
Citation: Kumar, K.; Debnath, P.;

Singh, S.; Kumar, N. An Overview of

Plant Phenolics and Their Involvement

in Abiotic Stress Tolerance. Stresses

2023, 3, 570–585. https://doi.org/

10.3390/stresses3030040

Academic Editor: Magda Pál

Received: 10 June 2023

Revised: 24 July 2023

Accepted: 28 July 2023

Published: 8 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

An Overview of Plant Phenolics and Their Involvement in
Abiotic Stress Tolerance
Krishna Kumar 1,† , Pratima Debnath 2,†, Sailendra Singh 1,* and Navin Kumar 3,*

1 Migal Galilee Research Institute, Kiryat Shmona 1101600, Israel; krishnasahni16@gmail.com
2 CSIR-National Botanical Research Institute, Lucknow 226001, India; pratimabotany15@gmail.com
3 Institute of Plant Sciences, Agricultural Research Organization, Rishon LeZion 7505101, Israel
* Correspondence: sailendra@migal.org.il (S.S.); navinmsbc@gmail.com (N.K.)
† These authors contributed equally to this work.

Abstract: Secondary metabolites, such as phenols and salicylic, play a crucial role in the regu-
lation of development and tolerance mechanisms against a wide range of stresses. During ad-
verse conditions such as biotic and abiotic stresses, plants induce the biosynthesis of phenolic
compounds to provide tolerance. Phenolics are secondary aromatic metabolites synthesized through
the shikimate/phenylpropanoid pathway or polyketide acetate/malonate pathway, which produce
monomeric and polymeric phenolics. Phenolic compounds in plants not only take part in preventing
stresses but also in regulating physiological activities. These compounds significantly regulate both
below- and above-ground defense mechanisms. Plants synthesize thousands of phenolic compounds
throughout their evolution to survive in changing environments. Environmental factors, such as high
light, cold, drought, heavy metals, etc., increase the accumulation of phenolics to neutralize any toxic
effects. This review focuses on the biosynthesis of phenolic compounds and their updated studies
against abiotic stresses.
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1. Introduction

Phenolic compounds are ubiquitously present in the plant kingdom. Phenolics are
very rarely present in bacteria, fungi, and algae. Vascular plants are the primary source
of a wide range of polyphenols, while lower plants such as bryophytes are the leading
producers of flavonoids [1,2]. Plant phenolics can be defined by ‘phenol’, a chemical term
describing a phenyl ring bearing one or more hydroxyl substituents. Several classes of
phenolics have been categorized based on their basic skeleton [3]. Phenolic compounds
range from simple to low molecular weight, single aromatic-ringed to large and complex
tannins and their derived polyphenols. Phenolic compounds are broadly classified into two
major groups: flavonoids and non-flavonoids [3]. Secondary metabolites, such as phenolic
compounds, do not directly affect plant growth and development. They regulate other
associated pathways for their function via signal transduction. These compounds protect
plants from disease/damage and also contribute to the plant’s color, aroma and flavor [4].
During the last four decades, several researchers have shown keen interest in investigating
their regulatory mechanism, which involves tolerance mechanisms, against several biotic
and abiotic factors such as microbial infections, pollinators, seed-dispersing animals, UV,
temperature, drought, etc. Phenolic compounds function as signal molecules and are also
involved in forming root nodules in legume plants for the nitrogen fixation [5]. They
exhibit diverse structures, from single aromatic rings (caffeic acid and ferulic acid) to more
complex polymeric structures such as lignins/lignans, coumarins, quinones, tannins, and
flavonoids (Figure 1). This review highlights the importance of plant phenol compounds in
plant abiotic stress response.
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Figure 1. Structural representation of the phenolic compounds. 
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to biotic and abiotic stress. [6]. These metabolites are generally derived from different bi-
osynthetic routes such as isoprenoid, phenylpropanoid, alkaloid, or fatty acid pathways. 
The phenolic compound is derived either from the shikimic acid pathway or pentose 
phosphate through phenylpropanoid metabolism [7]. The phenolic compound contains 
benzene rings with one or more hydroxyl substituents, which are synthesized from simple 
phenolic molecules to highly polymerized compounds according to their demand func-
tion. The primary metabolisms, such as glycolysis and pentose phosphate pathways, pro-
vide compounds such as phosphoenolpyruvate and erythrose-4-phosphate to initiate the 
biosynthesis of phenolic compounds. Together, phosphoenolpyruvate and erythrose-4-
phosphate produce shikimic acid via the shikimate pathway. Further, this pathway pro-
vides L-phenylalanine, which takes part in the phenylpropanoid pathway to produce p-
coumaroyl CoA. This compound initiates the synthesis of phenylpropanoids and mono-
lignols to produce more complex phenolic compounds such as stilbenes or flavonoids af-
ter reacting with three malonic acid molecules [8] (Figure 2). An overview of these partic-
ipating pathways has been summarized below. 

Figure 1. Structural representation of the phenolic compounds.

2. Different Types of Phenolic Compounds and Their Biosynthesis

Plants produce an exceptionally diverse array of low molecular mass compounds,
often called secondary metabolites, and they are essential for anticipating and responding
to biotic and abiotic stress. [6]. These metabolites are generally derived from different
biosynthetic routes such as isoprenoid, phenylpropanoid, alkaloid, or fatty acid pathways.
The phenolic compound is derived either from the shikimic acid pathway or pentose
phosphate through phenylpropanoid metabolism [7]. The phenolic compound contains
benzene rings with one or more hydroxyl substituents, which are synthesized from sim-
ple phenolic molecules to highly polymerized compounds according to their demand
function. The primary metabolisms, such as glycolysis and pentose phosphate pathways,
provide compounds such as phosphoenolpyruvate and erythrose-4-phosphate to initiate
the biosynthesis of phenolic compounds. Together, phosphoenolpyruvate and erythrose-
4-phosphate produce shikimic acid via the shikimate pathway. Further, this pathway
provides L-phenylalanine, which takes part in the phenylpropanoid pathway to produce
p-coumaroyl CoA. This compound initiates the synthesis of phenylpropanoids and mono-
lignols to produce more complex phenolic compounds such as stilbenes or flavonoids
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after reacting with three malonic acid molecules [8] (Figure 2). An overview of these
participating pathways has been summarized below.
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2.1. Flavonoids

Flavonoids are polyphenolic molecules containing 15 carbon atoms with two aromat-
ics rings. Flavonoids are the most diverse class of phenolic compounds and are present
in all types of plants within the plant kingdom [9]. They mostly accumulate in very
high concentrations in the leaf’s epidermis and fruits’ skins. The flavonoid biosynthesis
is mainly initiated through the phenylpropanoid pathway. During normal conditions,
flavonoids act as a signaling molecule and UV protectant and regulate plant hormones
such as auxin and cytokinin [10]. However, during stress conditions, they protect from
oxidative damage [11]. Stress-induced dihydroxy B-ring-substituted flavonoids actively
scavenge ROS [12]. Flavonoids are classified into many groups, and the main subclasses
are flavonols, flavan-3-ols, isoflavones, flavones, anthocyanidins, and flavanones (Figure 2).
Minor flavonoid groups are dihydroflavonols, flavan-3,4-diols, coumarins, chalcones, di-
hydrochalcones, and aurones. Flavonoids contain various substituents such as hydroxyl
groups, present at the skeleton’s 4th, 5th, and 7th positions.

2.1.1. Flavonoid Biosynthetic Pathway

Plants produce an exceptionally diverse array of low molecular mass compounds,
often called secondary metabolites, which are essential for anticipating and responding
to biotic and abiotic stress. These metabolites are generally derived from different biosyn-
thetic routes such as isoprenoid, phenylpropanoid, alkaloid, or fatty acid pathways. The
phenolic compound is derived either from the shikimic acid pathway, phenylpropanoid,
or both [13]. The shikimic acid pathway is a major route for the biosynthesis of aromatic
compounds in plants and microorganisms. Phenylalanine, tyrosine, and tryptophan are
the primary metabolites that provide the precursor for most of the secondary metabolite
compounds. Flavonoids are synthesized from phenylalanine which is derived from the
shikimate pathway [7,14] (Figure 3). The shikimate pathway initiates with the molecule
as phosphoenol pyruvate (PEP) and D-erythrose-p-phosphate and forms the intermedi-
ate precursor-shikimic acid following several steps (Figure 3). This shikimic acid gets
converted to chorismic acid, which leads to the synthesis of phenylpropanoid pathway,
starts with aromatic amino acid, phenylalanine, and tyrosine. The derived phenylalanine
gets converted to coumaric, caffeic, and ferulic acids through the activity of phenylalanine
ammonia-lyase (PAL), cinnamic acid 4-hydroxylase (C4H), and 4-coumarate: CoA ligase
(4CL), which ultimately opens the lignin biosynthesis route in the plant systems. The
coumaric acid also leads towards the biosynthesis of hydroxycinnamic acids such as caffeic,
ferulic, and chlorogenic acids. On the other hand, the shikimic acid from the shikimate
pathway also contributes towards the synthesis of gallic acid by the action of shikimate
dehydrogenase (SDH). Synthesized gallic acid is then converted to glucogallin by UDP-3-
glucosyltransferase (UGT), which then produces two important tannins-gallotannins and
ellagitannins of the hydrolysable tannin pathway (Figure 3).

In general, the flavonoid biosynthesis pathway (Figure 3) also includes several inter-
mediates such as flavanones (naringenin, hesperitin, dihydrokaempferol and eriodictyol),
flavanols (kaempferol, myricetin, quercetin) and flavanone glycosides (delphinidin 3-O-
glucoside, quercetin 3-O-glucoside). Flavanones are an important phenolic class that mostly
occurs in citrus fruits such as lemons and oranges. The formation of naringenin chalcone
from the condensation of p-coumaroyl-CoA with three malonyl CoA residues, catalyzed
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by chalcone synthase (CHS), is described in Figure 3. The product naringenin chalcone is
then converted to naringenin by the action of chalcone isomerase (CHI) and finally to dihy-
drokaempferol. This dihydrokaempferol further diverges for the production of different
classes of flavonoids, including isoflavones, flavanones, flavones, flavanols, flavan-3-ols
and anthocyanins (Figure 3).

Stresses 2023, 3, FOR PEER REVIEW  4 
 

chalcone is then converted to naringenin by the action of chalcone isomerase (CHI) and 
finally to dihydrokaempferol. This dihydrokaempferol further diverges for the produc-
tion of different classes of flavonoids, including isoflavones, flavanones, flavones, fla-
vanols, flavan-3-ols and anthocyanins (Figure 3). 

 
Figure 3. Schematic representation of the flavonoids and their intermediates (shikimate, phenylpro-
panoid, flavanones, flavanols, flavan-3-ol, flavanol glycosides, anthocyanidins and anthocyanin bi-
osynthetic pathway). The respective enzymes catalyzing the reaction in each pathway have been 
denoted in red colour. Abbreviation: 3-deoxy-D-arabinoheptulosonic acid-7-phosphate synthase 
(DAHPS); 3-dehydroquinate synthase (DHQS); 3-dehydroquinate dehydratase (DHD); Shikimate 
kinase (SK); chorismate synthase (CS); shikimate dehydrogenase (SDH), UDP-3-glucosyltransferase 
(UGT); Phenylalanine ammonia lyase (PAL); cinnamate-4-hydroxylase (C4H); 4-coumarate-CoA lig-
ase (4CL); coumaryol-3-hydroxylase (C3H); Caffeoyl-O-methyltransferase (COMT); Chalcone syn-
thase (CHS); Hydroxycinnamoyl-CoA: skimimate/quinate hydroxycinnamoyltransferase (HCT); 
hydroxycinnamoyl (CoA); quinate hydroxycinnamoyl transferase (HQT); chalcone-flavanone iso-
merase (CHI); fatty alcohol hydroxycinnamoyl transferase (FHT); flavonoid 3′,5′-hydroxylase 
(F3′5′H); flavonol 3′ hydroxylase (F3′H); dihydroflavonol 4-reductase (DFR); flavonol synthase 
(FLS); anthocyanidin synthase (ANS); anthocyanidin reductase (ANR); leucocyanidin reductase 
(LAR); flavonoid-3-O-glucosyltransferase (GT). 

2.1.2. Flavone and Flavanone Biosynthesis 
The dehydrogenation of flavanones results in the formation of flavones (2-aryl-4H-

chromen-4-ones) by the action of enzyme flavone synthase via the conversion of fla-

Figure 3. Schematic representation of the flavonoids and their intermediates (shikimate, phenyl-
propanoid, flavanones, flavanols, flavan-3-ol, flavanol glycosides, anthocyanidins and anthocyanin
biosynthetic pathway). The respective enzymes catalyzing the reaction in each pathway have been
denoted in red colour. Abbreviation: 3-deoxy-D-arabinoheptulosonic acid-7-phosphate synthase
(DAHPS); 3-dehydroquinate synthase (DHQS); 3-dehydroquinate dehydratase (DHD); Shikimate
kinase (SK); chorismate synthase (CS); shikimate dehydrogenase (SDH), UDP-3-glucosyltransferase
(UGT); Phenylalanine ammonia lyase (PAL); cinnamate-4-hydroxylase (C4H); 4-coumarate-CoA
ligase (4CL); coumaryol-3-hydroxylase (C3H); Caffeoyl-O-methyltransferase (COMT); Chalcone syn-
thase (CHS); Hydroxycinnamoyl-CoA: skimimate/quinate hydroxycinnamoyltransferase (HCT); hy-
droxycinnamoyl (CoA); quinate hydroxycinnamoyl transferase (HQT); chalcone-flavanone isomerase
(CHI); fatty alcohol hydroxycinnamoyl transferase (FHT); flavonoid 3′,5′-hydroxylase (F3′5′H);
flavonol 3′ hydroxylase (F3′H); dihydroflavonol 4-reductase (DFR); flavonol synthase (FLS); antho-
cyanidin synthase (ANS); anthocyanidin reductase (ANR); leucocyanidin reductase (LAR); flavonoid-
3-O-glucosyltransferase (GT).
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2.1.2. Flavone and Flavanone Biosynthesis

The dehydrogenation of flavanones results in the formation of flavones (2-aryl-4H-
chromen-4-ones) by the action of enzyme flavone synthase via the conversion of flavanones
to flavones, for example as leteolin, apigenin, and galangin. Such conversion requires
NADPH and oxygen to introduce a double bond between the C-2 and C-3 residues in
flavanones (Figure 3).

2.1.3. Isoflavonoid Biosynthesis

A leguminous plant predominantly accumulates the isoflavonoids and the responsi-
ble enzymes for their biosynthesis, as have been identified and characterized earlier [15].
During these pathways, microsomal cytochrome P450 isoflavone synthase catalyzes and
converts naringenin and isoquiritigenin into the isoflavones genistein and daidzein, respec-
tively [16].

2.1.4. Anthocyanin Biosynthesis

Cyanidin, pelargonidin, and delphinidin are the most commonly explored antho-
cyanidins; they are present in flowers and fruits and are also responsible for their distinct
colour variations [13]. The regulatory mechanism of anthocyanin biosynthesis has been ex-
plored broadly, starting with the hydroxylation of flavanones to produce dihydroflavonols
by flavanone 3-hydroxylase (F3H) (Figure 3). Then, dihydroflavonols were reduced to
flavan-3,4-diols (leucoanthocyanins) by the enzyme dihydroflavonol reductase (DFR). An-
thocyanidin synthase (ANS) catalyzes the last step in the biosynthesis of anthocyanins.
Finally, Flavonoid-3-O-glucosyltransferase (FGT) transfers the glucosyl moiety from UDP
glucose to the 3-hydroxyl group of anthocyanidins and forms anthocyanins (Figure 3).

2.2. Non-Flavonoids

Non-flavonoids are classified as phenolics acid, tannins, stilbenes and lignans [17].
Most of the non-flavonoids present in fruits and vegetables have dietary significance.
Phenolic acids such as gallic acid, acts as a precursor of hydrolysable tannins. Similarly, C6–
C3 hydroxycinammates (p-Coumaroyl) and their derivatives are polyphenolic C6–C2–C6
stilbenes. However, lignans derived from phenylpropanoid E-coniferyl alcohol.

Stilbene Biosynthesis

The stilbene is also synthesized by the condensation of p-coumaroyl CoA with three
units of malonyl CoA, catalyzed by the enzyme stilbene synthase. Stilbene synthase and
chalcone synthase (CHS) are structurally very similar enzymes. Stilbene synthase is induced
by a wide range of stresses such as UV radiation and bacterial and fungal infections [17].

3. Responses of Phenolic Compound to Abiotic Stress

Plants regularly synthesize secondary metabolites in response to environmental
changes, which leads to the ability to adapt and survive in response to environmental
cues and various kinds of stresses. Accumulations of phenolic compounds in plants are
associated with the growth conditions and factors related to metabolic pathways, which
can be associated with stress conditions or signaling (Figure 4) [18]. Plants are exposed
to a diverse range of abiotic stresses (temperature, drought, salinity, alkalinity, UV) and
pathogens/herbivores, which cause severe damage to the plants [15]. These biotic and
abiotic factors increase reactive oxygen species (ROS), causing oxidative damage in plants.
ROS such as superoxide anion (O2

−), hydrogen peroxide (H2O2), singlet oxygen (1O2),
and the hydroxyl radical (HO˙) are highly reactive compounds which react with different
biomolecules, leading to an alteration in biochemical and physiological activities. ROS
generally generates in lower amounts during the cellular metabolic process, where it works
as a signal molecule. However, several external factors highly enhance the level of ROS,
which starts to cause oxidative damage. Oxidative stress elevates several stress mechanisms
in plants, such as different enzymatic antioxidants (superoxide dismutase, SOD; catalase,
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CAT; ascorbate peroxidase, APX; glutathione reductase, GR; monodehydroascorbate reduc-
tase, MDHAR; dehydroascorbate reductase, DHAR; glutathione peroxidase, GPX; guaiacol
peroxidase, GOPX; glutathione S-transferase, GST; nicotinamide adenine dinucleotide phos-
phate (NADPH) oxidase-like alternative oxidase, AOX; thioredoxins, TRXs; glutaredoxin,
GRX; etc.) and nonenzymatic antioxidants (ascorbic acid, AsA; glutathione, GSH; phenolic
acids; alkaloids; flavonoids; carotenoids; α-tocopherol; nonprotein amino acids; etc.) [16].
In nonenzymatic antioxidants, the elevated level of phenolic compounds during oxidative
stress, potentially protects plants from oxidative damage [16]. Phenols directly or indirectly
other defence mechanisms, which protect plants from massive damage, caused by oxidative
stress. Oxidative bursts damage several biomolecules, such as nucleic acids, proteins and
lipids. When ROS reacts with the membrane lipids, it converts into lipid peroxides (LOOH),
producing different carbonyl compounds such as aldehydes and ketones. Some of these
compounds contain carbonyl-conjugated C-C bonds, known as reactive carbonyl species
(RCS). RCS contains one or more carbonyl groups, generally known for their toxic effects
on organisms [19].
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Figure 4. Schematic diagram of the regulation of gene expressions and enzymatic activities involved
in the phenolic compound’s biosynthesis against abiotic stress tolerance in plants. Abbreviation:
phenylalanine ammonia lyase (PAL); chalcone synthase (CHS); chalcone-flavanone isomerase (CHI);
cinnamate-4-hydroxylase (C4H); 4-coumarate-CoA ligase (4CL); 4-coumarate-CoA ligase (4CL);
flavonol 3′ hydroxylase (F3′H); flavonoid 3′,5′-hydroxylase (F3′5′H); flavonol synthase (FLS); flavone
synthase (FNS); UDP flavonoid glycosyltransferase (UFG); isoflavone synthase (IFS); isoflavone
reductase (IFR); dihydroflavonol 4-reductase (DFR); anthocyanidin synthase (ANS).

On the other hand, during antioxidative activities, phenols oxidized into univalent
form by enzymatic or nonenzymatic activities with respect to phenoxyl radicals. Phytophe-
nols, such as polyphenols, support ascorbate-dependent antioxidative defence mechanisms
to protect plants against oxidative damage [20]. In another defence mechanism against ROS,
flavonoids and other polyphenols such as quercetin, rutin, and catechin react with some of
the biometal ions (Fe(II) and Cu(I)) as a chelating agent to reduce lipid alkoxyl radicals (a
strong oxidant, participating in lipid-peroxidation) [21]. Simultaneously, polyphenols pro-
vide rapid chemical scavenging for free radical damage on biomolecules through H-atom
donation or electron transfer. Similarly, the number of hydroxy groups in the aromatic
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B-ring of flavonoids directly participates in ROS scavenging activity. However, few studies
indicate that phenolic compounds, such as phoretin (which synthesizes in tea and ap-
ple) [22] and pelargonidin (which synthesizes in brown rice) [23], act as RCS scavengers.
Besides these, several multi-omics technologies are used to understand the mechanism of
different phenolic compounds against abiotic stresses. This review discusses the recent
updates in the responses of phenolic compounds to different abiotic stresses.

3.1. Drought

The integral approach to stabilizing the negative impacts of drought stress on plants is
enhancing their inherent accumulation of phenolic compounds [24]. Studies of many plant
species revealed an improved accumulation of flavonoids under drought conditions that
provide resistance to these plants [25]. The distinct antioxidant properties of phenolic acids
and flavonoids prevent plants from the adverse effects of water deficit conditions. Drought
stress induces the biosynthesis of phenolic and flavonoids, ultimately leading to enhanced
plant production [26,27]. The enhanced accumulation of kaempferol and quercetin in
tomatoes helps them to cope with the improved drought conditions via detoxification of
H2O2. The accumulation of phenolic compounds results from modulation in the phenyl-
propanoids pathway. Many of the important protein-encoding genes of these pathways
are regulated by the drought, which leads to the stimulation of phenolic compounds. A
study reported that drought stress enhances potato tubers’ polyphenol biosynthesis genes
(PAL, HCT, C3H, CHS, CHI, F3H, DFR, and AN1) [28]. Similarly, a recent study indicated
that drought stress upregulates the biosynthesis of flavonoids by regulating the heat shock
factors. In this study, under drought conditions, MdHSFA8a (Malus domestica heat shock
factor A8a) was released from MdHSP90-MdHSFA8a (Malus domestica heat shock factor
90) complexes and interacted with an AP2/ERF family transcriptional factor MdRAP2.12
to activate the genes involved in the flavonoid biosynthesis in Malus domestica [29]. In
another study, different types of anthocyanins, such as A11, A9, A8, and A5 were found
to be induced by short-term drought stress in Arabidopsis, in which A11 was the major
anthocyanin [30]. The impact of drought stress on the accumulation of phenolic and related
processes is also described in Table 1.

Table 1. The positive impact of drought stress on the endogenous levels of phenolic compounds in
different plant species.

Plant Species Increased Endogenous Level of Phenolic Compounds References

Brassica napus Total phenols, flavonoid and flavonols [26]
Cucumis sativus Vanillic acid, 4-hydroxycinnamic acid [27]

Nicotiana tabacum Lignin [31]
Ocimum spp. Total phenols [32]

Vitis vinifera
Polyphenols (4-coumaric acid, caffeic acid, ferulic acid,
cis-resveratrol-3-O-glucoside, caftaric acid, epicatechin

gallate, kaempferol-3-O-glucoside, cyanidin-3-O-glucoside)
[33]

Lactuca sativa Caftaric acid, rutin [34]
Thymus vulgaris Total flavonoids, polyphenols [35]
Lotus japonicus Kaempferol, quercetin [36]

Chrysanthemum morifolium Total phenolics, anthocyanins, chlorogenic acid, luteolin,
rutin, ferulic acid, apigenin and quercetin [37]

Zea mays p-coumaric acid and caffeic acid increased [38]
Zea mays Total phenols [39]

Oryza sativa Flavonoids [25]
Oryza sativa Vanillic acid and p-hyroxybenzoic acid [40]

3.2. Salt Stress

Salt stress causes osmotic disturbance in plants, which reduces the volume of vacuoles
and cytoplasm cells, ultimately leading to cellular dehydration. Additionally, higher salt
concentration also induces oxidative stress via the generation of ROS such as superoxide
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anions, hydrogen peroxide, and hydroxyl ions. To counter this type of adverse effect, a dif-
ferential accumulation of specific secondary metabolites occurs in plants [41,42]. Phenolic
compounds are well known for their potential antioxidant properties, which help to scav-
enge ROS under salt stress [43–45]. Salt stress induces the phenylpropanoid biosynthetic
pathway, which consequently elevates various kinds of phenolic compound biosynthe-
sis [44,46,47]. The polyphenols content increases in different plant tissue with an increase in
salinity level [48]. A report demonstrated that total phenolic content increased in red pep-
per under a moderate increase in salinity level [49]. In tobacco plants, NtCHS1 (Nicotiana
tabacum chalcone synthase 1) enhanced the accumulation of flavonoids upon the salinity
stress, which lead to the scavenging of ROS [43]. In Vitis vinifera, the induction of a transcrip-
tional factor, such as VvbHLH (Vitis vinifera basic helix–loop–helix), enhances flavonoid
biosynthesis and protects from salt stress damage [50,51]. In Glycine max, an upregulation
of the flavone synthase gene was observed against salt stress, which indicates that the
flavones play a crucial role under salinity stress [52]. Other phenolic compounds, such as
anthocyanin and phenolic acid, are also induced by salinity stress [44,53]. An overview
of the positive effect of salt stress on the endogenous levels of phenolic compounds in
different plant species is given in Table 2.

Table 2. Overview of the positive effect of salt stress on the endogenous levels of phenolic compounds
in different plant species.

Plant Species Increased Phenolic Compounds References

Carthamus tinctorius Total phenols and flavonoids [47]

Cynara cardunculus Luteolin-O-glucoside, apigenin 6-c-glucoside
8-c-arabinoside, gallocatechin, leucocyanidin, quercitrin [54]

Ocimum basilicum Caffeic acid, caftaric acid, cinnamyl malic acid, feruloyl
tartaric acid, quercetin-rutinoside, rosmarinic acid [55]

Triticum aestivum Total phenols [56]
Hordeum vulgare Total phenols [57]

Carthamus tinctorius Total phenols and flavonoids [50]
Mentha piperita Total phenols [58]

Solanum lycopersicon Total caffeoylquinic acid [59]
Asparagus aethiopicus Phenolics (apigenin, chlorogenic acid, caffeic acid) [52]

Red pepper Total phenolic compound [48]
Zea mays Anthocyanin [60]

Oryza sativa Hydroxycinnamic acid and ferulic acid [61]
Oryza sativa Ferulic and p-coumaric acid [62]

3.3. Heavy Metal

Heavy metals are a potential abiotic stress factor, which reduces growth and physi-
ology by generating oxidative stress [24]. These metals lead to changes in the metabolic
as well as the photosynthetic activity of plants. Metal/metalloid ions, mainly lead, nickel,
silver, cadmium, arsenic, etc., enhance the production of secondary metabolites, which
helps plants to cope with stresses [26]. The accumulation of heavy metals triggers oxidative
bursts by generating ROS such as O2

−, H2O2, and HO˙, which cause several biomolec-
ular damages, leading to to toxicity in the plant and ultimately a retard its growth and
productivity [63–66]. Heavy metals contain several donating electrons in their outer shell,
which are in a cellular condition gained by native O2, leading to highly reactive ROS. To
cope with this adverse effect, plants enhance the biosynthesis of secondary metabolite
production, especially phenolic compounds. Under metal toxicity, flavonoids play a crucial
role, which enhances the metal chelation and reduces the hydroxyl radicles from the plant’s
tissue [67,68].

Metal toxicity mainly induces the accumulation of flavonoids such as anthocyanins
and flavones [69,70]. During metal stress, the upregulation of some of the key enzymes,
such as chalcone synthase, shikimate dehydrogenase, cinnamyl alcohol dehydrogenase,
and polyphenol oxidase, induces phenylpropanoid biosynthesis in plants [70]. The key
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enzymes, such as SKDH (Shikimate dehydrogenase) and G6PDH (glucose-6-phosphate
dehydrogenase), catalyze several biological actions needed for the synthesis of the starting
precursors for the phenylpropanoid biosynthesis, during metal stress [71]. A recent study
demonstrated that an elevated accumulation of Pb and Cu induces the activities of PAL
(Phenylalanine ammonia-lyase) and TAL (tyrosine ammonia-lyase) in winter wheat plants,
which are the key enzymes of phenylpropanoid biosynthesis [72]. Generally, activating
the phenylpropanoid pathway synthesizes nonenzymatic compounds such as flavonoids,
coumarins, and lignans, which protect plants from oxidative stress [73]. Similarly, in
another study, chlorogenic acid was found to be enhanced against Pb stress in Zea mays [69].
Polyphenols such as tannins contain unique structures, facilitating electrostatic, hydrogen
bonding, and hydrophobic interactions with metal ions. Simultaneously, the catechol or
galloyl groups of tannin compounds provide chelating sites for metals, which protect them
from metal toxicity [74].

3.4. UV Radiation

Light quality and UV radiation also influence the synthesis of secondary metabolites
in plants [75,76]. UV radiation damages the protein structure and causes a mutation in the
genome, which is harmful in nature and leads to ROS generation in plants. To overcome the
detrimental effects of UV radiation, plants elevate the biosynthesis of secondary metabolites
production. The higher accumulation of secondary metabolites such as alkaloids [60],
terpenoids [59], and phenolic compounds protect from UV radiation [43]. A higher level of
phenolic compound underneath epidermal cells provides a protective layer, which further
prevents thymine dimerization and ultimately reduces DNA damage [24]. Many reports
suggest that plants accumulate more flavonoids under high light and UV radiations [59,77],
which can screen the UV and visible lights by absorbing capacity and protecting the plant
from damage [78,79].

There is ahigher accumulation of phenolic compounds as a result of the induc-
tion of flavonoid biosynthesis pathway genes under high light and UV radiation [80,81].
Flavonoids are potential scavengers of ROS, specifically, those flavonoids which contain
a catechol group in the B-ring of the flavonoid skeleton (e.g., quercetin derivatives). An
excess of light or UV-B radiation induces the biosynthesis of dihydroxy B-ring-substituted
flavonoids (e.g., luteolin derivatives) at the cost of other less effective flavonoids (e.g.,
kaempferol derivatives) [82]. The essential biosynthesis pathway genes of flavonoids such
as CHS, CHI, FLS, DFR, FHT, FGT, and PAL are induced with UV radiation [83,84]. Si-
multaneously, acylated anthocyanins absorb UV radiation and provide tolerance against
UV stress in plants [85]. A few reports indicate that the higher accumulation of phenolic
compounds is also caused by the jasmonic acid and ABA-mediated modulation of phenyl-
propanoid pathways under UV radiation [86,87]. Table 3 briefly summarizes the effect of
UV exposure on the endogenous phenolic composition of plants.

Table 3. Outline of the affirmative impact of UV light exposure on phenolic compounds in different
plant species.

Plant Species Increased Endogenous Level of Phenolic Compounds References

Brassica oleracea Gallic acid, sinapic acid [88]
Cuminum cyminum Total phenolics, anthocyanins [81]

Solanum lycopersicum Total phenolics [89]
Vigna radiata Total flavonoids and phenols [83]
Vitis vinifera Stilbenes, quercetin, kaempferol [90]

Triticum aestivum Total phenolics, ferulic acid, p-coumaric acid, vanillic acid [91,92]
Ribes nigrum Flavonols, anthocyanins, hydroxycinnamic hydroxybenzoic acids [93]

Kalanchoe pinnata Total flavonoids, quercitrin [94]
Triticum aestivum Total phenolics [89]
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Table 3. Cont.

Plant Species Increased Endogenous Level of Phenolic Compounds References

Caryopteris mongolica Flavonoids, anthocyanidins [95]
Zea mays Anthocyanin [96]

Oryza sativa Anthocyanin [97]
Oryza sativa Kaempferol and quercetin [98]

3.5. Some Other Abiotic Factors

Abiotic factors such as nanoparticles, aerosol, temperature and pesticides also stimu-
late the production of phenolic compounds in plants. Phenolic compounds prevent plants
from the phytotoxic effects of these abiotic stresses [99]. Plants also produce and accu-
mulate more anthocyanins, flavonoids, flavanols, and phenolic acids upon temperature
stress, and these metabolites protect plant cells from any damage caused by these types
of stress [100–103]. Under pesticide stress, plants enhance phenolic compounds to avoid
any toxic effects. The accumulation of phenolic compounds results from upregulating
key biosynthetic genes and activating the key enzymes of phenylpropanoid-branched
chain reactions such as PAL and CHS [103,104]. It was also reported that the plant Festuca
trachyphylla under heat stress conditions increased biosynthesis and the accumulation of
phenolic compounds such as 4-hydroxybenzoic acid, benzoic acid, caffeic acid, coumaric
acid, cinnamic acid, gallic acid, homo-vanillic acid, ferulic acid, and salicylic acid [105].
The accumulation of these compounds enhanced plant resistance via detoxifying ROS,
which is generated under heat-stress conditions [106]. The plant produces more phenolic
compounds, such as suberin or lignin, which strengthen the plant cell wall and help the
plant to avoid chilling injuries [24].

4. Effect of Biostimulants on Polyphenols Accumulation

Plant biostimulants are substances or microorganisms that, when applied to plants, aim
to enhance their nutrient uptake, physiological processes, and stress tolerance, ultimately
promoting plant growth and development [107]. Biostimulants can be treated as an additive
to fertilizers, and they support the uptake of nutrients, promote plant growth, and increase
their tolerance to abiotic stress. Biostimulants can stimulate the synthesis of secondary
metabolites, including polyphenols, in plants. These compounds act as signaling molecules
that trigger the plant’s defense responses against stress factors such as pests, pathogens,
and abiotic stresses such as drought and heat [107]. Polyphenols, on the other hand, are
a diverse group of secondary metabolites found in plants that have various biological
activities and are of interest for their potential health benefits for both plants and humans.
The effects of plant biostimulants on polyphenols can vary depending on the specific
biostimulant used, the plant species involved, and the environmental conditions. A study
reported that the biostimulants Kelpak and Asahi SL significantly enhance polyphenols
in potato leaves and tubers [108]. Similarly, a biostimulant (VIVEMA TWIN) made from
a combination of condensed and hydrolysable tannins was used against salt stress in
Solanum lycopersicum L. This study indicated that the application of biostimulant VIVEMA
TWIN upregulated several of the genes (285 genes) involved in root development and salt
stress tolerance. Another biostimulant (BALOX®) based on polyphenols at 1.4% (w/w)
and glycine betaine at 3.0% (w/w) was reported to enhance the salt stress tolerance and
polyphenols content in tomato plants. This biostimulant enhanced plant growth, especially
at the root level and in saline soil conditions [109]. Similarly, A. nodosum seaweed extract
was reported to significantly enhance the phenolic compound content of grapes [110]. In a
study, protein hydrolysate was used as a biostimulant to enhance phenolic compounds in
tomato plants. In this study, protein hydrolysate not only enhanced phenolic compounds
but also significantly increased the level of ascorbic acid and lycopene, which indicates its
potential role in the enhancement of antioxidants and stress-responsive compounds [111].
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Biostimulant application is a non-toxic and feasible option for agriculture to boost the
phenolic compounds in plants to aid against abiotic stresses.

5. Conclusions

Plants are sessile in nature and adapt to various protective mechanisms for their
better survival with respect to diverse environmental cues. Secondary metabolites such as
flavonoids, phenolics, stilbenes, hydroxycinnamic acids, etc., are produced in extremely
lower concentrations within plants under normal environmental conditions for signaling
and metabolism. However, external abiotic factors such as drought, light, temperature, etc.,
retards overall plant growth/development. Furthermore, it leads to the induction of biosyn-
thesis of specific types of secondary metabolites to combat the wide range of adverse effects.
In addition, other abiotic factors, such as pesticides, can also accelerate the endogenous
phenolic biosynthesis and facilitate resistance against the phytotoxic consequences of these
abiotic stresses. In recent years, integrating multiple omics methods such as transcriptome,
proteome, and metabolome has become essential to understanding and identifying the
crucial stress-responsive genes in plants during abiotic stresses. Amongst the secondary
metabolism in plants, the phenylpropanoid pathway is likely the most studied pathway
in terms of abiotic stresses. The change in the environmental condition acts as a stimulus
which activates the phenylpropanoid pathways via induction of the signaling process and
transcriptional upregulation of the key pathway genes. These compounds provide resis-
tance to the plant and regulate multiple of its functions. Some polyphenolic compounds
serve as a scavenger that removes the ROS molecules generated during oxidative bursts,
and some of them function as protective in nature, such as flavonoids and anthocyanins.
Although there are several reports available in which induction of the phenylpropanoid
pathway leads to a change in phenylpropanoid metabolite composition irrespective of the
kinds of stimuli, few studies have indicated whether these responses share a similar type
of mechanism, and which specific conditions are responsible for the shift from primary
metabolites to phenylpropanoid pathways. In addition, the application of biostimulant is
a sustainable approach to inducing phenolic compounds in plants to aid against abiotic
stresses. However, their mechanisms of action are, in some cases, still a challenge and need
to be recognized because the nature of their beneficial influence is not fully understood.
Biostimulants are, therefore, a hot topic in agriculture and still require in-depth research.
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