
Citation: Toader, A.M.; Frecus, B.;

Oprea, C.I.; Buta, M.C. Assessing

Quantum Calculation Methods for

the Account of Ligand Field in

Lanthanide Compounds. Physchem

2023, 3, 270–289. https://doi.org/

10.3390/physchem3020019

Academic Editor: Vincenzo Barone

Received: 5 May 2023

Revised: 1 June 2023

Accepted: 7 June 2023

Published: 16 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Assessing Quantum Calculation Methods for the Account of
Ligand Field in Lanthanide Compounds
Ana Maria Toader 1 , Bogdan Frecus 1, Corneliu Ioan Oprea 2 and Maria Cristina Buta 1,*

1 Institute of Physical Chemistry, Splaiul Independentei 202, 060041 Bucharest, Romania;
ancutatoader@yahoo.fr (A.M.T.); bogdan.frecus@gmail.com (B.F.)

2 Department of Physics, Ovidius University of Constanta, 900527 Constanta, Romania;
cornel.oprea@univ-ovidius.ro

* Correspondence: butamariacristina@gmail.com

Abstract: We obtained thorough insight into the capabilities of various computational methods to
account for the ligand field (LF) regime in lanthanide compounds, namely, a weakly perturbed ionic
body and quasidegenerate orbital multiplets. The LF version of the angular overlap model (AOM)
was considered. We intentionally took very simple idealized systems, the hypothetical [TbF]2+,
[TbF2]+ and [Tb(O2NO)]2+, in order to explore the details overlooked in applications on complex
realistic systems. We examined the 4f and 5d orbital functions in connection to f–f and f–d transitions
in the frame of the two large classes of quantum chemical methods: wave function theory (WFT) and
density functional theory (DFT). WFT methods are better suited to the LF paradigm. In lanthanide
compounds, DFT faces intrinsic limitations because of the frequent occurrence of quasidegenerate
ground states. Such difficulties can be partly encompassed by the nonstandard control of orbital
occupation schemes. Surprisingly, we found that the simplest crystal field electrostatic approximation,
reconsidered with modern basis sets, works well for LF parameters in ionic lanthanide systems. We
debated the largely overlooked holohedrization effect that inserts artificial inversion symmetry into
standard LF Hamiltonians.

Keywords: ligand field models; lanthanide ions; angular overlap model (AOM); holohedrization
effect; multiconfiguration methods; density functional theory (DFT)

1. Introduction

In this study, we considered computational experiments in different technical settings,
investigating the title problem and retaining the conceptual beacon ideas of ligand field
(LF) theories. The LF represents a class of phenomenological models, proposing parameters
for the split of atomic orbitals (d for transition metal compounds [1] or f-type for lanthanide
ions [2]) in specific environments from molecules and crystals. Initially, in historical
versions, due to Bethe and van Vleck [3,4], it was thought that perturbation can be estimated
from first principles if it is considered to be mostly electrostatic. Practice, acquired mostly
from the spectroscopy of transition metal ions [5], showed that the electrostatic simple
hypothesis did not work well, but the LF models were fruitful after making all parameters
adjustable, fitted from experimental spectra. The term ‘ligand field’ is also encountered
under another name, ‘crystal field’ (CF) [2]. Here, we would like to use the term ‘CF’ for
situations when the parameters are taken by electrostatic models, similar to early ideas.

Long before the computer era of molecular or solid-state electronic structure codes,
the LF paradigm was the sole route to the examination of the quantum effects of d or f
electrons. Currently, the LF is used as a tool for interpreting and validating the results of
brute-force calculations [6,7].

The LF Hamiltonian in the Wybourne formulation [8] is as follows:
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Here, Yk,q = Yk,q(θ, ϕ) are spherical harmonics, the explicit dependence on polar
angles being dropped in the above description. The LF potential operator takes a matrix
representation on the basis of the considered atomic orbitals (i.e., l = 2 for transition metals,
or l = 3 for lanthanides):

H[l]
m,m′ =

〈
Yl,m

∣∣V̂LF
∣∣Yl,m′

〉
=
∫ π

θ=0

∫ 2π

ϕ=0
Y∗l,m(θ, ϕ)V̂LF(θ, ϕ)Yl,m′(θ, ϕ) sin(θ)dθdϕ (2)

Instead of complex spherical harmonics, we can work with the real angular parts of
the orbitals, converting the Yl,m and Y∗l,m conjugate couples into the real sine and cosine
components, Ys

l,m and Yc
l,m, respectively.

Designs with spherical harmonics are convenient because these Hamiltonian matrices
must be integrated with atomic orbitals (AOs) that pertain to a shell with a given secondary
quantum number, l. Then, the integrals from Equation (2) contain Y*

l,m·Yk,q·Yl,m′ products,
with the left- and right-side factors coming from AO definitions (the “bra” and “ket”
functions); the middle factor comes from the Hamiltonian matrix. The use of even k indices,
k = 0, 2, . . . 2l is determined via algebraic rules in order to have nonvanishing integrals [9].
The k = 0 component, which causes an overall shift in the diagonal of the LF Hamiltonian
matrix and the resulted eigenvalues, is omitted from Equation (1), where the summation
starts at k = 2. This means that the Hamiltonian representation is traceless, with the sum of
diagonal elements and eigenvalues being zero, i.e., having the energy spectrum shifted in
its barycenter, as a matter of convention.

The somewhat complicated expansion of Equation (1) pays tribute to the historical
development of this field. Otherwise, the above formulation is quite trivial because it
generally proposes just as many parameters as in a Hamiltonian matrix written for a given
l shell. For instance, with f orbitals, the LF matrix has 7 × 7 dimensions and 7·8/2 = 28
general elements (i.e., taking the diagonal and half of the matrix from below or above the
diagonal because the transposed elements are the complex conjugate of the selected set).
Making the matrix traceless reduces the general degrees of freedom to 27, in the absence
of any symmetry (C1 point group). In Equation (1), the k = 2, 4 and 6 sums comprise
2k + 1 elements, having the 5, 9, and 13 lengths, respectively, leading to a total of 27 general
Bk

q parameters. When the problem has symmetry, the number of effective parameters is
reduced, imposing certain ratios between the Bk

q values and determining the vanishing of
the other ones.

We do not discuss the subtleties of Wybourne-type LF Hamiltonians here but simply
state that the number of expected independent parameters is equal to the number of totally
symmetric representations selected from the reduction of k = 2, . . . 2l spherical harmonic
sets in the given point group. This is a basic requirement because a well-designed effective
Hamiltonian should remain invariant to group operations. As an example, let us consider
the Oh point group. Here, k = 2 (quadrupole) behaves as Eg + T2g, yielding no contribution to
the LF operator because no A1 is included. k = 4 (hexadecapole) yields A1g + Eg + T1g + T2g;
k = 6 (64-pole) corresponds to A1g + A2g + Eg + T1g + 2T2g. These two sets contribute
equally, with an independent parameter [10]. Here, there is an established proportionality
between B4

q parameters such that only B4
0 can be taken as an independent term. Similarly,

the k = 6 set ends with only two LF parameters for the f shell in octahedral symmetry, B4
0

and B6
0. For the d shell, which is confined to the k = 4 set, there is only one LF parameter,

B4
0 , proportional to the well-known 10Dq gap. In the absence of symmetry, the active k-type

spherical harmonic operators are trivially decomposed in (2k + 1)·A1 totally symmetric
elements, making each Bk

q an independent parameter.
There are several other versions of the LF beyond the above-described Wybourne

parameterization, a very intuitive one being the angular overlap model (AOM) [11–19]. The
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AOM was enthusiastically embraced by chemists dealing with d-type coordination chemistry
and spectroscopy given its transparency virtues. For the f electrons, it was pioneered by
W. Urland [20], which remained lesser known because of the more complicated algebraic
apparatus and confinement to the somewhat exotic lanthanide chemistry. The AOM does not
make the Hamiltonian operator explicit, directly parameterizing the LF matrix with the help
of eL

λ parameters assigned to the ligand L and bonding type (λ = σ, π, . . . ):

H[l]
m,m′ =

ligands

∑
L

k

∑
λ=σ,π⊥ ,π||

D[l]
mλ(θL, φL)D f [l]

m′λ(θL, φL)eL
λ (3)

where the D values are functions of ϕL and θL polar coordinates of the coordinated ligand
(in a frame centered on the metal ion), having well-defined expressions for the l-type
shell to which the LF problem refers. An alternative model was advanced by Malta [21],
mixing AOM-like terms assigned to chemical bonding with electrostatic terms. Recent
works and reviews [22,23] have proven the current interest in AOM on lanthanide com-
pounds in connection with modern applications of these materials in new light-emission
technologies [24–26].

Because we revisit the LF ideas with modern tools, the following part of the Intro-
ductory is devoted to state-of-the-art computational chemistry. There are two distinct
classes of theoretical approaches: wave function theory (WFT) [27] and density functional
theory (DFT) [28]. For the following discussion, the former is closer to the physics of
LF split, because the spectral terms encountered in spectroscopy and magnetism have a
multiconfigurational and quasidegenerate nature, tractable with complete active space
self-consistent field (CASSCF) [29] (sometimes followed by second-order perturbations’
correction (PT2) [30–32]) and spin orbit (SO) [33,34] coupling. On the contrary, DFT is
limited, by the grounding principles, to nondegenerate states and, via Kohn–Sham [35,36]
techniques, to single-determinant functions. Then, we must adopt certain techniques to
circumvent the limitations of the DFT.

Although conceptually simple, because mononuclear lanthanide compounds, having
one ion with fn configuration, can be treated with a CASSCF(n,7) keyword, meaning
an active space of seven orbitals lodging n electrons, the technical realization may be
difficult because the calculations must be initiated with well-controlled guess orbitals,
having a pure or an almost-pure atomic orbital (AO) f characteristic [37]. Converged
molecular orbitals (MOs) are expected to retain quasiatomic f preponderance. In this study,
e applied the guidelines outlined in Chapters 5 and 7 of the structural chemistry textbook by
Putz, Ferbinteanu and Cimpoesu [38] and in debated studies [39,40], where these authors
pioneered the use of CASSCF for realistic lanthanide compounds. In detail, the strategy
consists of performing separate calculations of lanthanide fragment (CASSCF on naked ion)
and single-determinant procedures on ligands, merging the resulting orbitals in a common
block, initially placing zero nondiagonal values for the inter-fragment mixing coefficients.
It is advisable to perform the LF calculations in state-averaged mode, including a number
of states equal to the degeneracy of the ground state of the free lanthanide ion. In the case of
polynuclear systems, the WFT procedures are more complicated but still similarly possible.
In a previous instance, one of us applied this computational protocol to magnetochemical
problems in a series of lanthanide complexes, now revisiting the methodology in its basic
aspects in this study [41].

Remarkable results in the WFT electronic structure of lanthanide compounds were re-
ported by Neese and Atanasov [42] in their code, Orca [43,44], which has a set of keywords
dedicated to the interpretation of ligand field theory [45]. Because the final WFT solutions
retain a small mixing of lanthanide f-type orbitals, the guess from merged fragments is
well suited as a start. Otherwise, the common practice would be to trigger a CASSCF calcu-
lation by the orbitals obtained, in the preamble, through lower-level single-determinant
calculations. However, this routine is faulty in lanthanide complexes, with such attempts
facing severe convergence problems.
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Although DFT calculations on lanthanide compounds can converge in routine mode
using an unrestricted frame (i.e., with independent sets of molecular orbitals for α and β
electrons), the results may break the physical meaning, being particularly incompatible
with the LF phenomenology [46]. In nonroutine modes, we may obtain meaningful results,
with a rational method being the use of the fractional population n/7 on the seven molecu-
lar orbitals akin to the f-atomic functions (in the case of mononuclears with fn lanthanide
ions) [47–56]. This somewhat resembles the state-averaged procedures from CASSCF,
emulating an artificial object having a well-defined single-determinant state in DFT, avoid-
ing the spurious results obtained from the orbital optimization of a single-determinant
configuration accidentally selected among the quasidegenerate configurations possible, in
general, for a lanthanide compound. The population-averaged DFT also enables the use of
the restricted mode (i.e., a unique orbital set for both α and β electrons), a situation more
compatible with the LF-oriented interpretation.

The above-cited works produced good results in terms of electronic structure in both
WFT [37,39,41] and DFT [47] branches, a directly approaching compounds with a realistic
level of complexity, as demanded by the debated practical problems. Here, we revisit these
methods on extremely simple systems, aiming to critically examine their capabilities to
obtain systematic insight that, to the best of our knowledge, was not realized until now
given the current hurry to obtain direct relevance for practical respects.

2. Methods

Multiconfigurational calculations were performed with General Atomic and Molec-
ular Electronic Structure System (GAMESS) code [57], using the SARC-ZORA basis for
lanthanides and cc-pVTZ for ligand atoms [58]. The DFT calculations were realized with
Amsterdam Density Functional (ADF) code [59,60] using the built-in ZORA/TZ2P basis
sets. The developed analyses and graphical representations were conducted with the origi-
nal codes written in the Matlab-Octave environment [61,62]. Analytic formula derivation
was realized with the help of MathematicaTM symbolic algebra code [63,64].

3. Results and Discussion
3.1. The Multiconfigurational Account of Ligand Field Problems

We intentionally considered very simple model calculations in order to identify and
clearly express the factors and problems in this domain. LF parameterization refers to
one-electron quantities, partly due to two-electron interactions being borrowed from atomic
theory (Slater-Condon [65,66] or Racah-type [67] parameters, adjusted by certain factors,
with respect to the values resulting from the free-atom spectroscopy data). An LF model
describes how the f-orbitals split in a given environment (as a consequence of effective
one-electron factors), with the complete application to spectral states being the technical
problem of applying the given LF scheme to the poly-electronic context. To effectively deal
with the LF part only, ignoring the electron–electron interactions for acceptable reasons, we
may conveniently choose systems showing, as the free-ion ground state, an F-type term, as
is the case of Tb(III). In such a situation, the split of the poly-electronic 7F term is parallel
with the conceivable pattern of f-type orbitals in the corresponding LF scheme.

Let us consider some Tb(III)-based model systems in CASSCF calculations, includ-
ing eight electrons in seven orbitals, CASSCF(8,7). [TbF]+2 does not correspond to any
experimentally known species but offers a first glance into LF parameterization. The Tb–F
distance is conventionally set to 2.35 Å, corresponding to the range encountered in various
solid-state fluorides [68–70]. The CASSCF-computed states assignable to the 7Φ, 7∆, 7Π,
and 7Σ spectral terms, ordered in this sequence, have the relative energies 0.0, 497.5, 1008.7,
and 1339.8 cm−1, respectively. Figure 1 depicts the computed levels and suggests the
relationship with the orbital LF scheme, depicting the canonical MOs, which is practically
almost pure AOs, which can be described as the location of the β electron for the given
spectral term. In this simple case, the terms are parallel to the itinerant fβ component
from the f8 ≡ f7αfβ configuration of Tb(III). The scheme also suggests the meaning of
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the AOM-type parameterization, namely, the relative magnitudes of the ef
σ, ef

π, and ef
δ

perturbations for f electrons, after conventionally setting the ef
ϕ = 0 energy origin. The

above energy levels were obtained in the primary active space of CASSCF(8,7), related to
the f8 configuration. Extending the space to also comprise the five d-type virtual orbitals
to CASSCF(8,12), the split of 7F term is slightly modified, with the results being inter-
preted as the following AOM parameters: ef

σ(F) = 1175.0 cm−1, ef
π(F) = 910.2 cm−1, and

ef
δ(F) = 466.5 cm−1, in addition to the imposed ef

ϕ = 0.
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Figure 1. Computed relative energies of 7Φ, 7∆, 7Π, and 7Σ spectral terms resulting from the LF
split of the 7F ground state of Tb(III) in [TbF]+2 and relationship with the f-type LF scheme, labeled
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0.1 e/Å3 threshold.

Note that the eδ parameter is not negligible, as customary in the established AOM
practice, presuming ef

δ and ef
ϕ are null, because the ligands are not expected to be able to

exert δ and ϕ true orbitals overlap. Let us ignore this apparent discrepancy for the moment,
debating the available details of the proposed computational experiments.

The Tb(III) ion is also well suited to discuss the d-type ligand field in lanthanides,
analyzing the f8 → f7d orbital promotions (implying 5d empty AOs) in the CASSCF(8,12)
setting. The f7 subconfiguration is spherically symmetric, the set of f7d excited states then
has D representation, and the spectrum is parallel with the LF scheme of d electrons. In
more detail, there is a 7D term arising from the f7αdβ configuration and a 9D term arising
from the spin swap to f7αdα. The high-spin states are lower in energy, benefiting from
stabilization by the f–d inter-hell exchange coupling. In the following, as a measure of the
d-type LF split, we consider the spin-septet terms, keeping the same multiplicity as in the
7F ground state. To be distinguished from the d-type LF encountered in transition metal
complexes, here, we deal with an excited-state d orbital population. In linear symmetry,
the 7D term splits into 7∆, 7Π, and 7Σ levels. Shifting the 7∆ orbital doublet to zero, namely,
imposing ed

δ = 0, the relative gaps can be assigned to the d-type AOM parameters, resulting
in ed

σ(F) = 14,959.7 cm−1 and ed
π(F) = 4518.9 cm−1. Figure 2 shows the discussed spectral

terms and the assigned d-type orbitals from the f7d orbital promotions. In debating the
effective one-electron parameters, the overall shift in the 7∆ is ignored because it is due
to non-LF effects. As expected, the d-type LF split is sensibly larger than the f-type LF
split because, having a larger radial extension, the 5d orbitals are closer to the ligand sites,
undergoing a larger perturbation.
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Considering that an LF scheme has the meaning of orbital energies in a given envi-
ronment, there is a naïve expectation that computed canonical orbital levels may directly
provide this scheme. Strictly speaking, this is not generally true, and is particularly not
expected in the case of CASSCF techniques, where the orbitals are merely intermediate
objects used to set the many-electron problem, their energies being subject to certain con-
ventions (MO canonicalization [27]). However, we can verify that, in our case, the relative
energies of f-type optimized orbitals, corresponding to ϕ, δ, π, and σ labels, {0.0, 482.8,
987.6, 1448.5} cm−1, parallel the computed gaps between the 7Φ, 7∆, 7Π, and 7Σ spectral
terms. This regularity also occurs with respect to the d-type sequence, with the correspond-
ing molecular orbitals having relative energy gaps similar to those of the D spectral terms:
{0.0, 5464.9, 14,704.8} cm−1. Recall that in the axial symmetry, the σ or Σ labels correspond
to nondegenerate states, while the other ones represent doubly degenerate couples.

After conducting a thorough investigation on the grounds of simplified systems, we
now consider the artificial [TbNe]+3 molecule to produce a measure of LF perturbation in
the absence of charge. The neon atom is roughly similar as an electronic structure to the
structure of a fluoride anion. The AOM parameters extracted from computed 7F spectral
terms are ef

σ(Ne) = 264.5 cm−1, ef
π(Ne) = 148.1 cm−1, and ef

δ(Ne) = 66.5 cm−1, with
imposed ef

ϕ = 0.0; those of the 7D origin are ed
σ(Ne) = 2342.9 cm−1, ed

π(Ne) = 661.3 cm−1

while setting ed
δ(Ne) = 0.0. The values are sensibly smaller than those of the fluoride ligand,

indicating, in a semiquantitative sense, the important contribution of the electrostatic part.
We next considered linear [TbF2]+ in the next computer experiment, observing similar

spectral terms, because the molecule now spans the D∞h symmetry, having the previous
C∞v of the asymmetric linear molecule as a subgroup. Then, for the same series of spec-
tral terms, 7Φ, 7∆, 7Π, and 7Σ, from the atomic 7F state, the calculation produces the 0.0,
1044.5 cm−1, 2109.1 cm−1, and 2926.9 cm−1 gaps, namely, about double values, in compari-
son with those of [TbF]+2. In this way, for f electrons, we reasonably retrieved the additivity
hypothesis intrinsic to LF models. For the d shell, the split in [TbF2]+ is 0.0, 7764.5 cm−1 and
15,033.9 cm−1 for 7∆, 7Π, and 7Σ. Then, quite intriguingly, when the π-type perturbation in
[TbF2]+ is roughly twice that in [TbF]+2, the d-type σ perturbations are similar in [TbF]+2

and [TbF2]+. We suppose that because of the stronger interaction between the 5d shell and the
ligand, the simple premises of LF are not strictly followed, particularly not in the σ overlap,
achieving an advanced intercept of the ligand near the maximum 5d radial zone. As in the
previous case, the relative f-type orbital energies are quite similar to the spectral terms: {0.0,
1031.5, 2041.1, and 3006.8} cm−1 for the {ϕ, δ, π, and σ} sequence of f-type orbitals, respectively.
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In turn, the orbital energies are not a good measure for the d-based LF sequence, with the
relative values for {δ, π, and σ} being {0.0, 9986.1, and 20,455.0} cm−1, respectively.

Given the good parallelism between the spectral terms corresponding to the f-based
LF scheme and f-type orbital energies, we may suggest that these can be taken as approxi-
mations in situations where the relationship with the spectral term energies is not simply
defined. Thus, for a Gd(III) free ion, having a nondegenerate 8S ground state, with the
higher spectral terms being only spin sextets, the {ϕ, δ, π, and σ} relative orbital energies
in [GdF]+2 are {0.0, 482.8, 943.7, and 1316.8} cm−1, respectively, quite similar to those of
the [TbF]+2 case. The same regularities hold for [GdF2]+, which has {0.0, 1009.6, 1997.2,
and 2875.1} cm−1 f-type orbital gaps, approximately double the values of the single-ligand
model molecule.

The following numeric experiment demonstrates the variation in the computed spec-
tral terms in the [TbF2]+ unit as function of the F–Tb–F angle, which we performed to
check whether the geometry dependence follows the pattern of the angular overlap model
version of ligand field theory. Figure 3a shows the computation data with open circles and
the fitted AOM variation with a continuous line. The adjusted parameters, accounting for
the whole variation, are ef

σ(F) = 1341.7 cm−1, ef
π(F) = 1018.6 cm−1, and ef

δ(F) = 514.3 cm−1.
The CASSCF and AOM data were fitted in their barycenters for better visualization. The
fit is quite good in the 90◦–180◦ domain of the F–Tb–F angles, with the deviation at lower
angles being pardonable because it enforces the strong ligand–ligand repulsion, and the
small inter-ligand angles are avoided in real lanthanide chemistry. The conclusion that
the AOM pattern is satisfactorily obtained with the calculation also holds for the d-type
LF, represented in Figure 3b. The parameters giving an overall satisfactory fit to the d-LF
angular variation are ed

σ(F) = 8356.6 cm−1 and ed
π(F) = 3690.5 cm−1, with a constrained

ed
δ(F) = 0.0.
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Imposing F–Tb–F = 90◦ allows us to debate a subtle issue of ligand field models.
One may observe that, at this point, two pairs of emulated AOM states are crossing,
as if degeneracies are occurring. The TbF2

+ unit has C2v symmetry in all geometries
when it is nonlinear, not admitting degenerate states. Indeed, the computed points are
not superposed in a state-crossing situation, although the corresponding pairs of values
are mutually close. In this situation, we observe a hidden feature of LF models, called
holohedrization. The term was coined by Schäffer [71,72], being a definite feature of LF
models, but it is largely ignored in common practice. It arises because the expansion of LF
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potential in Equation (1) is based only on even spherical harmonics, k = 2, 4, and 6, in the
case of an f shell. Thus, it cannot account for asymmetric LF maps. In other words, this
creates, for every perturbation coming from a given ligand, a ghost image at its antipode.
Then, the perturbation of a ligand L is actually divided into two halves, one generated
from its real position, say at {xL, yL, zL} Cartesian coordinates; and another from the {−xL,
−yL, −zL} inverted point. This artificial effect of LF models is tacitly inherited in AOM too.
Then, in AOM as well, the perturbation due to the Tb–F contact is smeared as if produced
by two-halves of fluorine ions in diametrically opposed placement, (F/2)–Tb–(F/2). By
the same reason, a [TbF2]+ unit with F–Tb–F = 90◦ behaves as a square of four ligand
halves. Therefore, the LF potential and AOM matrix artificially acquire the D4h symmetry
of the square, where the representation of the f orbitals is a2u + b1u + b2u + 2eu. The two
doubly degenerate eu elements are the crossing points described in the above discussion.
The d-type LF scheme, shown in Figure 3b, shows a single crossing due to holohedrization,
because the representation of d orbitals in D4h, a1g + b1g + b2g + eg, contains one doubly
degenerate component.

An illustration of the holohedrization is represented using the color map of Equation (1).
If the θ and ϕ variables are drawn as the parallels and meridians of a sphere, the variation
in the VLF(θ, ϕ) potential is qualitatively suggested by the color shading, taking deep
blue for the lowest values, purple-red for maxima, and the orange-yellow-green palette
for the in-between range. The sphere is taken on an arbitrary scale with respect to the
molecular skeleton.

One can observe in Figure 4 that the action of the ligand is mirrored at its inversion
center. For instance, in panel 4a, the ligand is placed at the north pole, but the caps of red
coloring, marking the positive perturbation from the negative ligand against the negative
electrons, show an equal size at the south pole. With the same factor and the holohedrization
effect, the LF potential of the angular [TbF2]+ unit at F–Tb–F = 90◦ has four-fold symmetry.
The actual C2v symmetry of the system has an artificial inversion center, generally becoming
D2h and particularly D4h at the rectangular geometry. The artificial-square-like symmetry
is clearly seen in the inset in the right-bottom corner.
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functions correspond to Equation (1), with Bk

q parameters obtained by fitting Equation (2) with the
Hamiltonian matrix resulting from CASSCF calculations.
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In this intriguing situation, we proceeded to the examination of the ab initio computed
electrostatic potential. Figure 5 shows the same systems with electrostatic potential drawn
on a sphere with radius 0.5 Bohr, corresponding to the maximum of the radial profile
of the f shell in the given atomic basis. To improve visibility, the spheres represented
here are scaled in arbitrary mode. In more detail, we rendered the averaged electrostatic
potential collected from the seven states of the state-averaged CASSCF calculations of the
discussed systems.
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In the upper half of Figure 5, somewhat surprisingly, a map suggesting the partial
subsistence of the holohedrization effect appears in the case of the [TbF]+2 diatomic molecule.
A red area marking the axial penetration of the LF perturbation at the antipode of the Tb-F
bond is clearly visible but is smaller than those appearing under the ligand. The map of
[TbF2]+ in the lower half of Figure 5 more substantially differs from the emulated LF map
in Figure 4, showing only small spots at the antipodes of the Tb-F bonds and an absolute
maximum between ligands along the line bisecting the F–Tb–F angle.

We may conclude that the holohedrization, although due to the limitations of the LF
models is in part a true phenomenon for the f-shell compounds. This is an important result
of this work, with the issue deserving further debate. As previously noted, holohedrization
is largely overlooked in the current LF practices. Graphical LF mapping, as we show here,
has not been exploited despite the relevance of this issue.

We could not check the above-discussed LF quantities against experimental data,
because the selected case studies are artificial, given our aim of extreme simplicity to
obtain academic insight. However, one may attempt a step toward more realistic objects
considering the octahedral [TbF6]−3 unit. As a stand-alone molecule, this molecule is not
fully realistic, but similar units can be found as doped sites in elpasolites [73–75].

The AOM equates the octahedral LF eigenvalues as follows:

ε(a2u) = 6eδ (4)

ε(t1u) =
5
2

eϕ +
3
2

eπ + 2eσ (5)
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ε(t2u) =
3
2

eϕ + 2eδ +
5
2

eπ (6)

Inserting previously ascribed the ef
λ(F) values from the CASSCF(8,12) calculation on

[TbF]+2, we predicted values of 916.3 cm−1 and 409.5 cm−1 for the ∆1 = ε(t1u)− ε(a2u)
and ∆2 = ε(t2u) − ε(a2u) gaps, respectively. The calculation of the [TbF6]−3 unit, in
settings similar to those of the diatomic metal–ligand system, gives ∆1 = 762.9 cm−1 and
∆2 = 291.9 cm−1, which are roughly comparable to the result assuming the transferability
of the AOM parameters. The discrepancy is explained by the different balances in the
non-LF effects subsisting in the positively charged artificial diatomic system versus the
negatively charged larger system. The AOM practice does not consider the octahedral gaps
with the full set of {eσ, eπ, eδ, eϕ} parameters, being confined only to the {eσ, eπ} couple,
first by the empirical assumption that the effects of δ and ϕ are not chemically intuitive
and then by the pragmatic reason that the available data do not allow obtaining a full
parametric scheme. Thus, if we consider that the two gaps for the [TbF6]−3 unit are fitted
only in the σ-π scheme, we obtain eσ = 293.9 cm−1 and eπ = 116.7 cm−1, which is in a range
compatible with the experimental spectroscopy [42,76]. Although the chemical intuition
may refute the ϕ and δ bonding effects, the electrostatics support their underground action.
However, we leave this matter as a challenge open to further debate. We honestly admit
that the calculations have certain limitations; from a different perspective, they can offer
more details than are available from experiments.

Let us now take a polyatomic ligand, maintaining the simplicity; a relevant case study
is the nitrate coordinated in chelate symmetric mode. The Tb-O distances are conventionally
imposed at 2.35 Å. The CASSCF calculation results in the full split of the 7F term into seven
distinct levels (though with very small spacing between first and second states) with the
following relative energies: 0.0, 1.7, 451.1, 488.8, 499.6, 765.0, and 1184.5 cm−1. Via the
handling of the Hamiltonian matrix of the CASSCF calculations, these values are fitted
by the Bk

q parameters from Equation (1), as follows: B2
0 = 1410.8 cm−1, B4

0 = −203.2 cm−1,
B6

0 = −465.9 cm−1, B2
2 = 179.4 cm−1, B4

2 = 376.6 cm−1, B6
2 = 885.5 cm−1, B4

4 = 44.3 cm−1,
B6

4 = −19.5 cm−1, and B6
6 = −1.9 cm−1. We observe that in the given symmetry, only

parameters with non-negative and even q indices do not vanish.
The determination of the parameters enabled the drawing of the VLF(θ, ϕ) ligand field

potential map, shown in the upper part in Figure 6. The LF maps undergo holohedrization,
with the two maxima due to coordinated oxygen atoms being reflected exactly at the
opposite pole. Interestingly, holohedrization is also visible in the ab initio electrostatic
potential, averaged over the seven CASSCF states, as illustrated in the bottom half in
Figure 6. The potential contours under the ligand and those recorded at antipodes are
not perfectly similar but are comparable, again emphasizing that the identification of
holohedrization in this numeric experiment is a nontrivial finding.

The previously outlined Bk
q parameters are not transparent in their physical meaning.

To attempt a more intuitive interpretation, we considered the AOM scheme. Here, the
classical AOM knowledge indicates a limited set of parameters. One ef

σ(O) is assignable
to the lone-pair oriented toward the metal, with the π effects dichotomized in one due to
the nominal π orbitals, with lobes perpendicular to the ligand plane ef

π⊥(O), and another
acting in plane ef

π||(O), which may be negligible. The two oxygen atoms are equivalent,
receiving equivalent parametric definitions.

Judging by the degrees of freedom available in the given C2v symmetry, the parametric
leverage proposed by intuition-driven AOM is too constrained, having three variables,
while the approach in Equation (1) produces nine adjustable terms. To verify the available
degrees of freedom, we counted the repetitions of the A1-irreducible component in the
representation of k = 2, 4, and 6 sets of spherical harmonics in C2v. Thus, we picked two
from k = 2 (2A1 + A2 + B1 + B2), three from k = 4 (3A1 + 2A2 + 2B1 + 2B2), and four from
k = 6 (4A1 + 3A2 + 3B1 + 3B2), acquiring the nine-dimensional parametric variance.
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around the lanthanide center.

The attempt to fit the simplest AOM scheme gives parameters that seem acceptable:
ef
σ(O) = 835.2 cm−1, ef

π⊥(O) = 438.4 cm−1, and ef
π||(O) = 264.0 cm−1 (the in-plane π

was not vanishing, as hoped) and a sequence of LF energies {0, 14.5, 352.4, 369.3, 507.4,
650.38, 1181.2} cm−1, which very roughly reproduce the computed values. Allowing more
parameters, such as ef

δ⊥(O), ef
δ||(O), ef

ϕ⊥(O), and ef
ϕ||(O), improves the match of the

LF spectrum (although it does not make it perfect) at the cost of nonvanishing values for
these terms, which do not belong to the classical canon of the AOM.

3.2. Density Functional Account of Ligand Field Problems

In the following, as case studies, we use the same objects as in the previous section,
devoted to multiconfigurational calculations. Because the fn configurations, except the f7,
have degenerate ground states, and their compounds (within the expected weak LF) are
quasidegenerate systems, DFT should not be applied without special caution and wise
techniques. Considered in an unrestricted self-consistent version, i.e., allowing different
molecular orbitals for α and β spins, one may obtain convergent solutions, which should be
considered with precaution [46]. Unrestricted calculations are not well-suited because the
energies of the f-type orbitals may drastically differ in α versus β series, which is a situation
incompatible with the LF paradigm. On the other hand, restricted-type DFT calculations
are prone to severe convergence problems, a situation that can be described as due to the
non-Aufbau configuration of lanthanide ions in compounds [37]. As illustrated, we briefly
mention the unrestricted DFT attempt (with BLYP functional) of the [TbF]+2 system in the
same GAMESS code used for the previous CASSCF calculations. The simplest unrestricted
calculation with no educated guess does not reach convergence. Inserting a guess provided
by the CASSCF calculation (with the same MOs initially doubled for the α and β sets), we
obtained a convergent solution containing seven f-type α functions in the range −0.902 to
−0.857 Hartrees, i.e., with a gap of 9690 cm−1, which is too large for the LF scale. There are
two β f-type orbitals instead of the expected one fβ component, whose energies, at −0.770
and −0.777 Hartree, are very distant from the range of fα orbitals by about 29,000 cm−1.
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The restricted calculation attempt was a total failure. It is clear then that the brute-force
DFT approach is not satisfactory.

In order to assess the density functional theory (DFT) approach to LF, we employed
the Amsterdam density functional (ADF) code [59,60], which allows a rather wide range of
computational experiments based on the control of orbital populations, a feature usually
not available in many codes.

The advanced ADF controls allow restricted-type calculations, enforcing fractional
occupation with 8/7~1.1428 on each of the seven f-type orbitals expected to emulate the LF
sequence. It is important to note that fractional occupations are conceptually allowed in
DFT [77,78] and are technically enabled in the ADF environment. Averaging the population
of the fn configuration to n/7 for each f-type orbital, we can overcome the ban on using
DFT for quasidegenerate ground states. Taking the concrete case of Tb(III) with an f8

configuration, where we must have a doubly occupied f-type orbital, it is expected that, in
principle, small energy differences occur if different configurations are prepared with the
doubly occupied MO moving along the seven f-type orbitals; this is outside the validity
of DFT according to its basic theorems [79]. If, in turn, the content of the double-occupied
orbital is smeared on the components of the LF-type set, this dilemma disappears because
we consider an object having a singly defined, though artificially devised, state. From
another perspective, the orbital averaged scheme is somewhat similar to the state-averaged
calculations performed in multiconfigurational mode.

The population control in ADF is also helped by symmetry, making it possible to
organize the orbitals by their point-group representation. Thus, in the C∞v symmetry of
the [TbF]+2 molecule, there is a core due to the [Xe] and [Ne] configurations of the inner
Tb(III) shells and fluoride anion, with occupation [Xe-Ne] = σ28π28δ8. The LF part has the
fractional populations ϕ16/7δ16/7π16/7σ8/7.

We took the orbital energies of the restricted calculation with this definition, and we
interpreted the gaps as akin to f-type AOM parameters, with ef

ϕ = 0 fixed at zero. The
results are shown in the first row in Table 1. In comparison with the results from CASSCF,
it seems that this computational setting overestimates the LF parameters. We can explain
this by the slightly faulted description of the f characteristic in the MOs determining the LF
sequence. In the multiconfigurational calculations from the previous section, the canonical
orbitals were obtained with almost 100% content in f AOs; in the above-described DFT
calculation, this happens only for the δ and ϕ orbitals. The π functions were obtained with
only 74% f and the σwith about 89% f, with the remainder being due to the ligand. This
creates a nonphysical asymmetry in the shape of the f-type components, leading to the
overestimation of the LF parameters. On the other hand, although improperly balanced,
we comment that this situation is in the spirit of AOM, i.e., driven by weak covalency
occurring on σ and π channels but not on the δ and ϕ components.

Table 1. Numerical experiments on the [TbF]+2 molecular model, assessing the extraction of AOM-
type ligand field parameters from various settings in the frame of DFT, performed with specific input
controls from the ADF code. All values are in reported in cm−1.

[TbF]+2 ef
δ(F) ef

π(F) ef
σ(F)

Restricted

MO energies 2984.3 5750.9 6944.6
Frozen LF configurations −1202.6 6991.4 4948.3

Iterative LF configurations −851.7 2710.1 5372.6
Frozen density MOs 500.1 879.2 1032.4

Unrestricted

αMO energies 2201.9 4549.1 4315.2
βMO energies 2387.5 3218.2 5258.9

Frozen LF configurations −1857.5 −738.0 5171.7
Iterative LF configurations −1424.4 −292.0 1554.3

Frozen density αMOs 459.7 806.6 959.8
Frozen density βMOs 540.4 951.8 1121.1
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Here, we comment on the expected dependence on the choice of the density func-
tional. For instance, conducting the calculation with the B3LYP hybrid form, we obtain
ef
σ(F) = 6121.9 cm−1, ef

π(F) = 1645.4 cm−1, and ef
δ(F) = 3008.5 cm−1, noticing a nonphysical

swap of π vs. δ orbital energies.
The leverages of the ADF code allow the emulation of excited orbital configurations.

In the following numeric experiments, the doubly occupied MO from the f8 configura-
tion was successively placed in different LF-type orbitals, i.e., among functions with a
preponderant f characteristic. The orbitals were kept frozen as a result of the above-
discussed averaged-population result. The second line in Table 1 lists the total energy of
the ϕ3δ2π2σ1 configuration as zero of the energy scale, with the relative energies of the
ϕ2δ3π2σ1, ϕ2δ2π3σ1 and ϕ2δ2π2σ2 states assimilated to the ef

δ, ef
π and ef

σ perturbations,
respectively. As such, we break the rule that DFT is not enabled for excited states. However,
in this particular case, we may invoke a symmetry-sustained dispense. The above-outlined
configurations span different representations of their Slater determinants, 7Φ, 7∆, 7Π, and
7Σ. Then, we state that each configuration acts as a ground state on the different symmetry
channels, providing validity to the population-controlled calculation in the DFT frame.
The numeric values do not well reflect the expected LF pattern. The negative ef

δ(F) means
that ϕ2δ2π3σ1 is a ground configuration, instead of the initial expectation of a ϕ2δ3π2σ1

configuration. Although this numeric experiment is, in principle, more advanced than
the assimilation of orbital energies with the LF diagram, it did not lead to an actual im-
provement. The third line in Table 1 illustrates a tentative refinement by taking iterative
calculations on the tuned configurations, with the results remaining unsatisfactory.

The fourth line in Table 1 addresses a specialized handling implemented in ADF, called
frozen density embedding (FDE) [80,81]. Although not specifically aimed at ligand field
problems, the FDE approach serves this idea well because, in our case, the calculation
is performed only on the electrons of the metal ion, with the ligand counting only as
surrounding electron density. The approach is not confined only to the classical electrostatic
field because it also accounts for the exchange and kinetic energy effects from the frozen
electronic cloud of the ligands, taken as fragments described in the preamble from free
anions. The FDE-DFT calculation is then performed only on the Tb(III) ion, selecting the
energies of the perturbed f orbitals. The frozen ligand density result seems to be in the
correct range, being close to the CASSCF data reported in the previous section.

In the following, we discuss the results obtained in unrestricted mode. Now, popula-
tion averaging occurs only for one electron in β-type orbitals, while the α f-type orbitals are
filled with seven electrons, i.e., [ϕ2αδ2απ2ασα] ϕ2β/7δ2β/7π2β/7σβ/7, corresponding to
the f7αfβ/7 formulation of the f8 configuration of Tb(III). In this case, we selected two series
of orbital energies for the two spin polarizations. We remark on the persistence of paramet-
ric overestimations and on a strange swap of ef

σ vs. ef
π ordering for the α-type orbitals.

The numeric experiments with the imposed orbital occupation schemes considered the
following configurations: [ϕ2αδ2απ2ασα]ϕβ, [ϕ2αδ2απ2ασα]δβ, [ϕ2αδ2απ2ασα]πβ, and
[ϕ2αδ2απ2ασα]σβ, with the energy of the first taken as a relative reference. The results of
the configurations for the frozen MOs were catastrophic; it is hard to explain why. However,
the results improved if orbital iterations were allowed for each configuration, with a quite
good eσ but poor eπ and eδ values. The unrestricted FDE approach must consider two sets
of orbital energies. As in the restricted version, this technique, which is an approximation,
yields a result compatible with that of the LF paradigm. Particularly, the FDE β-type ef

λ

parameters show a resemblance to the CASSCF results.
Table 2 shows the results of the same series of calculations applied to the linear [TbF2]+

molecule. In this case, all computed energy gaps were divided by two with the idea of
obtaining LF perturbations assignable to one fluoride ligand.
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Table 2. Numerical experiments on [TbF2]+ molecular model, assessing the extraction of AOM-type
ligand field parameters from various settings in the frame of DFT and performed with specific input
controls from the ADF code. All values are reported in cm−1.

[TbF2]+ ef
δ(F) ef

π(F) ef
σ(F)

Restricted

MO energies 1770.4 3722.3 4920.1
Frozen LF configurations −382.3 2189.05 4441.8

Iterative LF configurations −128.25 2211.6 4218.4
Frozen density MOs 556.5 988.1 1193.7

Unrestricted

αMO energies 1290.5 2355.2 2661.7
βMO energies 1318.7 2621.4 3472.3

Frozen LF configurations −846.9 740.4 2123.3
Iterative LF configurations −572.3 831.6 1971.7

Frozen density αMOs 512.2 907.4 1096.9
Frozen density βMOs 604.9 1096.9 1330.8

In the [TbF2]+ system, although a general overestimation of LF parameters occurs, it
has a smaller amplitude than that of the [TbF]+2 system (except for the well-behaved FDE
estimation). We tentatively explain this by the symmetric characteristic due to the F–Tb–F
axis. Although this does not reduce the overestimated metal–ligand mixing, the orbital
shapes with inversion symmetry better account for the effective LF phenomenology than
the polarized bonds along the diatomic Tb–F line.

Let us briefly examine the DFT results on the [TbF6]−3 unit that were obtained using
the symmetry and occupation keywords. The energies of the restricted f-type MOs with
eight electrons smeared on the seven orbitals spanning the a2u + t1u + t2u composition gave
gaps of ∆1 = 1855.1 cm−1 and ∆2 = 709.8 cm−1 (see notations for Equations (4)–(6)), which
were about twice larger than those produced with the CASSCF estimation. The unrestricted
calculation is puzzling, yielding spurious results for α-type MOs of ∆1 = −2242.3 cm−1

and ∆2 = −685.6 cm−1, while producing semiquantitatively acceptable results for β-type
MOs of ∆1 = 1371.2 cm−1 and ∆2 = 524.3 cm−1. Connecting the points, it seems that
DFT generally overestimates the LF perturbations, which is curiously attenuated in larger
systems: severe in [TbF]+2, large in [TbF2]+, and partly acceptable in [TbF6]−3. This can be
understood by the fact that in larger systems, the central ion feels an averaged field closer
to the quasispherical situation in which the LF paradigm is constructed. The quantitative
lapses in the smaller systems deserve, however, to be kept under observation, signaling an
unbalanced interplay of factors inside the black box of DFT computation. As a conclusion,
we state the caveat about the general problems with DFT in describing the LF parameters,
emphasizing however, the reliability of the FDE approach, at least for the situation of the f
shell in ionic lanthanide complexes.

3.3. Revisiting the Crystal Field Electrostatic Approximation

Let us now consider the calculation results with standard LF Hamiltonian from Equation (1),
taking the simplest case of the [TbF]+2 model molecule, as described in Section 3.1. As
outlined in the Introduction, Equation (1) should obey the symmetry of the problem, taking
the combinations of the spherical harmonics that render total symmetric representation
in the given point group. In the case of linear systems, such as [TbF]+2, in the C∞v point
group, the total symmetric representations are simply the Yk,0 components in each spherical
harmonic set. In other words, only the Bk

0 parameters are retained, and all the other Bk
q

ones, with q 6= 0, vanish. The ab initio results on [TbF]+2 from Section 3.1 were fitted
with B2

0 = 2037.7 cm−1, B4
0 = 662.3 cm−1, and B6

0 = 232.4 cm−1. According to convention,
the eigenvalues are placed with their barycenter in the zero of the energy scale. If we
add an overall shift, with B0

0 = 386.9 cm−1, the eigenvalues are the same as interpreted in
the AOM parameterization, with a fixed eϕ = 0.0 cm−1. We here relabel the parameters
Bk

0 = bk. For the one-ligand case, in the C∞v point group, the eigenvalues of the Hamiltonian
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from Equations (1) and (2) in terms of bk parameters, classified by (σ, π, δ, φ) symmetry
labels, are:

εσ = b0 +
4
15

b2 +
2

11
b4 +

100
429

b6 (7)

επ = b0 +
1
5

b2 +
1
33

b4 −
25
143

b6 (8)

εδ = b0 −
7
33

b4 +
10

143
b6 (9)

εϕ = b0 −
1
3

b2 +
1
11

b4 −
5

429
b6 (10)

Note that the sum of the eigenvalues is εσ + 2επ + 2εδ + 2εϕ = 7b0, with the stan-
dard LF scheme imposing b0 = 0. In the AOM, we postulate εϕ = 0 or, equivalently,
b0 = (εσ + 2επ + 2εδ)/7.

If the LF Hamiltonian is taken in the crudest electrostatic definition, determined by a
qL point charge at distance RL from the lanthanide center, the bk parameters are

bk(L) = qL

∫ ∞

r=0
(R(r))2 min(r, RL)

k

max(r, RL)
k+1 r2dr (11)

where r is the radial coordinate of the electron, and R(r) is the radial function of the
atomic orbitals undergoing the LF perturbation. This expression comes from the multipolar
expansion of the electrostatic potential [1,2]. Although it quickly became clear that this
estimation was not working, tacitly referring to the d-type LF frame, we revisited this issue
because, to the best of our knowledge, it has not been re-examined in the modern age of
computation with a focus on the lanthanides case.

The evaluations with the above equation do not depend on a dedicated calculation
method: they are determined merely by the basis set of the LF shell. Because we worked in
the Gaussian-type orbital (GTO) based frame in Section 3.1 and we used a Slater-type orbital
(STO) set, specific to the ADF infrastructure, in Section 3.2, we exploited the opportunity to
check the idea of first-principles electrostatic approximation using these different definitions.

The radial part of the LF shell is taken as a linear combination:

R(r) =
n f

∑
i=1

ci · Ni · χ(ni, ζi, r) (12)

where ni and ζi are the power and exponent parameters of the primitive χ functions defining
the basis, respectively; ci are the coefficients resulting from the self-consistent calculation;
and Ni are the normalization factors.

In the GTO case, the primitives are

χGTO(ni, ζi, r) = rni−1 · exp
(
−ζi · r2

)
(13)

with the normalization factors

NGTO
i =

√
2(2ζi)

2ni+1
2 /Γ

(
2ni + 1

2
, 0
)

(14)

expressed in terms of the gamma incomplete function.
In the STO frame, the primitives and normalization factors are:

χSTO(ni, ζi, r) = rni−1 · exp(−ζi · r) (15)
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NSTO
i =

√
(2ζi)

2ni+1/(2ni)! (16)

In both cases, the general formulation of the pure electrostatic LF parameters is:

bk =

n f

∑
i=1

n f

∑
j=1

ci · cj · Ni · Nj ·
(

1
Rk+1

L

· Pij + Rk
L ·Qij

)
(17)

The Pij and Qij terms have specific expansions in GTO vs. STO instances. With the help
of MathematicaTM [63,64] computer-algebra code, we were able to derive closed analytical
formulas, being close in the GTO case:

PGTO
ij =

1
2
(ζ1 + ζ2)

− 1
2 (n1+n2+k+1)

(
Γ
[

1
2
(n1 + n2 + k + 1), 0

]
− Γ

[
1
2
(n1 + n2 + k + 1), (ζ1 + ζ2)R2

L

])
(18)

QGTO
ij =

1
2
(ζ1 + ζ2)

1
2 (k−n1−n2)Γ

[
1
2
(n1 + n2 − k), (ζ1 + ζ2)R2

L

]
(19)

For STO, we obtained:

PSTO
ij = (ζ1 + ζ2)

−n1−n2−k−1(Γ[(n1 + n2 + k + 1), 0]− Γ[(n1 + n2 + k + 1), (ζ1 + ζ2)RL]) (20)

QSTO
ij = (ζ1 + ζ2)

k−n1−n2 Γ[(n1 + n2 − k), (ζ1 + ζ2)RL] (21)

Let us apply the GTO formulas for the free Tb(III) ion, taken on the SARC-ZORA
basis [82] with a ζ = {32.1811, 10.727, 3.57568, 1.19189, 0.397298, 0.132433} sequence of
exponent parameters in Bohr−2 units, and all ni = 4. The state-averaged CASSCF calcu-
lation on the 7F ground state defines the set of c= {0.405816, 0.614349, 0.227727, −0.0382306}
coefficients. Inserting these values into the above formulas, we obtain electrostatic parameters
b0 = 49,464.5 cm−1, b2 = 1964.1 cm−1, b4 = 189.2 cm−1, and b6= 49.7 cm−1, which determine the
relative eigenvalues eσ = 1207.8 cm−1, eπ = 1028 cm−1, eδ = 601.4 cm−1, and eϕ = 0 (equivalent
to the AOM definitions), respectively. The b0 parameter, usually ignored in the LF expansion, is
very close to the classic point-charge potential, 1/RL = 0.225182 a.u. ≡ 49,421.7 cm−1. The bk
parameters are in the same range as those fitted from the ab initio spectral terms, but they
do not match perfectly. On the other hand, the relative eigenvalues are very similar in the
two schemes.

In the following, we check the pure electrostatic approximation of the LF param-
eters for the STO-type ZORA/TZ2P basis used in the calculations in Section 3.2. This
basis is defined by ζ = {10.2, 4.9, 2.15, 1.65} exponent parameters in Bohr−1 and the
n = {4,4,4,5} sequence of power factors. The BLYP calculation of the free Tb(III) ion provides
c = {0.405816, 0.614349, 0.227727, −0.0382306} coefficients. The STO-based estimation yields
b0 = 49,421.5 cm−1, b2 = 2257.0 cm−1, b4 = 271.2 cm−1, and b6 = 67.3 cm−1, which are just
a bit larger than the results from GTO. With this, we derive the following parameters:
eσ = 1395.3 cm−1, eπ = 1176.3 cm−1, and eδ = 675.64 cm−1 if conventionally considering
eϕ = 0. The results are fully comparable to those for GTO.

We obtained, via the crudest crystal field approximation, results that are compati-
ble with those of high-level multiconfigurational calculations. This contradicts the long-
standing belief about the failure of pure electrostatic estimation. Actually, the description
of pure electrostatic paradigm was pronounced about d-type LF systems, where partial
covalent bonds truly occur in coordination compounds. Sed contra, lanthanide compounds
are more ionic and are therefore better suited for the original ideas of electrostatic ligand
fields. This situation deserves further debate; here, the limitation is that the results may
be due to the very simplified nature of the discussed cases, with the imposed idealization
having yet insightful value and even practical connotations, suggesting that if proven that
we can rely on a simpler level of approximation in applications.
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4. Conclusions

We performed an unprecedented examination of the computational methods used
for the LF-dedicated description. The deliberate use of extremely idealized case studies
produced details usually hidden in calculations on large-scale systems, which deserve to
be considered in further explorations and exploitations of current practical problems.

Comparing the methods pertaining to wave function theory (WFT) versus those of
density functional theory (DFT), we clearly concluded that the former is better suited for LF
problems, while adapting the rather unsystematic DFT to this aim may be a useful quest.

Strikingly, revisiting the early hypothesis of the electrostatic nature of LF perturbation,
we found it suited for the ionic complexes of lanthanides. We produced very similar LF
parameters using crude estimations with the point-charge perturbation of the atomic f shell
via multiconfigurational WFT methods and by the DFT, confined to the frozen density
embedding (FDE) approximation. These corroborated results hint at the possible design of
simplified approaches that are usable in complicated situations, specific to property-design
challenges in the search for new materials. Here, LF can be a valuable ancillary tool in
luminescence problems.

Here, we confined our study to hard-base ionic ligands. The conclusions are valid
as extrapolation for large classes of solid-state systems with such characteristics (e.g.,
fluorides, oxides, phosphates, and silicates). We acknowledge that the factors may change
if we consider systems in the opposed extreme, i.e., neutral and soft-base ligands, creating
a challenge open to debate for the outlined issues.
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