
Citation: Douradinho, R.; Sica, P.;

Tonoli, F.; Mattos, E.; Oliveira, M.;

Pinto, A.; Mota, L.; Faria, T.; Costa,

V.F.; Leite, G.; et al. Osmotic Stress

Alleviation in Saccharomyces cerevisiae

for High Ethanol Fermentations with

Different Wort Substrates. Stresses

2023, 3, 813–826. https://doi.org/

10.3390/stresses3040055

Academic Editor: Agustín Aranda

Received: 29 October 2023

Revised: 19 November 2023

Accepted: 28 November 2023

Published: 29 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Osmotic Stress Alleviation in Saccharomyces cerevisiae for High
Ethanol Fermentations with Different Wort Substrates
Rafael Douradinho 1,* , Pietro Sica 2 , Fernando Tonoli 1, Eduardo Mattos 1, Matheus Oliveira 1, Alana Pinto 1,
Layna Mota 1, Tamires Faria 1, Vitória Franco Costa 1, Gabriela Leite 1, Valter Arthur 3, Suani Coelho 4

and Antonio Baptista 1,*

1 Department of Agri-Food Industry, Food and Nutrition, College of Agriculture “Luiz de Queiroz”,
University of São Paulo, Padua Dias Avenue, 11, Piracicaba 13148-900, SP, Brazil;
fernando.tonoli@gmail.com (F.T.); eduardo.castro.mattos@usp.br (E.M.); mathribeiro@usp.br (M.O.);
alanauchoap@usp.br (A.P.); layna.amorim@usp.br (L.M.); tamiresfaria@usp.br (T.F.);
vitoria.franco@usp.br (V.F.C.); g.leite@usp.br (G.L.)

2 Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsenvej, 40,
1821 Frederiksberg, Denmark; pietro@plen.ku.dk

3 Center for Nuclear Energy in Agriculture, University of São Paulo, Centenário Avenue, 303,
Piracicaba 13416-000, SP, Brazil; arthur@cena.usp.br

4 Institute of Energy and Environment, University of São Paulo, Prof. Luciano Gualberto Avenue, 1289,
São Paulo 05508-900, SP, Brazil; suani@iee.usp.br

* Correspondence: rafael.douradinho@usp.br (R.D.); asbaptis@usp.br (A.B.)

Abstract: High-gravity fermentation, used for ethanol production from sugarcane, corn, and mixed
substrates, offers several benefits. Yeast, a rapidly multiplying unicellular microorganism, can be
adapted for high sugar and ethanol tolerance on a lab scale. However, different substrates can
enhance fermentation efficiency. Our study consisted of two experiments. In the first, we compared
simple batch feeding with a fed-batch system for yeast selection in high-gravity fermentation. We ran
eight cycles with increasing initial sugar contents (50 to 300 g L−1). No significant differences were
observed in the first seven cycles, but in the eighth, the fed-batch system showed lower glycerol and
fructose contents and higher cell viability than the simple batch system. In the second experiment, we
used the fed-batch system with 300 g L−1 from sugarcane, corn, and mixed wort. The results showed
that mixed wort produced higher ethanol contents and greater fermentation efficiency compared to
corn and sugarcane as substrates. In conclusion, our findings indicate that the fed-batch system is
more suitable for high-gravity fermentation on a lab scale, and the combination of sugarcane juice
and corn can enhance fermentation efficiency, paving the way for integrating these substrates in
industrial ethanol production.

Keywords: bioenergy; corn ethanol; mixed wort; sugarcane ethanol; biofuel; high-gravity fermentation;
Saccharomyces

1. Introduction

In 2021, the world produced approximately 100 billion liters of ethanol, with 82%
of it concentrated in Brazil (27%, mainly from sugarcane) and the United States (55%,
primarily from corn) [1]. In Brazil, biofuel production is tending to increase due to the
federal program RenovaBio. Under RenovaBio, biofuel producers receive a financial
certificate known as a Carbon Credit (CBIO), equivalent to one ton of CO2 emissions
reduced through biofuel production. Fuel distributors are obligated to purchase CBIOs,
and these certificates are also available to any interested investors [2,3]. In this context,
while Brazilian sugarcane ethanol is considered sustainable with a significantly higher
positive energy balance than corn ethanol [4,5], there is still room for adopting processes
to further enhance its sustainability, even concerning the application and management of
vinasse [6]. In Brazil, the production of ethanol from corn has also witnessed a considerable
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increase in recent years, and alternatives to increase its sustainability are needed [7], such
as the integration with sugarcane [8,9].

Vinasse is a brown liquid rich in minerals and organic matter that is the byproduct
of the ethanol distillation process, which is considered the primary byproduct of ethanol
production, as 10 to 15 L of vinasse is generated for every liter of ethanol produced [10].
Handling, transportation, and field application of vinasse is more costly [11,12], though the
volume of vinasse generated depends on the ethanol content of the wine during distillation.
Fermentation with higher fermentable sugar content can result in a wine with higher
ethanol content, offering several advantages, such as reduced investments in reactor size,
energy, and water, as well as improved sanitization conditions [13]. The resulting vinasse
has a lower volume per ethanol unit, potentially reducing the volume of anaerobic digestion
reactors and increasing methane production efficiency [14,15].

In Brazil, the fermentation of sugarcane juice for ethanol production typically lasts
between 8 and 12 h. It usually starts with an initial soluble solids content of 16 ◦BRIX
and results in a final ethanol content of approximately 8 to 10%. It is expected that if the
wort has soluble solids around 32 ◦BRIX, the fermentation would last longer, and the final
ethanol content would increase to around 16 to 18%, while the volume of vinasse generated
would be reduced by half. However, fermenting with high fermentable sugar levels in
an attempt to achieve elevated ethanol content can negatively impact yeast physiology
and fermentation efficiency. High sugar levels can induce osmotic stress on yeast, lead-
ing to reduced cell viability and reproduction rates [16,17]. Additionally, it affects yeast
physiology by closing the glycerol channel Fps1p, causing an accumulation of glycerol in
yeast cells in an attempt to restore turgor pressure [18]. Additionally, the higher ethanol
concentrations may also diminish yeast viability and population growth rates [19]. These
effects collectively reduce fermentation efficiency and present barriers to the adoption of
high-concentration fermentations.

The yeast (Saccharomyces cerevisiae) is a fungus capable of converting fermentable
sugars, such as sucrose, glucose, and fructose, into ethanol. In the stoichiometric conversion
of sugar to ethanol, one molecule of six-carbon sugar (C6H12O6: 180 g mol−1) generates
two molecules of ethanol (C2H5OH: 2 × 46 g mol−1), and two molecules of carbon dioxide
(CO2: 2 × 44 g mol−1). This process is favored under lower oxygen conditions, as high
oxygen stimulates yeast to reproduce and increase biomass [20,21]. Yeast is a single-celled
microorganism that appears as round or oval structures under a microscope. They can range
in size from 3 to 5 µm. Their rapid reproduction rates, high adaptability to environmental
conditions, and ease of multiplication allow these microorganisms to be selected at the lab
scale for application on an industrial scale [21–23].

Lab-scale fermentations with increasing initial sugar content can serve as a valuable
tool for the rapid selection of yeast strains tolerant to high ethanol levels and osmotic
stress resulting from high fermentable sugar concentrations [24]. Nevertheless, lab-scale
fermentations are typically performed in small reactors, such as Erlenmeyer flasks, where
all substrate volumes are commonly added together with the yeast at the beginning of the
fermentation in a simple batch system.

Expanding upon that, in this study, we conducted a first experiment (experiment 1) to
compare how lab-scale continuous fed-batch (CF) systems affect fermentative parameters
compared to a simple batch (SB) system. Our objective was to identify which system was
the best to select yeast strains suitable for high-ethanol fermentations. Our hypothesis for
this experiment was:

H1: A fed-batch system would deliver sugar to the yeast gradually, thereby reducing osmotic stress
at high initial sugar levels. This reduction in osmotic stress may lead to increased cell viability and
improved fermentation efficiency, facilitating yeast adaptation.

Furthermore, corn ethanol production in Brazil has seen significant growth in recent
years [7]. In this context, various studies have proposed the integration of corn and
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sugarcane to enhance ethanol production sustainability [8,9]. It also may be a business
strategy to extend the industrial season through storage and processing of corn during
sugarcane off-season in adapted brownfields sugarcane mills [25] or even a mechanism to
increase the fermentation efficiency [8]

Sica et al. (2021) found that combining energy cane juice with corn improved fermen-
tation efficiency compared to using only corn. Their findings suggested that the cane juice
supplied minerals that enhanced yeast growth and fermentation efficiency [8]. However,
their assessment was limited to an initial sugar content of 200 g L−1 in a simple batch
system. Therefore, our study conducted a second experiment (experiment 2) with the objec-
tive to investigate how different substrates (corn, corn + sugarcane juice, sugarcane juice)
influenced fermentation parameters at high sugar content (300 g L−1) using a fed-batch
system. Our hypothesis for experiment 2 was as follows:

H2: Despite having the same sugar content, variations in substrate composition can influence yeast
physiology, potentially affecting fermentation efficiency and other parameters.

Therefore, in this study, we conducted two experiments. In the first experiment, we
utilized the same substrate with increasing initial sugar contents to assess how different
feeding systems affected fermentative parameters. Based on the results from experiment 1,
we selected the fed-batch system to mitigate osmotic stress on the yeast and employed this
system with different substrates with high initial sugar contents in experiment 2.

2. Results
2.1. Experiment 1

The ethanol content consistently increased at the end of each fermentation cycle.
However, a significant difference in ethanol content between feeding systems was observed
only in cycle 3 when the reactors were fed with syrup diluted to 150 g of fermentable sugars
per L−1. Cell viability remained relatively stable at around 85–90% for both treatments in
all cycles, except for the last cycle, where the yeast viability in the simple batch (SB) feeding
system dropped significantly to around 60% (Figure 1). No bacterial contamination was
observed at the beginning or at the end of the fermentation.
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Figure 1. Ethanol content (%) and cell viability (%) at the end of the eight fermentation cycles with
increasing initial fermentable sugars content (50, 100, 150, 180, 200, 240, 260, and 280 g of fermentable
sugars L−1) in experiment 1. Different letters indicate a significant difference between treatments in
the same cycle (Student’s test, <0.05).



Stresses 2023, 3 816

Both glycerol and mannitol content showed an upward trend throughout the cycles.
A significant difference between the treatments was observed only for glycerol in the last
cycle, with SB having significantly higher levels than CF (Figure 2). Regarding residual
sugars, no sucrose was detected in the centrifuged wine, and glucose levels remained
relatively low for both treatments throughout the cycles. The fructose content began to
increase after the sixth cycle (>240 g of fermentable sugars per L−1), with CF exhibiting
significantly higher residual fructose content in cycles 7 and 8 (Figure 3).
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Figure 2. Glycerol (g L−1) and mannitol (g L−1) content at the end of the eight fermentation cycles
with increasing initial fermentable sugars content (50, 100, 150, 180, 200, 240, 260, and 280 g of
fermentable sugars L−1) in experiment 1. Different letters indicate a significant difference between
treatments in the same cycle (Student’s test, <0.05).

2.2. Experiment 2

In experiment 2, no significant differences were observed in the final pH and total
acidity of the wine among different substrates. However, for the corn (C) hydrolysate,
the final yeast cell viability was significantly lower compared to the other treatments. No
bacterial contamination was observed at the beginning or at the end of the fermentation
(Table 1).

Table 1. Cell viability (%), total acidity (g L−1), and pH of the wort at the beginning and the end of
the fermentation in experiment 2 for different substrates. C: corn hydrolysate; C + S: corn mixed with
sugarcane juice hydrolysate; S: concentrated sugarcane juice.

Cell Viability Total Acidity pH

Substrate *
Initial Final Initial Final Initial Final

(%) (g L−1)

C 87.7 ± 6 12.9 ± 1 b 2.44 ± 0.1 5.79 ± 0.4 5.59 4.44
C + S 87.6 ± 4 38.3 ± 2 a 2.32 ± 0.1 6.02 ± 0.4 5.51 4.49

S 87.2 ± 2 35.1 ± 4 a 1.84 ± 0.1 5.82 ± 0.5 5.30 4.53
Different letters indicate a significant difference between wort (Tukey HSD test, <0.05). * Wort and wine samples
were collected and inoculated in a YEPD medium to assess bacterial contamination. No colony-forming units
were detected at 10× dilution.
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Figure 3. Residual fructose (g L−1) and glucose (g L−1) at the end of the eight fermentation cycles
with increasing initial fermentable sugars content (50, 100, 150, 180, 200, 240, 260, and 280 g of
fermentable sugars L−1) in experiment 1. Different letters indicate a significant difference between
treatments in the same cycle (Student’s test, < 0.05).

The three worts’ compositions have their chemical differences since corn (C) can
provide only glucose as a monosaccharide. The others (S and S + C) also have fructose
and sucrose, proportionally from the sugarcane syrup amount on wort preparation (see
Section 4.2).

Both corn (C) and mixed wort (C + S) had significantly higher residual sugar content
compared to the diluted sugarcane syrup (S). Additionally, the final ethanol content and
productivity of the corn and sugarcane hydrolysate (C + S) were significantly higher than
those of the corn hydrolysate (C) alone. Fermentation efficiency was also significantly
higher for C + S compared to the other treatments (Table 2).

Table 2. Residual sugars, ethanol content and productivity, and fermentation efficiency in experiment
2 for different substrates. C: corn hydrolysate; C + S: corn mixed with sugarcane juice hydrolysate;
S: concentrated sugarcane juice.

Residual Sugars Ethanol Content Productivity Efficiency

(g L−1) % g L−1 h−1 %

C 54.9 ± 0.1 a 12.25 ± 0.35 b 2.68 ± 0.08 b 89.8 ± 3.0 b
C + S 60.9 ± 0.2 a 14.87 ± 0.22 a 3.26 ± 0.05 a 96.8 ± 2.4 a

S 20.3 ± 0.2 b 14.01 ± 0.36 ab 3.07 ± 0.08 ab 88.4 ± 1.8 b
Different letters indicate a significant difference between wort (Tukey HSD test, <0.05).

3. Discussion
3.1. Wort Disinfection

In the sugarcane ethanol industry, Lactobacillus spp. is considered the primary contam-
inant affecting the fermentation process [26,27]. Bacteria-produced organic acids directly
influence the medium’s pH during fermentation, potentially disrupting sugar assimilation
by the yeast, leading to incomplete sugar consumption [9] and reduced cell viability [28].
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In both experiments conducted in this study, the wort was sterilized, and no contami-
nation was observed at the beginning or end of the fermentation cycles. Therefore, the
observed differences in fermentative parameters can be attributed to variations in the
wort’s physicochemical composition.

The wort disinfection process differed between the two experiments. In experiment 1,
syrup underwent clarification, dilution, and autoclaving to reduce or eliminate bacterial
contamination. While this method is commonly used in laboratory conditions, it can alter
the wort composition by increasing sugar content due to water evaporation at higher
temperatures [8,24]. In experiment 2, wort from different substrates was sterilized using
ionizing radiation at 20 kGy. Ionizing radiation has been proposed as an alternative for
wort disinfection in both laboratory-scale [9] and industrial-scale applications [29–31]. One
of its primary advantages is that it does not affect the quality of the substrate [32]. In the
industrial setting, it can also help reduce the consumption of antibiotics [9]. Recent studies
have demonstrated its ability to remove contaminants in sugarcane wort [33] and control
Lactobacilli in corn and corn mixed with sugarcane wort [9]. Therefore, the results of this
study confirm the existing literature on the efficiency of ionizing radiation in controlling
bacterial contamination in sugarcane, corn, and mixed wort on a laboratory scale.

3.2. Yeast Osmotic Stress

In this study, we hypothesized (H1) that to minimize osmotic stress and potential
efficiency losses during fermentation when selecting yeast strains for high sugar and
ethanol content fermentations, wort should be gradually fed to the yeast (fed-batch system).
This method is commonly employed in 83% of Brazilian ethanol production units but is not
always practiced frequently in lab-scale experiments [27]. Given the high concentrations of
readily available sugars in the wort, we anticipated a significant osmotic differential within
yeast cells in a simple batch system [34]. Such differentials have been known to potentially
impact the quality of the fermentation process [35,36]. However, in experiment 1, this only
occurred in the eighth cycle when the wort contained 280 g L−1 of sugar, resulting in a
significant reduction in yeast cell viability and an increase in glycerol content in the wine. In
experiment 1, we also observed that in the third cycle (150 g L−1 of sugar), the ethanol and
glycerol contents for the fed batch were higher than in the fourth cycle (180 g L−1 of sugar).
We speculate that this may indicate osmotic stress during the fourth cycle, leading to a
reduction in fermentation efficiency [37]. Nevertheless, the yeast demonstrated adaptability,
as evidenced by its ability to reach higher ethanol contents in the subsequent cycles.

Klein et al.’s (2017) results showed that S. cerevisiae undergoes metabolic adaptation
in response to high sugar concentrations, a common feature of challenging environments.
Glycerol synthesis serves as a critical mechanism for rapidly releasing carbohydrates
to yeast under such conditions, alongside other stress-responsive compounds like tre-
halose [38]. Glycerol plays a vital role in cellular protection during osmotic stress condi-
tions [39–41]. It also serves as an electron acceptor for the reoxidation of excess NADH,
helping to maintain the cellular redox balance [42,43]. Throughout experiment 1, it was
only in the last cycle that yeast began to exhibit an increase in glycerol production and a de-
crease in cell viability within the simple batch system, as compared to the fed-batch system.
Surprisingly, this phenomenon did not have a discernible impact on ethanol production
when comparing both treatments. In fact, an intriguing trend emerged in the last three
cycles, where ethanol production appeared to stabilize at around 15%. Concurrently, there
was a noticeable increase in residual fructose levels in the wine for both treatment groups.

3.3. Effects of High Ethanol Content on Fermentation Efficiency

In a study conducted by Jones et al. (1994), they carried out a very high gravity
fermentation using wort prepared from syrup with a fermentable sugar content of 27.1%,
which is similar to the levels used in the eighth cycle of this study. During their fermentation
process, they observed a sharp decrease in cell viability, leading to incomplete fermentation,
resembling the high residual sugar levels observed in this study. Despite achieving an
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ethanol content of 13.3% (v/v) in the wine, their yield was as low as 74% due to the
incomplete conversion of sugars into ethanol. Subsequently, Jones et al. (1994) conducted
further experiments using the same syrup but with a dilution to fermentable sugars of 12.2%.
Interestingly, they attained a significantly higher fermentation yield of 94%. However, the
alcohol content in the wine was reduced to 7.7% (v/v). In the absence of ethanol-induced
stress, the fermentation continued until all available sugars were exhausted [44].

These findings align with our results from experiment 1, suggesting that yeast activity
was reduced when the fermentable sugar content exceeded 240 g L−1. This increase in
ethanol content to around 15% had a detrimental impact on yeast performance in converting
sugars to ethanol, resulting in elevated residual fructose levels. These high residual fructose
and low glucose results are consistent with the fact that, upon hydrolysis, sucrose provides
both glucose and fructose monomers to the solution, but yeast tends to prioritize glucose
metabolism over fructose [45].

The primary effects of ethanol toxicity are centered on the yeast cellular membrane,
specifically the lipid bilayers. Recent studies using lipidomics have helped uncover the
mechanisms behind alcohol tolerance in yeast. These studies indicate that yeasts with
higher tolerance to high ethanol concentrations have elevated levels of phosphatidylcholine
species, which have demonstrated the ability to stabilize model membrane bilayers in the
presence of high ethanol levels. In contrast, strains that cannot complete fermentation
at high ethanol concentrations, resulting in high residual sugar levels, tend to have high
levels of phosphatidylinositol [46]. Thus, the species of organic phosphorus synthesized
and allocated in the cellular membrane lipids bilayers are crucial to determining the cell’s
ability to tolerate high ethanol content.

Jones et al. (1994) attributed the interruption of the fermentation process to insufficient
phosphorus levels in the wort, which measured 286 mg L−1. To test their hypothesis, they
increased the phosphorus content to 814 mg L−1 by adding diammonium phosphate to the
undiluted broth with a fermentable sugar content of 27.1%. This adjustment resulted in
the maintenance of cell viability and an increase in yield, confirming their hypothesis [44].
Therefore, in order to reach successful results in the selection of yeast for high ethanol
fermentations, supplementation with nutrients may be needed.

3.4. Effects of Substrate on Fermentation Efficiency and Future Perspectives

Recently, driven primarily by the low prices of raw materials, corn ethanol production
in Brazil has been on the rise and is expected to continue increasing in the years to come [7].
In contrast, ethanol production from sugarcane in Brazil has a long-standing tradition [47].
Consequently, various studies have proposed integrating sugarcane and energy cane into
the corn ethanol production system in Brazil, thereby adapting the conventional corn
ethanol production methods commonly employed in the United States [8,9,48].

The energy cane, for example, emerges as a viable option for providing the necessary
bagasse biomass to meet industrial plant energy requirements [49,50]. Additionally, the
juice extracted from energy cane, which tends to be less concentrated than sugarcane
juice [50], offers an opportunity to replace water in the dilution of corn during the ethanol
production process [8,9]. In this study, the substitution of water during the hydrolysis step
results in a water savings of approximately 122 mL for every 78 g of corn processed. When
applied at an industrial scale, this volume assumes significant proportions, equating to
approximately 1.56 m3 of water conserved for every 1 ton of corn allocated for ethanol
production. Considering average agro-industrial yields [51], this translates to a potential
saving of about 3.9 L of water for every liter of ethanol produced.

In this research, we observed a significant increase in fermentation efficiency for
the treatment involving mixed wort (corn + sugarcane juice). These findings align with
those of Sica et al. (2021), who reported a 5% increase in fermentation efficiency when
corn was mixed with energy cane juice compared to using corn alone. The improved
efficiency was primarily attributed to the higher levels of phosphate and nitrate present in
the medium, provided by the addition of energy cane juice [8]. Indeed, the supplementation
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of micronutrients and macronutrients can increase fermentation efficiency, as demonstrated
by Poisot et al. (2011) [52].

In contrast, the corn (C) treatment in our study exhibited the lowest final cell viability,
resulting in a final ethanol content of 12.3%, which was significantly lower than that
achieved with the mixed wort. Consequently, it also displayed a lower fermentation
efficiency. As discussed earlier in experiment 1, yeast efficiency tended to decrease when
the ethanol content reached around 15%, a threshold similar to that achieved in the C + S
treatment in experiment 2. However, for the treatment involving only corn (C), cell viability
plummeted, and ethanol production ceased at 12.3%.

As suggested by Sica et al. (2021) and corroborated by Jones et al. (1994), the additional
nutrients, such as phosphates, provided by the sugarcane juice may have enhanced yeast
tolerance to ethanol, resulting in significantly higher ethanol content. Nevertheless, this
enhancement was insufficient to sustain further fermentation, as evidenced by the C + S
treatment, which still exhibited a considerably high residual sugar content [8,44].

Nutrient supplementation is crucial to achieving high ethanol content in worts con-
taining a mixture of sugarcane juice and corn hydrolysates [53]. The yeast’s tolerance to
ethanol may also depend on the availability of nutrients in each of the musts, as yeast
cells have an increased demand for microelements when under stress, as mineral ions play
an essential role in maintaining pH, osmotic stability, nutrient transport, and serving as
cofactors in fermentation reactions [54].

In our experiment 2, we supplied the worts with 600 mg L−1 of urea, following the
recommendation of Kovalchuk et al. (2017) [55]. The addition of nitrogen sources can boost
the population of physiologically active yeast cells, increasing the chances of success in
fermentations with worts containing high sugar concentrations [54]. Moreover, yeast’s
capacity for biosynthesis and biomass formation is closely linked to the availability of
nitrogen in the medium [56]. In conditions of ethanol stress, the assimilation of nitrogenous
sources is significantly impacted, as the accumulation of ethanol strongly inhibits the amino
acid transport pathway [54].

However, we did not supplement with phosphorus sources, which could have in-
creased the yeast tolerance to high ethanol content and allowed for an increased consump-
tion of residual sugars, reaching higher ethanol content. The concentration of ethanol in
the medium, therefore, enters as an aggravating factor to the nutritional condition of the
yeast cells and, consequently, to the performance of the fermentation. In addition to the
aforementioned effects, ethanol also denatures and inhibits glycolytic enzymes and can
lead to the formation of mutant cells [19]. Such a condition reduces the regenerative and
fermentative activity of yeasts [54].

4. Materials and Methods

This study consisted of two experiments. The first experiment aimed to assess how
two different lab-scale feeding systems impacted yeast fermentation parameters during
different fermentation cycles with increasing initial fermentable sugar content. Based on
the findings from this first experiment, we selected the fed-batch system to investigate how
different substrates affect various fermentation parameters under high initial sugar content
conditions. Table 3 provides a brief overview of both experiments, while the subsequent
sections offer a more detailed description of the experimental design and analyses.

The syrup utilized in this study was obtained from the Sugar and Ethanol Mill Granelli,
situated in the municipality of Charqueada, São Paulo, Brazil. Upon collection, its fer-
mentable sugar content was measured, and it was subsequently diluted to achieve the
desired sugar content based on those measurements. To remove impurities, the diluted
syrup underwent clarification using monobasic sodium phosphate, following the procedure
detailed by Sica et al. (2021) [8]. The corn used in both experiments was purchased from a
local store, composed of 71% starch, and ground by hammer milling (Marconi Laboratory
Equipment, Piracicaba, Sao Paulo, Brazil) to obtain a fine powder (<2 mm).
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Table 3. Brief description of the treatments and overview of experiment 1 and experiment 2.

Experiment 1

Treatments: Simple batch (SB) and continuous fed batch (CF)
Yeast: Saccharomyces cerevisiae, strain: C22 mycofer

Substrate: Diluted sugarcane syrup

Cycles: 8 cycles with increasing initial fermentable sugars:
50, 100, 150, 180, 200, 240, 260, 280 g L−1

Experiment 2

Treatments (substrates):
Different substrates:

Corn hydrolysate (C), corn plus sugarcane juice hydrolysate (C + S),
and sugarcane juice (S)

Yeast: Saccharomyces cerevisiae, strain: Thermosacc
Feeding
System:

Fed batch for first 135 min (1 mL min−1), based on the results of
experiment 1

4.1. Experiment 1 Setup

This experiment was carried out with eight consecutive fermentation cycles with an
increasing initial fermentable sugar content. The syrup had its total fermentable sugar
content determined and was properly diluted, aiming for the following content for each
cycle: 50, 100, 150, 180, 200, 240, 260, and 280 g of fermentable sugars L−1 (Table 3). After
dilution, the substrates were autoclaved at 125 ◦C with 1 kg-force per cm−2 of pressure
(kgf/cm2) for 25 min to be sterilized.

Fermentation was conducted in triplicates in Erlenmeyer flasks with a total working
volume of 300 mL of substrate. In the first cycle, 9 g of yeast (strain: Mycoferm C22, in dried
powder form, from the Italian company EVERINTEC) was added to the reactor (30 g L−1).
The dry yeast was inoculated in the first cycle, performed with low sugar content (50 g
L−1), also aiming to rehydrate and reactivate the yeast cells. The initial number of cells
was 109 mL−1. After 10 h of fermentation, the Erlenmeyer flasks were weighted every 2 h
to estimate the amount of CO2 released and estimate the sugar consumption. Based on
that estimation, the time to finish the fermentation was determined. At the end of each
cycle, the total volume was centrifuged at 5000 rpm (2719 g) for 10 min. The resulting
supernatant (wine) was stored and analyzed for residual sugars, glycerol, mannitol, and
ethanol content. The centrifuged solids, which included yeast, were thoroughly mixed
and recycled to provide yeast for the subsequent cycle. This process was repeated for all
fermentation cycles and is represented in Figure 4(left).

In this experiment, we employed two treatments. In one treatment, all 300 mL of
the substrate were directly mixed with the yeast at the beginning of the fermentation,
constituting a simple batch system (SB). In the other treatment, the yeast was mixed with
30 mL of the substrate at the beginning of the fermentation, while the remaining 270 mL was
provided using a fed-batch system (as shown in Figure 4, left) at a rate of 2 mL per minute
for 135 min.
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4.2. Experiment 2 Setup

The treatments and experimental setup used in experiment 2 are briefly demonstrated
in Table 3 and Figure 4(right). In this experiment, we assessed how different wort compo-
sitions affected fermentative parameters. The syrup was diluted to 300 g of fermentable
sugars L−1, consisting of the treatment with only sugarcane-derived substrate (S). The corn
(C) and corn plus sugarcane mixed (C + S) wort were hydrolyzed before the fermentation.
For the corn wort, 639 g of corn was added to one liter of distilled water. For the mixed wort
(C + S), 639 g of corn was added to one liter of diluted syrup (58 g fermentable sugars L−1).

The distilled water and diluted syrup were preheated to 55 ◦C and already contained
80 mg of Liquozyme® α-amylase enzyme (Novozymes, Copenhagen, Denmark). After
adding the corn particulates, the system was heated for approximately 40 min until the
temperature stabilized at 88 ◦C. Upon reaching 88 ◦C, the mixture received an additional
80 mg of the same Liquozyme® α-amylase enzyme and was maintained under constant
temperature stirring at 80 rpm for 150 min.

Once the corn starch liquefaction was complete, the system was cooled until the
temperature stabilized at 65 ◦C. At this point, the pH of the mixture was 5.0, with no
need to be adjusted. Under these conditions, 224 mg of Spirizyme® glucoamylase enzyme
(Novozymes, Copenhagen, Denmark) was added, and it was maintained under constant
temperature and stirred at 80 rpm for the saccharification. After the saccharification
stage was concluded, the mixture, consisting of corn particles and sugar solution, was
centrifuged using a Thermo Scientific® (Waltham, MA, USA) horizontal centrifuge, model
Sorvall ST40R, at a rotation speed of 10,000 rpm (3924 g), at a temperature of 5 ◦C, for
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10 min. The sugar solutions obtained as supernatant from centrifugation were then filtered
through a 210 µm sieve and used to prepare the worts by diluting it to approximately
300 g of fermentable sugars L−1. For each wort (C, C + S, and S), nitrogen was added by
600 mg L−1 of urea. To be sterilized, the worts were irradiated in an electron accelerator at
a dose of 20 kGy, as described by Silva et al. (2023) [9].

The fermentation was carried out in Erlenmeyers with a volume of 180 mL with 5.4 g
of yeast (3% w/v). First, the wort (10 mL) with twenty milliliters (20 mL) of sterilized
distilled water was added to the reactors. This mixture is composed of a diluted solution
designed to rehydrate the dehydrated yeast cells. Rehydration occurred under a constant
temperature of 39 ◦C ± 0.2 for fifteen minutes, following the method described by Kraus,
Scopp, and Chen (1981) [57]. After the rehydration period, the yeast cells in the reactors
were fed with their respective wort for 135 min, maintaining constant agitation at 120 rpm
and a temperature of 33 ◦C ± 0.2. The reactor received a total of 150 mL of wort, delivered
via peristaltic duct devices connecting the wort reservoir to the alcoholic fermentation
reactor (Figure 1, right). The experiment consisted of a single cycle of alcoholic fermentation
without yeast recovery and was organized into five blocks, each containing one replicate of
the three treatments in a randomized block experimental design.

4.3. Analytical Procedures

Yeast viability was assessed through the differential staining of living cells using a
0.1% methylene blue solution. Dead, live, and viable cells were counted in a Neubauer
chamber under light microscopy, following the methodology described by [8,58,59].

For the determination of ethanol content, 25 mL of the supernatant of centrifuged
samples were collected from each experimental unit at the end of the fermentation. These
samples were distilled using a micro-distiller MA 012/1 (Marconi, Piracicaba, Sao Paulo,
Brazil). After distillation, analysis was performed using the Schmidt Haensch Digital
Densimeter EDM 4000.

In experiment 1, the supernatant of the centrifuged wine was also analyzed for sucrose
(not detected), fructose, glucose (residual sugars), glycerol, and mannitol content using
a 930 Compact IC Flex ion chromatograph (Metrohm) equipped with an amperometric
detector and a Metrospec Carb 1 column. For the analysis, a 100 mmol L−1 NaOH solution
was used as the eluent, flowing at a rate of 1 mL min−1, and the temperature was maintained
at 35 ◦C.

The determination of total acidity in the centrifuged wine from experiment 2 was
carried out using the methodology proposed by Amerine and Ough (1981) [60]. Therefore,
20 mL of homogenized sample was transferred to an Erlenmeyer flask, added with 50 mL
of deionized water and 2–3 drops of 1% phenolphthalein indicator solution (m/v), and
then titrated until color changes (pH 8.2)—with a slightly pink turning point. From the
consumed volume of 0.1 N NaOH, the total acidity was then determined, with the result
expressed in grams of acetic acid per liter.

In experiment 2, the ethanol productivity was calculated as the amount of ethanol
produced (in grams) per liter of wort per hour of fermentation. The fermentation efficiency
is defined as the percentage ratio between practical and theoretical yields, considering the
stoichiometric ethanol production per 100 g of six carbon sugars, according to Gay-Lussac
(51.11 g of ethanol/100 g of sugars), as previously described by Sica et al. (2021) [8].

Bacterial and total mesophilic counts were conducted using the serial dilution and pour
plate technique on the Plate Count Agar (PCA) medium. The plating procedures followed
the protocols described by Oliveira et al. (1996) [59]. Serial dilutions were prepared in test
tubes containing 9 mL of deionized water supplemented with 0.1% (w/v) peptone and
sterilized. Petri dishes were incubated in a Marconi® oven (model MA415) at 30 ± 0.5 ◦C
for 48 h to allow microbial growth, followed by colony counting. In counts aimed at
determining the number of bacterial colonies exclusively, cycloheximide (Actidione®,
Sigma-Aldrich; Darmstadt, Germany) was added to the culture media at a concentration of
10 mg L−1 to inhibit yeast growth.
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4.4. Statistical Analysis

The statistical analyses were performed using the IBM SPSS 28.0 software. In experi-
ment 1, one-way ANOVA was performed for all the parameters, and Student’s t-test (<0.05)
was used to compare the means of the feeding systems in each cycle. In experiment 2,
one-way ANOVA was performed for all the parameters, and the differences among means
for different substrates were assessed with the Tukey HSD test (<0.05).

5. Conclusions

This study highlighted key findings in yeast fermentation for biofuel production. The
osmotic stress caused by high initial fermentable sugar content can be alleviated by gradual
wort feeding; however, high ethanol levels may reduce yeast viability and stop fermentation
at around 15% ethanol content. To overcome this, we suggest the supplementation of the
wort with different nutrients, such as nitrogen and phosphorus, as our results confirmed
that mixing corn with sugarcane juice enhances fermentation efficiency due to increased
nutrient availability to the yeast. Therefore, these insights offer valuable guidance for
optimizing biofuel production processes, especially in the context of integrating different
feedstocks and improving fermentation outcomes.
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