVSR curves. The proposed equations for methods 1, 2 and 4 are
given below. For the sake of brevity, detailed information about the terms of the following
equations and flow chart of the third method is not provided in this review.

Method #1

ln L(φ) =
N

∑
i=1

ln
{

p
(

FP φ
ij

∣∣∣φ, σ
)}

(19)

p
(

FPij
∣∣φ, σ

)
= 1

σ
√

2π
exp

[
− 1

2

(
ln FPij−ln φ

σ

)2
]

(20)

Method #2

ln L(φ) =
N

∑
i=1

wi ln
{

p
(

FP φ
ij

∣∣∣φ, σ
)}

(21)

wi =
Prominence of Pϕ

ij from event i

Sum of the prominences of Pϕ
ij from all events

(22)

Method #3

ln(HVSR) =

N
∑

i=1
ln(HVSRi)

N
(23)
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As mentioned above, EHVSR is another alternative in the literature for determining
the fundamental site period. Several researchers have discussed the similarities between
EHVSR and MHVSR in specific regions; however, there are significant differences in other
regions. To eliminate these differences, studies have focused on the regression of EHVSR
and MHVSR, and the EHVSR-to-MHVSR ratio. Hassani et al. [88] performed regression
analyses between the fundamental periods obtained by EHVSR and MHVSR for California,
as shown in Equation (24). In the study, it was mentioned that the difference was related to
the difference in dominant waves for microtremor and earthquake data.

log10( fdEHVSR) = (−0.1± 0.03) + (0.96± 0.07) log10( fd MHVSR) (24)

Kawase et al. [57] proposed an empirical method, the earthquake-to-microtremor data
ratio (EMR), for this purpose. Multiplying the MHVSR by the EMR yields a closer curve
to EHVSR. Yong et al. [89] compared Vs30 and T0 values from single-station EMR and
multi-station array-based site characterization methods. The results of the study showed
that there might be a need to develop site-specific EMR correction factors. The method was
employed by Ito et al. [90] for different tectonic settings. Kawase et al. [91] evaluated the
effectiveness of the EMR correction for the Grenoble basin.

Even though EHVSR was considered a little bit truer, the amplification of the vertical
ground motion component affects it [92–95].

3.3. Data-Driven Method

Databases, such as KiK-net in Japan, provides researchers with invaluable oppor-
tunities to apply statistical and theoretical analyses and verify results. Therefore, many
data-driven techniques that employ the fundamental site period have been published in
the literature, especially for on-site response evaluation [96–100].

Cadet et al. [96] studied the empirical correlations between amplification factors and
simple site parameters, T0 and Vsz, where z was 5, 10, 20, and 30 m, obtained from a large
subset of the KiK-net. The lowest misfit value was provided by the T0 and Vs30 couple.
The data-driven method showed that the best single parameter was also the fundamental
site period.

Kaklamanos et al. [101] evaluated critical parameters affecting bias in site-response anal-
yses based on KiK-net downhole array data, where the fundamental site frequency/period
was also considered a critical parameter. The study concluded that the most influential pa-
rameters were maximum shear strain in the soil profile, observed peak ground acceleration
at the ground surface, and the predominant spectral period of the ground surface.

Mousavi Anzehaee et al. [102] used the Bayesian data fusion method and a database to
estimate the fundamental site period. The results of different data windows were employed
for fusion. It was stated that the method does not require additional filters but rather a
simple band-pass filter. The results showed that the method is a high-performance and
easy-to-apply technique.

Zhu et al. [103] released an open-source database of strong-motion stations in Japan,
in which the EHVSRs of each station were given in detail. Zhu et al. [104] evaluated the
goodness of earthquake site response predictions using1725 K-NET and KiK-net sites in
Japan. Therefore, the random forest algorithm was employed to perform multivariate
non-parametric and nonlinear regressions in addition to conventional regression analy-
ses. In the study, the peak period of the EHVSR was considered the fundamental site
period. It was mentioned that two types of uncertainty: (i) modeling uncertainty arising
from simplifications, assumptions, and approximations, and (ii) parametric uncertainty
related to the input parameters and model coefficients, influence the predictions. Later,
Zhu et al. [105] compared the success of machine learning and physics-based modeling
techniques. The results showed that the supervised learning technique, which requires a
few input parameters, is superior to detailed 1D ground response analyses.

In practice, the basic 4H/V equation is preferred owing to its simplicity. However,
as mentioned above, this equation overestimates the fundamental site period by 20%.
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Therefore, Güllü and Hasanoğlu [106] proposed a best-fit coefficient for the total travel
time, which resulted in a minimum standard deviation for 459 KiK-net stations. The study
proposed a simple yet more accurate equation based on statistical analyses, as shown in
Equation (25). The residuals of the original and improved equations were compared in
Figure 2 to exemplify the improvement.

T0 = 3.51
H
V

(25)
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Figure 2. Comparison of the calculated absolute residuals and ±1 standard deviation regions of the
original equation (left) and the improved equation (right).

Although it was shown in the literature that the use of Vs30 is not self-sufficient for
soil classification. However, many studies have been performed to determine Vs30 in the
literature since the seismic codes dictate the use of this term. Therefore, Güllü et al. [107]
developed a data-driven methodology to take advantage of the previously performed
studies on Vs30, which is not suitable by itself, to calculate the fundamental site period. In
this study, the soil column is first divided into two segments at a depth of 30 m, Figure 3a.
The upper part of the soil column is linked to the Vs30, while the bottom part is associated
with engineering bedrock depth. Two different depths, namely 760 (Z0.76) and 1000 m
(Z1.0), were considered as bedrock in the study. In the second step, the soil column was
reduced to a two-degree-of-freedom system, Figure 3b. Finally, the two-degree-of-freedom
system condensed to a single-degree-of-freedom system again, Figure 3c.
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Figure 3. Illustration of the proposed methodology originating from Ref. [107] with improvements.

Based on the solution of the undamped equation of motion for the resulting single-
degree-of-freedom system, the fundamental site periods were obtained as given by
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Equations (26) and (27). The method is highly suitable for large-scale applications with
physics-informed machine-learning techniques.

T0.76 = 2π

√
0.76Me f f

0.76Ke f f
= 2π

√√√√√ 0.3268× Z0.76(
1

0.07965×V2
s30−18.66×Vs30+2514

+ Z0.76−30
6.974×105

)−1 (26)

T1.0 = 2π

√
1.0Me f f

1.0Ke f f
= 2π

√√√√√ 0.3342× Z1.0(
1

0.07448×V2
s30−14.94×Vs30+1991

+ Z1.0−30
7.101×105

)−1 (27)

4. Discussion

In this review, various approaches for determining the site fundamental period, in-
cluding analytical methods, Horizontal-to-Vertical Spectral Ratio (HVSR), and data-driven
techniques, were critically examined. Analytical methods offer nearly exact solutions, but
their computational demands can become prohibitively expensive, especially when applied
over wide-ranging scenarios rather than individual points.

Even though the site fundamental period was mainly preferred for the develop-
ment of ground motion prediction equations as a single parameter or proxy, novel struc-
tural design methods showed that the fundamental site period is significantly important
in determining the resonance risk, which imparts maximum seismic energy to a struc-
ture [108–110]. Expressly, seismic energy imparted to a structure is related to fundamental
periods/frequencies of the structure, soil, and ground motion, as shown in Figure 4.
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Figure 4. Comparison of the seismic input energy spectrum, power amplitude spectrum, and shake
table test results performed on single-degree-of-freedom systems (SDOFs) with different structural
damping ratios (ξ) [109].

The HVSR method has gained widespread acceptance due to its simplicity, cost-
effectiveness, sensitivity to in-situ conditions, and suitability for microzonation studies.
However, it does have drawbacks, including sensitivity to noise and depth, with a particular
sensitivity to shallow subsurface conditions. Furthermore, its accuracy tends to decrease at
higher frequencies, limiting its applicability under certain conditions.

Data-driven methods, such as the approach outlined in Reference [107], present practi-
cal tools, particularly for regional studies. Nevertheless, these methods introduce a level of
uncertainty into the analysis that should be quantified to take advantage of these methods.



Geotechnics 2023, 3 1319

Finally, the selection of an appropriate method to determine the site’s fundamental
period should be guided by the specific requirements and constraints of the seismic analysis
being undertaken.

5. Conclusions

This study combined the studies aimed at determining the site’s fundamental period
and understanding its importance. A wide range of studies, from those proposing the sim-
plest equations to the most complex ones, are summarized in this review. All these studies
agree on the importance of the fundamental site period for several purposes. However,
there are still some discussions on the procedures. In the literature, the site’s fundamental
period was determined mainly by frequency amplitude and pseudo-acceleration spectra
when employing the HVSR method. However, using the seismic input energy spectrum to
determine the fundamental site period would reduce uncertainties.

In general, the fundamental site period is determined by one-dimensional analyses. In
many cases, this may not be sufficient due to local geological irregularities/discontinuities.
Finally, all existing data should be examined to find alternative procedures for determining
fundamental site periods at the community/city level where three-dimensional surface
and subsurface topography are rapidly varying.
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